organic compounds
(7R,8R,8aS)-8-Hydroxy-7-phenylperhydroindolizin-3-one
aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, and cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, Bratislava, Slovak Republic 81237
*Correspondence e-mail: viktor.vrabel@stuba.sk
The 14H17NO2, was assigned from the synthesis. There are two molecules in the Their geometries are very similar and corresponding bond lengths are almost identical [mean deviation for all non-H atoms = 0.015 (2) Å]. The six-membered ring of the indolizine system adopts a chair conformation. In the molecules form chains parallel to the a axis via intermolecular O—H⋯O hydrogen bonds, which help to stabilize the crystal structure.
of the title compound, CRelated literature
Polyhydroxylated indolizidine et al. (2006); Michael (2003); Lillelund et al. (2002); Gerber-Lemaire & Juillerat-Jeanneret (2006); Butters (2002); Compain & Martin (2001); Shi et al. (2008); Fujita et al. (2004). For indolizines as antimycobacterial agents against mycobacterial tuberculosis, see: Gundersen et al. (2003). For the biological activity of indolizine derivatives, see: Teklu et al. (2005); Foster et al. (1995). For their pharmacological applications, see: Couture et al. (2000); Jorgensen et al. (2000). For puckering parameters, see: Cremer & Pople (1975). For conjugation of the lone-pair electrons in simple see: Brown & Corbridge (1954); Pedersen (1967). For bond lengths and angles in related structures, see: Vrábel et al. (2004); Švorc et al. (2008). For the synthesis, see: Šafář et al. (2009).
are excellent inhibitors of biologically important pathways, see: MeloExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S160053680901085X/fj2203sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901085X/fj2203Isup2.hkl
The title compound (7R,8R,8aS)-8-hydroxy-7-phenylhexahydroindolizin-3(5H)-one was prepared according literature procedures of Šafář et al. (2009).
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and O—H distance 0.85Å and Uiso set at 1.2Ueq of the parent atom. The
could not be reliably determined for this compound using Mo radiation, and has been assigned according to the synthesis. Friedel pairs have been merged.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).C14H17NO2 | F(000) = 992 |
Mr = 231.29 | Dx = 1.249 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 19073 reflections |
a = 25.3592 (4) Å | θ = 3.0–29.5° |
b = 16.1467 (2) Å | µ = 0.08 mm−1 |
c = 6.0086 (1) Å | T = 298 K |
V = 2460.33 (6) Å3 | Block, white |
Z = 8 | 0.33 × 0.26 × 0.15 mm |
Oxford Diffraction Gemini R CCD diffractometer | 3791 independent reflections |
Radiation source: fine-focus sealed tube | 1856 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 29.6°, θmin = 3.0° |
Rotation method data acquisition using ω and ϕ scans | h = −34→34 |
Absorption correction: analytical (Clark & Reid, 1995) | k = −22→22 |
Tmin = 0.965, Tmax = 0.988 | l = −8→8 |
60218 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0552P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.001 |
3791 reflections | Δρmax = 0.12 e Å−3 |
311 parameters | Δρmin = −0.11 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0058 (10) |
C14H17NO2 | V = 2460.33 (6) Å3 |
Mr = 231.29 | Z = 8 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 25.3592 (4) Å | µ = 0.08 mm−1 |
b = 16.1467 (2) Å | T = 298 K |
c = 6.0086 (1) Å | 0.33 × 0.26 × 0.15 mm |
Oxford Diffraction Gemini R CCD diffractometer | 3791 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 1856 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.988 | Rint = 0.035 |
60218 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.12 e Å−3 |
3791 reflections | Δρmin = −0.11 e Å−3 |
311 parameters |
Experimental. face-indexed (Oxford Diffraction, 2006) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.70322 (7) | 0.68436 (12) | 0.1107 (4) | 0.0598 (5) | |
C3 | 0.74476 (8) | 0.61874 (15) | 0.0828 (4) | 0.0771 (6) | |
H3A | 0.7286 | 0.5657 | 0.0504 | 0.093* | |
H3B | 0.7683 | 0.6330 | −0.0384 | 0.093* | |
C4 | 0.77424 (8) | 0.61487 (12) | 0.2968 (4) | 0.0741 (6) | |
H4A | 0.8116 | 0.6233 | 0.2714 | 0.089* | |
H4B | 0.7693 | 0.5614 | 0.3673 | 0.089* | |
C5 | 0.75196 (6) | 0.68383 (11) | 0.4430 (4) | 0.0578 (5) | |
H5 | 0.7375 | 0.6596 | 0.5796 | 0.069* | |
C6 | 0.79146 (6) | 0.75095 (10) | 0.5042 (4) | 0.0518 (5) | |
H6 | 0.8110 | 0.7671 | 0.3704 | 0.062* | |
C7 | 0.76420 (7) | 0.82764 (11) | 0.6015 (4) | 0.0574 (5) | |
H7 | 0.7480 | 0.8109 | 0.7425 | 0.069* | |
C8 | 0.72007 (7) | 0.85684 (11) | 0.4495 (4) | 0.0696 (6) | |
H8A | 0.7351 | 0.8763 | 0.3105 | 0.083* | |
H8B | 0.7020 | 0.9031 | 0.5189 | 0.083* | |
C9 | 0.68041 (7) | 0.78853 (12) | 0.4007 (4) | 0.0741 (6) | |
H9A | 0.6622 | 0.7728 | 0.5361 | 0.089* | |
H9B | 0.6545 | 0.8078 | 0.2938 | 0.089* | |
C10 | 0.80442 (7) | 0.89421 (12) | 0.6548 (4) | 0.0609 (5) | |
C11 | 0.82924 (9) | 0.89602 (15) | 0.8595 (4) | 0.0796 (6) | |
H11 | 0.8201 | 0.8570 | 0.9667 | 0.096* | |
C12 | 0.86719 (10) | 0.95414 (18) | 0.9085 (5) | 0.0986 (9) | |
H12 | 0.8834 | 0.9539 | 1.0473 | 0.118* | |
C13 | 0.88119 (10) | 1.01244 (18) | 0.7536 (6) | 0.1037 (10) | |
H13 | 0.9069 | 1.0516 | 0.7867 | 0.124* | |
C14 | 0.85711 (10) | 1.01259 (15) | 0.5506 (5) | 0.0936 (8) | |
H14 | 0.8661 | 1.0524 | 0.4453 | 0.112* | |
C15 | 0.81908 (8) | 0.95311 (13) | 0.5012 (4) | 0.0774 (6) | |
H15 | 0.8033 | 0.9532 | 0.3615 | 0.093* | |
C16 | 1.04902 (7) | 0.19922 (13) | 1.4431 (4) | 0.0621 (5) | |
C17 | 1.01297 (9) | 0.12496 (14) | 1.4512 (5) | 0.0835 (7) | |
H17A | 1.0321 | 0.0762 | 1.4999 | 0.100* | |
H17B | 0.9839 | 0.1347 | 1.5528 | 0.100* | |
C18 | 0.99320 (11) | 0.11388 (12) | 1.2193 (4) | 0.0875 (7) | |
H18A | 0.9552 | 0.1074 | 1.2189 | 0.105* | |
H18B | 1.0089 | 0.0651 | 1.1520 | 0.105* | |
C19 | 1.00905 (7) | 0.19155 (10) | 1.0914 (4) | 0.0585 (5) | |
H19 | 1.0265 | 0.1758 | 0.9521 | 0.070* | |
C20 | 0.96386 (6) | 0.25054 (10) | 1.0421 (3) | 0.0528 (5) | |
H20 | 0.9430 | 0.2592 | 1.1775 | 0.063* | |
C21 | 0.98457 (6) | 0.33341 (10) | 0.9582 (3) | 0.0489 (4) | |
H21 | 1.0036 | 0.3227 | 0.8193 | 0.059* | |
C22 | 1.02418 (7) | 0.36991 (10) | 1.1231 (4) | 0.0573 (5) | |
H22A | 1.0386 | 0.4207 | 1.0623 | 0.069* | |
H22B | 1.0061 | 0.3835 | 1.2607 | 0.069* | |
C23 | 1.06905 (7) | 0.30999 (11) | 1.1726 (4) | 0.0644 (5) | |
H23A | 1.0908 | 0.3029 | 1.0411 | 0.077* | |
H23B | 1.0910 | 0.3319 | 1.2909 | 0.077* | |
C24 | 0.94118 (7) | 0.39470 (10) | 0.9057 (3) | 0.0503 (5) | |
C25 | 0.94124 (8) | 0.43858 (12) | 0.7092 (4) | 0.0663 (6) | |
H25 | 0.9676 | 0.4285 | 0.6051 | 0.080* | |
C26 | 0.90288 (10) | 0.49765 (13) | 0.6625 (4) | 0.0772 (6) | |
H26 | 0.9039 | 0.5267 | 0.5290 | 0.093* | |
C27 | 0.86400 (9) | 0.51280 (13) | 0.8116 (4) | 0.0760 (7) | |
H27 | 0.8384 | 0.5525 | 0.7815 | 0.091* | |
C28 | 0.86265 (8) | 0.46921 (12) | 1.0066 (4) | 0.0744 (6) | |
H28 | 0.8358 | 0.4790 | 1.1089 | 0.089* | |
C29 | 0.90086 (7) | 0.41091 (11) | 1.0524 (4) | 0.0645 (5) | |
H29 | 0.8993 | 0.3818 | 1.1858 | 0.077* | |
N1 | 0.70898 (6) | 0.71810 (10) | 0.3111 (3) | 0.0613 (4) | |
N2 | 1.04696 (6) | 0.23118 (9) | 1.2390 (3) | 0.0593 (4) | |
O1 | 0.66974 (6) | 0.70369 (10) | −0.0274 (2) | 0.0818 (4) | |
O2 | 0.82639 (5) | 0.71371 (8) | 0.6555 (2) | 0.0659 (4) | |
H2 | 0.8562 | 0.7322 | 0.6361 | 0.099* | |
O3 | 1.07527 (5) | 0.22642 (11) | 1.5987 (3) | 0.0834 (5) | |
O4 | 0.93197 (5) | 0.21245 (8) | 0.8770 (3) | 0.0692 (4) | |
H4 | 0.9011 | 0.2126 | 0.9177 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0443 (10) | 0.0671 (12) | 0.0678 (13) | 0.0000 (9) | 0.0060 (11) | 0.0075 (12) |
C3 | 0.0637 (13) | 0.0894 (15) | 0.0783 (16) | 0.0137 (12) | 0.0105 (13) | −0.0048 (13) |
C4 | 0.0652 (12) | 0.0542 (11) | 0.1030 (18) | 0.0066 (10) | −0.0122 (13) | −0.0077 (13) |
C5 | 0.0479 (10) | 0.0502 (10) | 0.0753 (13) | 0.0015 (8) | −0.0063 (11) | 0.0043 (10) |
C6 | 0.0429 (9) | 0.0494 (10) | 0.0631 (11) | 0.0036 (8) | −0.0035 (9) | 0.0078 (9) |
C7 | 0.0499 (10) | 0.0588 (11) | 0.0634 (12) | 0.0020 (9) | 0.0018 (10) | −0.0035 (10) |
C8 | 0.0584 (11) | 0.0573 (11) | 0.0930 (16) | 0.0153 (10) | −0.0111 (12) | −0.0116 (12) |
C9 | 0.0505 (10) | 0.0715 (13) | 0.1002 (16) | 0.0164 (10) | −0.0136 (12) | −0.0146 (13) |
C10 | 0.0544 (11) | 0.0565 (11) | 0.0718 (14) | 0.0025 (9) | 0.0045 (11) | −0.0122 (12) |
C11 | 0.0749 (14) | 0.0838 (14) | 0.0801 (16) | −0.0052 (13) | −0.0035 (14) | −0.0180 (14) |
C12 | 0.0767 (16) | 0.116 (2) | 0.103 (2) | −0.0077 (16) | −0.0070 (16) | −0.044 (2) |
C13 | 0.0757 (17) | 0.0922 (19) | 0.143 (3) | −0.0177 (15) | 0.013 (2) | −0.055 (2) |
C14 | 0.0886 (17) | 0.0698 (15) | 0.122 (2) | −0.0135 (13) | 0.0244 (18) | −0.0141 (16) |
C15 | 0.0773 (14) | 0.0700 (13) | 0.0849 (16) | −0.0060 (12) | 0.0042 (13) | −0.0062 (13) |
C16 | 0.0419 (10) | 0.0744 (13) | 0.0702 (14) | 0.0068 (10) | −0.0016 (11) | −0.0008 (12) |
C17 | 0.0671 (13) | 0.0843 (15) | 0.0992 (18) | −0.0090 (12) | −0.0081 (14) | 0.0254 (15) |
C18 | 0.1003 (16) | 0.0486 (12) | 0.113 (2) | −0.0054 (12) | −0.0228 (17) | 0.0072 (13) |
C19 | 0.0606 (11) | 0.0459 (10) | 0.0689 (12) | −0.0007 (9) | −0.0091 (11) | −0.0050 (10) |
C20 | 0.0477 (9) | 0.0468 (9) | 0.0640 (12) | −0.0049 (8) | −0.0023 (10) | −0.0097 (9) |
C21 | 0.0482 (9) | 0.0446 (9) | 0.0539 (10) | −0.0040 (8) | 0.0039 (9) | −0.0045 (9) |
C22 | 0.0554 (10) | 0.0480 (10) | 0.0686 (13) | −0.0098 (9) | −0.0035 (10) | −0.0005 (10) |
C23 | 0.0546 (11) | 0.0628 (12) | 0.0757 (13) | −0.0126 (10) | −0.0113 (11) | 0.0001 (11) |
C24 | 0.0508 (10) | 0.0432 (9) | 0.0570 (12) | −0.0029 (8) | 0.0003 (10) | −0.0059 (9) |
C25 | 0.0712 (12) | 0.0676 (12) | 0.0600 (13) | 0.0037 (11) | 0.0034 (11) | 0.0009 (11) |
C26 | 0.0881 (15) | 0.0690 (13) | 0.0744 (15) | 0.0075 (13) | −0.0120 (15) | 0.0116 (12) |
C27 | 0.0701 (14) | 0.0567 (12) | 0.1011 (18) | 0.0137 (11) | −0.0146 (15) | −0.0048 (14) |
C28 | 0.0708 (13) | 0.0628 (12) | 0.0896 (16) | 0.0149 (11) | 0.0144 (12) | −0.0013 (13) |
C29 | 0.0669 (12) | 0.0564 (11) | 0.0702 (13) | 0.0104 (10) | 0.0101 (12) | 0.0050 (11) |
N1 | 0.0462 (8) | 0.0581 (9) | 0.0796 (12) | 0.0064 (7) | −0.0119 (9) | −0.0075 (9) |
N2 | 0.0567 (9) | 0.0544 (9) | 0.0668 (11) | −0.0036 (8) | −0.0117 (9) | 0.0039 (9) |
O1 | 0.0653 (8) | 0.1100 (11) | 0.0702 (9) | 0.0164 (8) | −0.0082 (8) | 0.0074 (9) |
O2 | 0.0508 (6) | 0.0617 (8) | 0.0853 (9) | −0.0013 (6) | −0.0141 (8) | 0.0166 (8) |
O3 | 0.0571 (8) | 0.1266 (13) | 0.0666 (9) | −0.0098 (9) | −0.0081 (8) | 0.0056 (10) |
O4 | 0.0554 (7) | 0.0635 (8) | 0.0887 (10) | −0.0042 (7) | −0.0151 (8) | −0.0175 (8) |
C2—O1 | 1.228 (2) | C16—N2 | 1.332 (3) |
C2—N1 | 1.330 (3) | C16—C17 | 1.509 (3) |
C2—C3 | 1.504 (3) | C17—C18 | 1.492 (3) |
C3—C4 | 1.488 (3) | C17—H17A | 0.9700 |
C3—H3A | 0.9700 | C17—H17B | 0.9700 |
C3—H3B | 0.9700 | C18—C19 | 1.525 (3) |
C4—C5 | 1.527 (3) | C18—H18A | 0.9700 |
C4—H4A | 0.9700 | C18—H18B | 0.9700 |
C4—H4B | 0.9700 | C19—N2 | 1.456 (2) |
C5—N1 | 1.457 (2) | C19—C20 | 1.519 (2) |
C5—C6 | 1.521 (2) | C19—H19 | 0.9800 |
C5—H5 | 0.9800 | C20—O4 | 1.420 (2) |
C6—O2 | 1.405 (2) | C20—C21 | 1.523 (2) |
C6—C7 | 1.534 (2) | C20—H20 | 0.9800 |
C6—H6 | 0.9800 | C21—C24 | 1.513 (2) |
C7—C10 | 1.516 (3) | C21—C22 | 1.529 (2) |
C7—C8 | 1.519 (3) | C21—H21 | 0.9800 |
C7—H7 | 0.9800 | C22—C23 | 1.523 (2) |
C8—C9 | 1.521 (3) | C22—H22A | 0.9700 |
C8—H8A | 0.9700 | C22—H22B | 0.9700 |
C8—H8B | 0.9700 | C23—N2 | 1.447 (2) |
C9—N1 | 1.452 (2) | C23—H23A | 0.9700 |
C9—H9A | 0.9700 | C23—H23B | 0.9700 |
C9—H9B | 0.9700 | C24—C29 | 1.375 (2) |
C10—C15 | 1.376 (3) | C24—C25 | 1.377 (3) |
C10—C11 | 1.382 (3) | C25—C26 | 1.391 (3) |
C11—C12 | 1.376 (3) | C25—H25 | 0.9300 |
C11—H11 | 0.9300 | C26—C27 | 1.354 (3) |
C12—C13 | 1.371 (4) | C26—H26 | 0.9300 |
C12—H12 | 0.9300 | C27—C28 | 1.367 (3) |
C13—C14 | 1.364 (4) | C27—H27 | 0.9300 |
C13—H13 | 0.9300 | C28—C29 | 1.379 (3) |
C14—C15 | 1.393 (3) | C28—H28 | 0.9300 |
C14—H14 | 0.9300 | C29—H29 | 0.9300 |
C15—H15 | 0.9300 | O2—H2 | 0.8200 |
C16—O3 | 1.229 (2) | O4—H4 | 0.8200 |
O1—C2—N1 | 125.73 (19) | C18—C17—H17A | 110.6 |
O1—C2—C3 | 126.0 (2) | C16—C17—H17A | 110.6 |
N1—C2—C3 | 108.22 (18) | C18—C17—H17B | 110.6 |
C4—C3—C2 | 106.58 (18) | C16—C17—H17B | 110.6 |
C4—C3—H3A | 110.4 | H17A—C17—H17B | 108.8 |
C2—C3—H3A | 110.4 | C17—C18—C19 | 106.47 (18) |
C4—C3—H3B | 110.4 | C17—C18—H18A | 110.4 |
C2—C3—H3B | 110.4 | C19—C18—H18A | 110.4 |
H3A—C3—H3B | 108.6 | C17—C18—H18B | 110.4 |
C3—C4—C5 | 106.30 (16) | C19—C18—H18B | 110.4 |
C3—C4—H4A | 110.5 | H18A—C18—H18B | 108.6 |
C5—C4—H4A | 110.5 | N2—C19—C20 | 109.95 (14) |
C3—C4—H4B | 110.5 | N2—C19—C18 | 103.20 (16) |
C5—C4—H4B | 110.5 | C20—C19—C18 | 114.52 (17) |
H4A—C4—H4B | 108.7 | N2—C19—H19 | 109.7 |
N1—C5—C6 | 110.71 (14) | C20—C19—H19 | 109.7 |
N1—C5—C4 | 103.92 (17) | C18—C19—H19 | 109.7 |
C6—C5—C4 | 114.52 (15) | O4—C20—C19 | 107.11 (14) |
N1—C5—H5 | 109.2 | O4—C20—C21 | 110.21 (16) |
C6—C5—H5 | 109.2 | C19—C20—C21 | 110.79 (13) |
C4—C5—H5 | 109.2 | O4—C20—H20 | 109.6 |
O2—C6—C5 | 105.47 (13) | C19—C20—H20 | 109.6 |
O2—C6—C7 | 112.52 (16) | C21—C20—H20 | 109.6 |
C5—C6—C7 | 111.74 (13) | C24—C21—C20 | 113.13 (13) |
O2—C6—H6 | 109.0 | C24—C21—C22 | 111.15 (13) |
C5—C6—H6 | 109.0 | C20—C21—C22 | 110.54 (15) |
C7—C6—H6 | 109.0 | C24—C21—H21 | 107.2 |
C10—C7—C8 | 113.73 (16) | C20—C21—H21 | 107.2 |
C10—C7—C6 | 110.46 (13) | C22—C21—H21 | 107.2 |
C8—C7—C6 | 110.69 (16) | C23—C22—C21 | 111.86 (15) |
C10—C7—H7 | 107.2 | C23—C22—H22A | 109.2 |
C8—C7—H7 | 107.2 | C21—C22—H22A | 109.2 |
C6—C7—H7 | 107.2 | C23—C22—H22B | 109.2 |
C7—C8—C9 | 112.20 (16) | C21—C22—H22B | 109.2 |
C7—C8—H8A | 109.2 | H22A—C22—H22B | 107.9 |
C9—C8—H8A | 109.2 | N2—C23—C22 | 108.88 (14) |
C7—C8—H8B | 109.2 | N2—C23—H23A | 109.9 |
C9—C8—H8B | 109.2 | C22—C23—H23A | 109.9 |
H8A—C8—H8B | 107.9 | N2—C23—H23B | 109.9 |
N1—C9—C8 | 108.03 (14) | C22—C23—H23B | 109.9 |
N1—C9—H9A | 110.1 | H23A—C23—H23B | 108.3 |
C8—C9—H9A | 110.1 | C29—C24—C25 | 116.89 (17) |
N1—C9—H9B | 110.1 | C29—C24—C21 | 122.11 (17) |
C8—C9—H9B | 110.1 | C25—C24—C21 | 120.98 (17) |
H9A—C9—H9B | 108.4 | C24—C25—C26 | 121.7 (2) |
C15—C10—C11 | 117.3 (2) | C24—C25—H25 | 119.2 |
C15—C10—C7 | 122.0 (2) | C26—C25—H25 | 119.2 |
C11—C10—C7 | 120.6 (2) | C27—C26—C25 | 120.0 (2) |
C12—C11—C10 | 121.6 (3) | C27—C26—H26 | 120.0 |
C12—C11—H11 | 119.2 | C25—C26—H26 | 120.0 |
C10—C11—H11 | 119.2 | C26—C27—C28 | 119.5 (2) |
C13—C12—C11 | 120.3 (3) | C26—C27—H27 | 120.3 |
C13—C12—H12 | 119.9 | C28—C27—H27 | 120.3 |
C11—C12—H12 | 119.9 | C27—C28—C29 | 120.3 (2) |
C14—C13—C12 | 119.5 (3) | C27—C28—H28 | 119.8 |
C14—C13—H13 | 120.2 | C29—C28—H28 | 119.8 |
C12—C13—H13 | 120.2 | C24—C29—C28 | 121.7 (2) |
C13—C14—C15 | 120.0 (3) | C24—C29—H29 | 119.2 |
C13—C14—H14 | 120.0 | C28—C29—H29 | 119.2 |
C15—C14—H14 | 120.0 | C2—N1—C9 | 127.00 (18) |
C10—C15—C14 | 121.3 (2) | C2—N1—C5 | 114.79 (16) |
C10—C15—H15 | 119.3 | C9—N1—C5 | 117.98 (17) |
C14—C15—H15 | 119.3 | C16—N2—C23 | 125.44 (17) |
O3—C16—N2 | 125.70 (19) | C16—N2—C19 | 114.63 (16) |
O3—C16—C17 | 126.0 (2) | C23—N2—C19 | 118.29 (16) |
N2—C16—C17 | 108.29 (19) | C6—O2—H2 | 109.5 |
C18—C17—C16 | 105.60 (19) | C20—O4—H4 | 109.5 |
O1—C2—C3—C4 | −177.3 (2) | C19—C20—C21—C24 | 179.82 (15) |
N1—C2—C3—C4 | 2.8 (2) | O4—C20—C21—C22 | −173.17 (13) |
C2—C3—C4—C5 | −4.3 (2) | C19—C20—C21—C22 | −54.8 (2) |
C3—C4—C5—N1 | 4.1 (2) | C24—C21—C22—C23 | −178.28 (16) |
C3—C4—C5—C6 | −116.75 (18) | C20—C21—C22—C23 | 55.2 (2) |
N1—C5—C6—O2 | 171.79 (16) | C21—C22—C23—N2 | −52.5 (2) |
C4—C5—C6—O2 | −71.1 (2) | C20—C21—C24—C29 | 49.1 (2) |
N1—C5—C6—C7 | 49.2 (2) | C22—C21—C24—C29 | −75.9 (2) |
C4—C5—C6—C7 | 166.31 (17) | C20—C21—C24—C25 | −132.62 (18) |
O2—C6—C7—C10 | 63.1 (2) | C22—C21—C24—C25 | 102.3 (2) |
C5—C6—C7—C10 | −178.45 (17) | C29—C24—C25—C26 | 1.1 (3) |
O2—C6—C7—C8 | −170.01 (15) | C21—C24—C25—C26 | −177.25 (17) |
C5—C6—C7—C8 | −51.6 (2) | C24—C25—C26—C27 | −0.5 (3) |
C10—C7—C8—C9 | −179.74 (18) | C25—C26—C27—C28 | −0.5 (3) |
C6—C7—C8—C9 | 55.2 (2) | C26—C27—C28—C29 | 0.7 (3) |
C7—C8—C9—N1 | −55.0 (3) | C25—C24—C29—C28 | −0.9 (3) |
C8—C7—C10—C15 | −35.5 (3) | C21—C24—C29—C28 | 177.43 (18) |
C6—C7—C10—C15 | 89.6 (2) | C27—C28—C29—C24 | 0.0 (3) |
C8—C7—C10—C11 | 146.7 (2) | O1—C2—N1—C9 | −5.6 (3) |
C6—C7—C10—C11 | −88.1 (2) | C3—C2—N1—C9 | 174.26 (18) |
C15—C10—C11—C12 | −0.1 (3) | O1—C2—N1—C5 | −179.96 (18) |
C7—C10—C11—C12 | 177.7 (2) | C3—C2—N1—C5 | −0.1 (2) |
C10—C11—C12—C13 | 0.3 (3) | C8—C9—N1—C2 | −118.1 (2) |
C11—C12—C13—C14 | 0.2 (4) | C8—C9—N1—C5 | 56.0 (2) |
C12—C13—C14—C15 | −0.8 (4) | C6—C5—N1—C2 | 120.80 (18) |
C11—C10—C15—C14 | −0.5 (3) | C4—C5—N1—C2 | −2.6 (2) |
C7—C10—C15—C14 | −178.30 (18) | C6—C5—N1—C9 | −54.1 (2) |
C13—C14—C15—C10 | 1.0 (3) | C4—C5—N1—C9 | −177.47 (16) |
O3—C16—C17—C18 | −176.3 (2) | O3—C16—N2—C23 | −9.5 (3) |
N2—C16—C17—C18 | 4.6 (2) | C17—C16—N2—C23 | 169.56 (17) |
C16—C17—C18—C19 | −11.2 (2) | O3—C16—N2—C19 | −174.60 (17) |
C17—C18—C19—N2 | 13.4 (2) | C17—C16—N2—C19 | 4.5 (2) |
C17—C18—C19—C20 | −106.1 (2) | C22—C23—N2—C16 | −110.3 (2) |
N2—C19—C20—O4 | 172.89 (15) | C22—C23—N2—C19 | 54.3 (2) |
C18—C19—C20—O4 | −71.5 (2) | C20—C19—N2—C16 | 111.25 (18) |
N2—C19—C20—C21 | 52.6 (2) | C18—C19—N2—C16 | −11.3 (2) |
C18—C19—C20—C21 | 168.28 (16) | C20—C19—N2—C23 | −55.0 (2) |
O4—C20—C21—C24 | 61.46 (19) | C18—C19—N2—C23 | −177.57 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1i | 0.82 | 1.92 | 2.7366 (19) | 175 |
O2—H2···O3ii | 0.82 | 1.88 | 2.6963 (18) | 179 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) −x+2, −y+1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C14H17NO2 |
Mr | 231.29 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 298 |
a, b, c (Å) | 25.3592 (4), 16.1467 (2), 6.0086 (1) |
V (Å3) | 2460.33 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.33 × 0.26 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Analytical (Clark & Reid, 1995) |
Tmin, Tmax | 0.965, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 60218, 3791, 1856 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.695 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.097, 0.98 |
No. of reflections | 3791 |
No. of parameters | 311 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.11 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1i | 0.82 | 1.92 | 2.7366 (19) | 175 |
O2—H2···O3ii | 0.82 | 1.88 | 2.6963 (18) | 179 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) −x+2, −y+1, z−1. |
Acknowledgements
The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0161/08 and 1/0817/08) and the Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer and the Development Agency under contract No. APVV-0210–07.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, C. J. & Corbridge, D. E. C. (1954). Acta Cryst. 7, 711–715. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Butters, T. D. (2002). Chem. Biol. 9, 1266–1268. Web of Science CrossRef PubMed CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Compain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077–3092. Web of Science CrossRef PubMed CAS Google Scholar
Couture, A., Deniau, E., Grandclaudon, P., Leburn, S., Leonce, S., Renard, P. & Pfeiffer, B. (2000). Bioorg. Med. Chem. 8, 2113–2125. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Foster, C., Ritchie, M., Selwood, D. I. & Snowden, W. (1995). Antivir. Chem. Chemother. 6, 289–297. CAS Google Scholar
Fujita, T., Nagasawa, H., Uto, Y., Hashimoto, T., Asakawa, Y. & Hori, H. (2004). Org. Lett. 6, 827–830. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gerber-Lemaire, S. & Juillerat-Jeanneret, L. (2006). Mini Rev. Med. Chem. 6, 1043–1052. Web of Science CrossRef PubMed CAS Google Scholar
Gundersen, L. L., Negussie, A. H., Rise, F. & Ostby, O. B. (2003). Arch. Pharm. (Weinheim), 336, 191–195. Web of Science CrossRef PubMed CAS Google Scholar
Jorgensen, A. S., Jacobsen, P., Chirstiansen, L. B., Bury, P. S., Kanstrup, A., Thorp, S. M., Bain, S., Naerum, L. & Wassermann, K. (2000). Bioorg. Med. Chem. Lett. 10, 399–402. Web of Science CrossRef PubMed CAS Google Scholar
Lillelund, V. H., Jensen, H. H., Liang, X. F. & Bols, M. (2002). Chem. Rev. 102, 515–554. Web of Science CrossRef PubMed CAS Google Scholar
Melo, E. B., Gomes, A. D. & Carvalho, I. (2006). Tetrahedron, 62, 10277–10302. Google Scholar
Michael, J. P. (2003). Nat. Prod. Rep. 20, 458–475. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424. CrossRef CAS Web of Science Google Scholar
Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009). Tetrahedron Asymmetry. In the press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, G.-F., Li, J.-Q., Jiang, X.-P. & Cheng, Y. (2008). Tetrahedron, 64, 5005–5012. Web of Science CSD CrossRef CAS Google Scholar
Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2008). Acta Cryst. E64, o1164–o1165. Web of Science CrossRef IUCr Journals Google Scholar
Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139. Web of Science CrossRef PubMed CAS Google Scholar
Vrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932–o933. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because of their wide spectrum of biological activity. Indolizines are natural structures, which are remarkable in its diversity and efficacy. For example, polyhydroxylated indolizidine alkaloids represented by the so popular castanospermine and swainsonine are well known for their ability to function as excellent inhibitors of biologically important pathways. These include the binding and processing of glycoproteins, potent glycosidase inhibitory activities (Melo et al., 2006; Michael, 2003; Lillelund et al., 2002), activity against AIDS virus HIV and some carcinogenic cells as well as against other important pathologies (Gerber-Lemaire & Juillerat-Jeanneret, 2006; Butters, 2002; Compain & Martin, 2001). More importantly, some hybrids of these structures have shown in numerous cases an increase of glycosidase activities as demonstrated by the Pearson's group and others (Shi et al., 2008; Fujita et al., 2004). Indolizines have also been tested as antimycobacterial agents against mycobacterial tuberculosis (Gundersen, et al., 2003). Many studies demonstrated that indolizine derivatives show biological activity such as antioxidative (Teklu et al., 2005) and antiherpes (Foster et al., 1995). The other well known pharmacological applications associated with this ring compounds are well documented in the literature (Couture et al., 2000; Jorgensen et al., 2000).
Due to the diverse properties of indolizine derivatives, the structure of the title compound, (I), has been determined as part of our study of the conformational changes caused by different substituents at various positions on the indolizine ring system. We report here the synthesis, molecular and crystal structure. The absolute configuration was established by synthesis and is depicted in the scheme and figure. The asymmetric unit of title compound contains two crystallographic independent molecules as shown in Fig. 1. The expected stereochemistry of atoms C5, C6 and C7 (C19, C20 and C21 for molecule B) was confirmed as S, R and R, respectively. The corresponding bond lengths and angles in the independent molecules agree with each other and are almost identical (mean deviation for all non-H atoms 0.015 (2) Å). The central six-membered N-heterocyclic ring is not planar and adopts a chair conformation (Cremer & Pople, 1975). A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms C5, C6, C8 and C9 (C19, C20, C22 and C23 for molecule B) are coplanar to within 0.012 (2)Å [0.014 (1) Å], while atoms N1 (N2) and C7 (C21) are displaced from this plane on opposite sides, with out-of-plane displacements of -0.573 (2) and 0.639 (2)Å [-0.573 (1) and 0.664 (2)Å for molecule B], respectively. The phenyl ring attached to the indolizine ring system is planar (mean deviation is 0.009 (2)Å for molecule A and 0.011 (2)Å for molecule B). As shown in Table of geometric parameters, the N1—C5 (N2—C19) and N1—C9 (N2—C23) bonds are approximately equivalent and both are much longer than the N1—C2 (N2—C16) bond. Moreover, the N1 (N2) atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [359.8 (2)° for molecule A and 358.4 (2)° for molecule B]. These data are consistent with conjugation of the lone-pair electrons on N1 (N2) with the adjacent carbonyl and agree with literature values for simple amides (Brown & Corbridge, 1954; Pedersen, 1967). The bond length of the carbonyl group C2=O1 (C16=O3) is 1.228 (2)Å [1.229 (2) Å], respectively, is somewhat longer than typical carbonyl bonds. This may be due to the fact that atoms O1 and O3 participate as acceptors in intermolecular hydrogen bonds with atoms O4 and O2 as donators. These intermolecular O—H···O hydrogen bonds link the molecules of (I) into extended chains, which run parallel to the a axis (Fig. 2) and help to stabilize the crystal structure of the compound. The bond lengths and angles in the indolizine ring system are in good agreement with values from the literature (Vrábel et al., 2004, Švorc et al., 2008).