organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o879-o880

(E)-3-(4-Hexyl­oxyphen­yl)-1-(3-hy­droxy­phen­yl)prop-2-en-one

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 6 March 2009; accepted 23 March 2009; online 28 March 2009)

In the title compound, C21H24O3, the enone unit is in the scis configuration. The dihedral angle between the benzene rings is 2.18 (4)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O inter­molecular hydrogen bonds, forming inversion dimers. The crystal structure is also consolidated by C—H⋯π inter­actions.

Related literature

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Won et al. (2005[Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103-112.]); Yayli et al. (2006[Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505-514.]). For related structures, see: Ng, Razak et al. (2006[Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.]); Ng, Patil et al. (2006[Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228-o1230.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller uded in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O3

  • Mr = 324.40

  • Monoclinic, P 21 /n

  • a = 8.5918 (2) Å

  • b = 17.1320 (3) Å

  • c = 12.4192 (2) Å

  • β = 109.083 (1)°

  • V = 1727.58 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.52 × 0.43 × 0.37 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.970

  • 32772 measured reflections

  • 7567 independent reflections

  • 5739 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.04

  • 7567 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O2i 0.86 (2) 1.89 (2) 2.739 (1) 171 (2)
C16—H16ACg1ii 0.97 2.72 3.572 (1) 146
C20—H20ACg1iii 0.97 2.82 3.642 (1) 143
Symmetry codes: (i) -x-1, -y, -z; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+1. Cg1 is the centroid of C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcone is a common natural pigment and one of the important intermediate in the biosynthesis of flavonoid. Synthetic and naturally occurring chalcones have been extensively studied and developed as one of the pharmaceutically important molecules. Chalcone derivatives are reported to possess a broad spectrum of biological properties such as an anticancer (Bhat et al., 2005) antimalarial (Xue et al., 2004), anti-inflammatory (Won et al., 2005), and antioxidant and antimicrobial activities (Yayli et al., 2006).

The synthesis of chalcone derivatives possessing alkyl chains of varying length has been synthesized in our lab and their antibacterial activities was tested against E. coli ATCC 8739. All the synthesized chalcone derivatives showed antimicrobial activity. In this paper, we report the structure of the title compound which is one of the chalcone derivatives mentioned above.

The bond lengths (Allen et al., 1987) and angles observed in (I) show normal values. The least-square plane through the enone moiety (O2C7C8C9) makes dihedral angles of 5.32 (5)° and 4.72 (5)° with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between these benzene rings is 2.18 (4)°. The alkoxyl tail is coplanar with the attached ring with the torsion angle C16—O3—C13—C14 being -0.26 (11)°.

The O2—C7—C8—C9 torsion angle of 4.1 (1)° shows that the enone moiety is in the s-cis configuration. The short H5A···H8A (2.12 Å) contact results in the widening of C5—C6—C7 (123.22 (7)°) angle while the widening of C8—C9—C10 (128.33 (7)°) and C9—C10—C11 (124.01 (7)°) angles are the result of close H8A···H11A (2.32 Å) contact. Similar strain induced by short H14A···H16A (2.32 Å) and H14A···H16A (2.28 Å) has also widened the C14—C13—O3 (124.19 (7)°) angles. These observations are also mentioned in structures reported by Ng, Razak et al. (2006) and Ng, Patil et al. (2006).

In the crystal, O1-H1O1···O2(-x - 1,-y,-z) intermolecular hydrogen bonds involving the keto and the hydroxy O atoms form molecular dimers. The crystal structure is further stabilized by C—H···π interactions.

Related literature top

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Won et al. (2005); Yayli et al. (2006). For related structures, see: Ng, Razak et al. (2006); Ng, Patil et al. (2006). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller uded in the data collection, see: Cosier & Glazer, 1986. Cg1 is the centroid of C1–C6 ring.

Experimental top

A mixture of 3-hydroxyacetophenone (1.23 g, 9 mmol) and 4-hexyloxybenzaldehyde (1.86 ml, 9 mmol) and KOH (1.82 g, 32.4 mmol) in 30 ml of methanol was heated at reflux for 12 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. The precipitate was dissolved in hexane–ethanol (7:1) mixture. After a few days of slow evaporation, colourless crystals were collected for X-ray analysis.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be -1.5Uequ (methyl H atoms) and -1.2Uequ (other H atoms). The rotating model group was considered for the methyl group. In the case of O1, the hydrogen atom was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular H-bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The packing viewed down the a axis showing the dimer formation. The symmetry code is given in Table 2.
(E)-3-(4-Hexyloxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-one top
Crystal data top
C21H24O3F(000) = 696
Mr = 324.40Dx = 1.247 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9979 reflections
a = 8.5918 (2) Åθ = 2.8–39.2°
b = 17.1320 (3) ŵ = 0.08 mm1
c = 12.4192 (2) ÅT = 100 K
β = 109.083 (1)°Block, colourless
V = 1727.58 (6) Å30.52 × 0.43 × 0.37 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7567 independent reflections
Radiation source: sealed tube5739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.959, Tmax = 0.970k = 2227
32772 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.3447P]
where P = (Fo2 + 2Fc2)/3
7567 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H24O3V = 1727.58 (6) Å3
Mr = 324.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5918 (2) ŵ = 0.08 mm1
b = 17.1320 (3) ÅT = 100 K
c = 12.4192 (2) Å0.52 × 0.43 × 0.37 mm
β = 109.083 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7567 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5739 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.970Rint = 0.026
32772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
7567 reflectionsΔρmin = 0.22 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67033 (8)0.16211 (4)0.11538 (5)0.02019 (13)
O20.24091 (8)0.00815 (4)0.14823 (5)0.01889 (12)
O30.57829 (7)0.01121 (4)0.74453 (5)0.01808 (12)
C10.43937 (9)0.11205 (4)0.03753 (6)0.01426 (13)
H1A0.44900.06360.00230.017*
C20.54671 (10)0.17174 (5)0.01437 (6)0.01515 (14)
C30.53013 (10)0.24523 (5)0.03709 (7)0.01738 (15)
H3A0.60090.28560.00200.021*
C40.40736 (10)0.25769 (5)0.14089 (7)0.01789 (15)
H4A0.39660.30660.17510.021*
C50.30007 (10)0.19778 (5)0.19442 (7)0.01605 (14)
H5A0.21830.20660.26390.019*
C60.31644 (9)0.12429 (4)0.14274 (6)0.01352 (13)
C70.20986 (9)0.05615 (5)0.19509 (6)0.01364 (13)
C80.06986 (10)0.06665 (5)0.30060 (6)0.01473 (13)
H8A0.05200.11460.33760.018*
C90.03228 (10)0.00634 (5)0.34327 (6)0.01478 (14)
H9A0.00840.03980.30160.018*
C100.17496 (9)0.00406 (5)0.44610 (6)0.01412 (13)
C110.22794 (10)0.06753 (5)0.52147 (7)0.01577 (14)
H11A0.17140.11470.50490.019*
C120.36209 (10)0.06102 (5)0.61936 (7)0.01651 (14)
H12A0.39520.10360.66790.020*
C130.44893 (9)0.00985 (5)0.64597 (6)0.01485 (14)
C140.39946 (10)0.07342 (5)0.57204 (7)0.01645 (14)
H14A0.45600.12050.58860.020*
C150.26459 (10)0.06536 (5)0.47334 (7)0.01590 (14)
H15A0.23310.10760.42390.019*
C160.66971 (10)0.08312 (5)0.77343 (7)0.01598 (14)
H16A0.59810.12480.78180.019*
H16B0.71370.09750.71350.019*
C170.80851 (10)0.07101 (5)0.88414 (7)0.01625 (14)
H17A0.88120.03030.87420.019*
H17B0.76360.05400.94250.019*
C180.90687 (10)0.14613 (5)0.92278 (7)0.01651 (14)
H18A0.95360.16200.86490.020*
H18B0.83260.18710.92950.020*
C191.04510 (10)0.13787 (5)1.03599 (7)0.01726 (14)
H19A1.11880.09661.02960.021*
H19B0.99840.12271.09420.021*
C201.14369 (11)0.21270 (5)1.07309 (8)0.02270 (17)
H20A1.18930.22831.01450.027*
H20B1.07040.25381.08060.027*
C211.28308 (13)0.20366 (7)1.18553 (9)0.0326 (2)
H21A1.34780.25051.20150.049*
H21B1.35140.16041.18050.049*
H21C1.23790.19431.24560.049*
H1010.6888 (18)0.1130 (9)0.1279 (12)0.042 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (3)0.0164 (3)0.0173 (3)0.0002 (2)0.0033 (2)0.0017 (2)
O20.0204 (3)0.0150 (3)0.0177 (3)0.0006 (2)0.0015 (2)0.0025 (2)
O30.0152 (3)0.0188 (3)0.0162 (3)0.0034 (2)0.0005 (2)0.0007 (2)
C10.0138 (3)0.0135 (3)0.0142 (3)0.0008 (2)0.0029 (3)0.0001 (2)
C20.0138 (3)0.0162 (3)0.0137 (3)0.0009 (3)0.0020 (2)0.0016 (2)
C30.0171 (3)0.0145 (3)0.0187 (3)0.0014 (3)0.0033 (3)0.0015 (3)
C40.0192 (4)0.0138 (3)0.0190 (3)0.0003 (3)0.0038 (3)0.0017 (3)
C50.0165 (3)0.0155 (3)0.0144 (3)0.0008 (3)0.0026 (3)0.0010 (3)
C60.0125 (3)0.0143 (3)0.0131 (3)0.0005 (2)0.0034 (2)0.0006 (2)
C70.0129 (3)0.0151 (3)0.0127 (3)0.0001 (2)0.0037 (2)0.0003 (2)
C80.0134 (3)0.0156 (3)0.0137 (3)0.0003 (2)0.0025 (2)0.0006 (2)
C90.0136 (3)0.0161 (3)0.0139 (3)0.0004 (3)0.0036 (2)0.0008 (2)
C100.0128 (3)0.0156 (3)0.0136 (3)0.0009 (2)0.0039 (2)0.0013 (2)
C110.0146 (3)0.0153 (3)0.0164 (3)0.0019 (3)0.0037 (3)0.0007 (3)
C120.0155 (3)0.0164 (3)0.0161 (3)0.0008 (3)0.0030 (3)0.0009 (3)
C130.0123 (3)0.0179 (3)0.0136 (3)0.0004 (3)0.0032 (2)0.0014 (2)
C140.0157 (3)0.0156 (3)0.0168 (3)0.0025 (3)0.0035 (3)0.0013 (3)
C150.0160 (3)0.0148 (3)0.0156 (3)0.0006 (3)0.0033 (3)0.0004 (3)
C160.0135 (3)0.0175 (3)0.0160 (3)0.0021 (3)0.0035 (3)0.0019 (3)
C170.0133 (3)0.0190 (3)0.0150 (3)0.0011 (3)0.0025 (3)0.0004 (3)
C180.0143 (3)0.0172 (3)0.0161 (3)0.0003 (3)0.0023 (3)0.0003 (3)
C190.0152 (3)0.0190 (4)0.0153 (3)0.0007 (3)0.0020 (3)0.0003 (3)
C200.0204 (4)0.0199 (4)0.0235 (4)0.0004 (3)0.0012 (3)0.0051 (3)
C210.0271 (5)0.0418 (6)0.0223 (4)0.0072 (4)0.0010 (4)0.0104 (4)
Geometric parameters (Å, º) top
O1—C21.3631 (9)C12—C131.4067 (11)
O1—H1010.861 (16)C12—H12A0.9300
O2—C71.2336 (9)C13—C141.3980 (11)
O3—C131.3581 (9)C14—C151.3912 (11)
O3—C161.4419 (10)C14—H14A0.9300
C1—C21.3867 (11)C15—H15A0.9300
C1—C61.4016 (11)C16—C171.5111 (11)
C1—H1A0.9300C16—H16A0.9700
C2—C31.3980 (11)C16—H16B0.9700
C3—C41.3895 (11)C17—C181.5282 (11)
C3—H3A0.9300C17—H17A0.9700
C4—C51.3944 (11)C17—H17B0.9700
C4—H4A0.9300C18—C191.5217 (11)
C5—C61.3993 (11)C18—H18A0.9700
C5—H5A0.9300C18—H18B0.9700
C6—C71.4949 (11)C19—C201.5225 (12)
C7—C81.4717 (11)C19—H19A0.9700
C8—C91.3470 (11)C19—H19B0.9700
C8—H8A0.9300C20—C211.5214 (13)
C9—C101.4531 (11)C20—H20A0.9700
C9—H9A0.9300C20—H20B0.9700
C10—C151.3971 (11)C21—H21A0.9600
C10—C111.4096 (11)C21—H21B0.9600
C11—C121.3794 (11)C21—H21C0.9600
C11—H11A0.9300
C2—O1—H101109.0 (10)C15—C14—H14A120.4
C13—O3—C16117.24 (6)C13—C14—H14A120.4
C2—C1—C6120.45 (7)C14—C15—C10122.15 (7)
C2—C1—H1A119.8C14—C15—H15A118.9
C6—C1—H1A119.8C10—C15—H15A118.9
O1—C2—C1122.56 (7)O3—C16—C17108.23 (6)
O1—C2—C3117.51 (7)O3—C16—H16A110.1
C1—C2—C3119.92 (7)C17—C16—H16A110.1
C4—C3—C2119.70 (7)O3—C16—H16B110.1
C4—C3—H3A120.1C17—C16—H16B110.1
C2—C3—H3A120.1H16A—C16—H16B108.4
C3—C4—C5120.81 (7)C16—C17—C18111.16 (7)
C3—C4—H4A119.6C16—C17—H17A109.4
C5—C4—H4A119.6C18—C17—H17A109.4
C4—C5—C6119.47 (7)C16—C17—H17B109.4
C4—C5—H5A120.3C18—C17—H17B109.4
C6—C5—H5A120.3H17A—C17—H17B108.0
C5—C6—C1119.63 (7)C19—C18—C17113.34 (7)
C5—C6—C7123.22 (7)C19—C18—H18A108.9
C1—C6—C7117.14 (7)C17—C18—H18A108.9
O2—C7—C8121.13 (7)C19—C18—H18B108.9
O2—C7—C6119.01 (7)C17—C18—H18B108.9
C8—C7—C6119.86 (7)H18A—C18—H18B107.7
C9—C8—C7119.62 (7)C18—C19—C20112.97 (7)
C9—C8—H8A120.2C18—C19—H19A109.0
C7—C8—H8A120.2C20—C19—H19A109.0
C8—C9—C10128.33 (7)C18—C19—H19B109.0
C8—C9—H9A115.8C20—C19—H19B109.0
C10—C9—H9A115.8H19A—C19—H19B107.8
C15—C10—C11117.59 (7)C21—C20—C19112.66 (8)
C15—C10—C9118.39 (7)C21—C20—H20A109.1
C11—C10—C9124.01 (7)C19—C20—H20A109.1
C12—C11—C10121.22 (7)C21—C20—H20B109.1
C12—C11—H11A119.4C19—C20—H20B109.1
C10—C11—H11A119.4H20A—C20—H20B107.8
C11—C12—C13120.19 (7)C20—C21—H21A109.5
C11—C12—H12A119.9C20—C21—H21B109.5
C13—C12—H12A119.9H21A—C21—H21B109.5
O3—C13—C14124.19 (7)C20—C21—H21C109.5
O3—C13—C12116.20 (7)H21A—C21—H21C109.5
C14—C13—C12119.61 (7)H21B—C21—H21C109.5
C15—C14—C13119.22 (7)
C6—C1—C2—O1178.55 (7)C8—C9—C10—C111.52 (13)
C6—C1—C2—C31.49 (11)C15—C10—C11—C120.84 (11)
O1—C2—C3—C4179.16 (7)C9—C10—C11—C12178.31 (7)
C1—C2—C3—C40.88 (12)C10—C11—C12—C130.14 (12)
C2—C3—C4—C50.11 (12)C16—O3—C13—C140.26 (11)
C3—C4—C5—C60.05 (12)C16—O3—C13—C12179.73 (7)
C4—C5—C6—C10.54 (11)C11—C12—C13—O3179.37 (7)
C4—C5—C6—C7178.46 (7)C11—C12—C13—C140.64 (12)
C2—C1—C6—C51.32 (11)O3—C13—C14—C15179.87 (7)
C2—C1—C6—C7177.75 (7)C12—C13—C14—C150.13 (12)
C5—C6—C7—O2174.30 (7)C13—C14—C15—C100.89 (12)
C1—C6—C7—O24.73 (10)C11—C10—C15—C141.37 (11)
C5—C6—C7—C86.05 (11)C9—C10—C15—C14177.83 (7)
C1—C6—C7—C8174.92 (7)C13—O3—C16—C17178.97 (6)
O2—C7—C8—C94.05 (11)O3—C16—C17—C18177.65 (6)
C6—C7—C8—C9175.59 (7)C16—C17—C18—C19178.18 (6)
C7—C8—C9—C10179.11 (7)C17—C18—C19—C20179.31 (7)
C8—C9—C10—C15179.34 (8)C18—C19—C20—C21179.22 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.86 (2)1.89 (2)2.739 (1)171 (2)
C16—H16A···Cg1ii0.972.723.572 (1)146
C20—H20A···Cg1iii0.972.823.642 (1)143
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H24O3
Mr324.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.5918 (2), 17.1320 (3), 12.4192 (2)
β (°) 109.083 (1)
V3)1727.58 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.43 × 0.37
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
32772, 7567, 5739
Rint0.026
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.04
No. of reflections7567
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.86 (2)1.89 (2)2.739 (1)171 (2)
C16—H16A···Cg1ii0.972.723.572 (1)146
C20—H20A···Cg1iii0.972.823.642 (1)143
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312 and the Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). SMHF and NIAR thank the Malaysian Government and Universiti Malaysia Sarawak for providing scholarships for their postgraduate studies.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1228–o1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505–514.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o879-o880
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds