organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

anti-Tri­cyclo­[4.2.1.12,5]deca-3,7-diene-9,10-dione

aDepartment of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
*Correspondence e-mail: djones@uncc.edu, metzkorn@uncc.edu

(Received 31 December 2008; accepted 18 February 2009; online 11 March 2009)

The title compound, C10H8O2, is a precursor to an unusual bis-homoaromatic dication and to heterodiamantanes and other oxa-cage compounds. Two independent mol­ecules, each of which is situated on a center of symmetry, comprise the unit cell. Both mol­ecules are in nearly identical chair conformations.

Related literature

For related structures, see: Eaton et al. (2002[Eaton, P. E., Tang, D. & Gilardi, R. (2002). Tetrahedron Lett. 43, 3-5.]); Harris et al. (2008[Harris, A. D., Baucom, A. D., Sierra, M. del R. I. A., Jones, D. S. & Etzkorn, M. (2008). Acta Cryst. E64, o2270.]); Masters et al. (1994[Masters, A. P., Parvez, M., Sorensen, T. S. & Sun, F. (1994). J. Am. Chem. Soc. 116, 2804-2811.]). For the synthesis and related details, see: Hafner & Goliasch (1961[Hafner, K. & Goliasch, K. (1961). Chem. Ber. 94, 2909-2921.]); Weiss et al. (1960[Weiss, E., Merényi, R. C. & Hübel, W. (1960). Chem. Ind. 15, 407-408.]); Dilthey & Quint (1930[Dilthey, W. & Quint, F. J. (1930). J. Prakt. Chem. 128, 139-149.]); Garbisch & Sprecher (1966[Garbisch, E. W. & Sprecher, R. F. (1966). J. Am. Chem. Soc. 88, 3433-3436.]); Saito & Ito (2008[Saito, M. & Ito, T. (2008). Acta Cryst. E64, o2121.]); Baggiolini et al. (1967[Baggiolini, E., Herzog, E. G., Iwaski, S., Schorta, R. & Schaffner, K. (1967). Helv. Chim. Acta, 50, 297-306.]); Klinsmann et al. (1972[Klinsmann, U., Gauthier, J., Schaffner, K., Pasternak, M. & Fuchs, B. (1972). Helv. Chim. Acta, 55, 2643-2659.]); Amman et al. (1980[Amman, W., Jäggi, F. J. & Ganter, C. (1980). Helv. Chim. Acta, 63, 2019-2041.]); Amman & Ganter (1977[Amman, W. & Ganter, C. (1977). Helv. Chim. Acta, 60, 1924-1925.], 1981[Amman, W. & Ganter, C. (1981). Helv. Chim. Acta, 65, 966-1022.]); Prakash et al. (1987[Prakash, G. K. S., Farnia, M., Keyanian, S., Olah, G. A., Kuhn, H. J. & Schaffner, K. (1987). J. Am. Chem. Soc. 109, 911-912.]); Harris et al. (2008[Harris, A. D., Baucom, A. D., Sierra, M. del R. I. A., Jones, D. S. & Etzkorn, M. (2008). Acta Cryst. E64, o2270.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O2

  • Mr = 160.16

  • Triclinic, [P \overline 1]

  • a = 6.4458 (7) Å

  • b = 6.6120 (6) Å

  • c = 8.9758 (6) Å

  • α = 81.671 (8)°

  • β = 79.176 (10)°

  • γ = 84.745 (8)°

  • V = 370.96 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 295 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2624 measured reflections

  • 1329 independent reflections

  • 1179 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 82 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.12

  • 1329 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.2 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The polycyclic title compound, dione 4, is formally a dimer of the elusive cyclopentadienone 1. The latter compound has only a fleeting existence and could be trapped in the form of its Diels-Alder adduct 3 (Hafner & Goliasch, 1961) or stabilized as an iron pentacarbonyl complex (Weiss et al., 1960), although derivatives with bulky substituents have been prepared as stable monomers (Dilthey & Quint, 1930; Garbisch & Sprecher, 1966; Saito & Ito, 2008). The title compound 4 is accessible through photoisomerization of Diels-Alder adduct 3, a transformation that has been thoroughly studied (Baggiolini et al., 1967; Klinsmann et al., 1972) since dione 4via diol 5 (Amman et al., 1980; Amman & Ganter, 1977; Amman & Ganter, 1981) - is a valuable precursor to an unusual bishomoaromatic dication (Prakash et al., 1987) and to heterodiamantanes and other oxa-cage compounds (Amman et al., 1980; Amman & Ganter, 1977; Amman & Ganter, 1981). We have recently reported the structure of diol derivative 5 (Harris et al., 2008) and herein report the structure of the parent dione 4.

Two independent molecules, each of which is situated on a center of symmetry, comprise the unit cell. Both molecules are in nearly identical "chair" conformations, with a maximum deviation between corresponding bond lengths of 0.01 Å. The molecular packing exhibits several short intermolecular contacts, with the shortest being 0.15 Å less than the sum of the van der Waals radii.

Two related structures have been reported. The first (Eaton et al., 2002) has a chlorine atom in place of each hydrogen atom of the title compound, while the second (Masters et al., 1994) lacks the double bonds of the title compound and has methyl groups on each of the four bridgehead carbon atoms.

Related literature top

For related structures, see: Eaton et al. (2002); Harris et al. (2008); Masters et al. (1994). For the synthesis and related details, see: Hafner & Goliasch (1961); Weiss et al. (1960); Dilthey & Quint (1930); Garbisch & Sprecher (1966); Saito & Ito (2008); Baggiolini et al. (1967); Klinsmann et al. (1972); Amman et al. (1980); Amman & Ganter (1977, 1981); Prakash et al. (1987); Harris et al. (2008).

Experimental top

The synthesis of the title compound, 4, is described in our previous structure report (Harris et al., 2008). Crystals for data collection were obtained from a chloroform solution.

Refinement top

H atoms were constrained using a riding model. The olefinic C—H bond lengths were fixed at 0.93 Å and the methine C—H bond lengths at 0.98 Å, with Uiso(H) = 1.2 Ueq. (C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the two independent molecules of the title compound, 4, with 50% probability displacement ellipsoids. [Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 1]
[Figure 2] Fig. 2. The formation of the title compound.
anti-Tricyclo[4.2.1.12,5]deca-3,7-diene-9,10-dione top
Crystal data top
C10H8O2Z = 2
Mr = 160.16F(000) = 168
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.4458 (7) ÅCell parameters from 24 reflections
b = 6.6120 (6) Åθ = 10.1–44.8°
c = 8.9758 (6) ŵ = 0.82 mm1
α = 81.671 (8)°T = 295 K
β = 79.176 (10)°Prism, yellow
γ = 84.745 (8)°0.3 × 0.2 × 0.2 mm
V = 370.96 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 67.4°, θmin = 5.1°
Non–profiled ω/2θ scansh = 77
2624 measured reflectionsk = 77
1329 independent reflectionsl = 1010
1179 reflections with I > 2σ(I)3 standard reflections every 82 reflections
Rint = 0.045 intensity decay: 1%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0242P)2 + 0.0776P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.092Δρmax = 0.2 e Å3
S = 1.12Δρmin = 0.15 e Å3
1329 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.115 (5)
0 restraints
Crystal data top
C10H8O2γ = 84.745 (8)°
Mr = 160.16V = 370.96 (6) Å3
Triclinic, P1Z = 2
a = 6.4458 (7) ÅCu Kα radiation
b = 6.6120 (6) ŵ = 0.82 mm1
c = 8.9758 (6) ÅT = 295 K
α = 81.671 (8)°0.3 × 0.2 × 0.2 mm
β = 79.176 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.045
2624 measured reflections3 standard reflections every 82 reflections
1329 independent reflections intensity decay: 1%
1179 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.12Δρmax = 0.2 e Å3
1329 reflectionsΔρmin = 0.15 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30420 (16)0.67650 (15)0.48107 (14)0.0495 (3)
O20.21014 (18)0.85668 (16)0.94715 (16)0.0593 (4)
C50.5818 (2)0.8181 (2)0.58171 (17)0.0369 (4)
H50.59120.69670.65750.044*
C100.2032 (2)0.5136 (2)1.09484 (17)0.0392 (4)
H100.32040.5561.1730.047*
C80.1509 (2)0.6126 (2)1.13965 (18)0.0438 (4)
H80.16130.68981.21640.053*
C70.0067 (2)0.4394 (2)1.15786 (17)0.0409 (4)
H70.01690.36331.26110.049*
C30.2728 (2)1.0665 (2)0.67086 (18)0.0423 (4)
H30.17661.03490.76060.051*
C20.5100 (2)1.0222 (2)0.65388 (17)0.0381 (4)
H20.5661.02990.7470.046*
C90.2602 (2)0.3614 (2)1.00162 (19)0.0427 (4)
H90.35830.26311.03810.051*
C10.4297 (2)0.8034 (2)0.47378 (17)0.0362 (4)
C60.1443 (2)0.6803 (2)0.96120 (18)0.0395 (4)
C40.7783 (2)0.8433 (2)0.46039 (19)0.0420 (4)
H40.91530.80160.47560.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (6)0.0450 (6)0.0619 (8)0.0112 (5)0.0102 (5)0.0107 (5)
O20.0608 (7)0.0390 (6)0.0810 (9)0.0080 (5)0.0283 (6)0.0043 (6)
C50.0368 (7)0.0364 (7)0.0373 (8)0.0005 (5)0.0110 (6)0.0003 (6)
C100.0323 (6)0.0466 (8)0.0378 (8)0.0031 (6)0.0034 (5)0.0066 (6)
C80.0398 (7)0.0495 (8)0.0480 (9)0.0004 (6)0.0172 (7)0.0161 (7)
C70.0418 (7)0.0494 (8)0.0317 (7)0.0050 (6)0.0099 (6)0.0005 (6)
C30.0413 (7)0.0427 (8)0.0405 (8)0.0024 (6)0.0024 (6)0.0102 (6)
C20.0421 (7)0.0429 (8)0.0312 (7)0.0024 (6)0.0106 (6)0.0060 (6)
C90.0335 (7)0.0417 (8)0.0554 (10)0.0060 (6)0.0128 (6)0.0057 (7)
C10.0331 (6)0.0369 (7)0.0395 (8)0.0010 (5)0.0063 (6)0.0102 (6)
C60.0351 (7)0.0397 (8)0.0468 (9)0.0015 (6)0.0169 (6)0.0041 (6)
C40.0317 (7)0.0420 (8)0.0523 (9)0.0026 (6)0.0083 (6)0.0086 (7)
Geometric parameters (Å, º) top
O1—C11.2049 (16)C8—H80.93
O2—C61.2012 (17)C7—C6i1.522 (2)
C5—C41.5116 (19)C7—H70.98
C5—C11.5202 (19)C3—C4ii1.326 (2)
C5—C21.575 (2)C3—C21.5129 (19)
C5—H50.98C3—H30.93
C10—C91.509 (2)C2—H20.98
C10—C61.5232 (19)C9—H90.93
C10—C71.5741 (19)C1—C2ii1.5248 (18)
C10—H100.98C6—C7i1.522 (2)
C8—C9i1.326 (2)C4—H40.93
C8—C71.512 (2)
C4—C5—C196.67 (11)C4ii—C3—C2110.37 (12)
C4—C5—C2111.33 (11)C4ii—C3—H3124.8
C1—C5—C2105.88 (10)C2—C3—H3124.8
C4—C5—H5113.8C3—C2—C1ii96.61 (10)
C1—C5—H5113.8C3—C2—C5111.11 (11)
C2—C5—H5113.8C1ii—C2—C5106.04 (11)
C9—C10—C696.32 (12)C3—C2—H2113.9
C9—C10—C7111.22 (12)C1ii—C2—H2113.9
C6—C10—C7106.35 (11)C5—C2—H2113.9
C9—C10—H10113.8C8i—C9—C10110.46 (13)
C6—C10—H10113.8C8i—C9—H9124.8
C7—C10—H10113.8C10—C9—H9124.8
C9i—C8—C7110.14 (14)O1—C1—C5128.74 (13)
C9i—C8—H8124.9O1—C1—C2ii128.48 (14)
C7—C8—H8124.9C5—C1—C2ii102.57 (11)
C8—C7—C6i96.36 (11)O2—C6—C7i128.63 (14)
C8—C7—C10111.33 (11)O2—C6—C10128.41 (15)
C6i—C7—C10106.49 (12)C7i—C6—C10102.44 (11)
C8—C7—H7113.7C3ii—C4—C5110.25 (12)
C6i—C7—H7113.7C3ii—C4—H4124.9
C10—C7—H7113.7C5—C4—H4124.9
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H8O2
Mr160.16
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.4458 (7), 6.6120 (6), 8.9758 (6)
α, β, γ (°)81.671 (8), 79.176 (10), 84.745 (8)
V3)370.96 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2624, 1329, 1179
Rint0.045
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.12
No. of reflections1329
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.2, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

Acknowledgement is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. This work was supported in part by funds provided by The University of North Carolina at Charlotte.

References

First citationAmman, W. & Ganter, C. (1977). Helv. Chim. Acta, 60, 1924-1925.  CrossRef Web of Science Google Scholar
First citationAmman, W. & Ganter, C. (1981). Helv. Chim. Acta, 65, 966-1022.  Google Scholar
First citationAmman, W., Jäggi, F. J. & Ganter, C. (1980). Helv. Chim. Acta, 63, 2019-2041.  CrossRef Web of Science Google Scholar
First citationBaggiolini, E., Herzog, E. G., Iwaski, S., Schorta, R. & Schaffner, K. (1967). Helv. Chim. Acta, 50, 297-306.  CrossRef CAS Web of Science Google Scholar
First citationDilthey, W. & Quint, F. J. (1930). J. Prakt. Chem. 128, 139-149.  CrossRef CAS Google Scholar
First citationEaton, P. E., Tang, D. & Gilardi, R. (2002). Tetrahedron Lett. 43, 3-5.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarbisch, E. W. & Sprecher, R. F. (1966). J. Am. Chem. Soc. 88, 3433-3436.  CrossRef CAS Web of Science Google Scholar
First citationHafner, K. & Goliasch, K. (1961). Chem. Ber. 94, 2909-2921.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHarris, A. D., Baucom, A. D., Sierra, M. del R. I. A., Jones, D. S. & Etzkorn, M. (2008). Acta Cryst. E64, o2270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlinsmann, U., Gauthier, J., Schaffner, K., Pasternak, M. & Fuchs, B. (1972). Helv. Chim. Acta, 55, 2643-2659.  CrossRef CAS Web of Science Google Scholar
First citationMasters, A. P., Parvez, M., Sorensen, T. S. & Sun, F. (1994). J. Am. Chem. Soc. 116, 2804-2811.  CSD CrossRef CAS Web of Science Google Scholar
First citationPrakash, G. K. S., Farnia, M., Keyanian, S., Olah, G. A., Kuhn, H. J. & Schaffner, K. (1987). J. Am. Chem. Soc. 109, 911-912.  CrossRef CAS Web of Science Google Scholar
First citationSaito, M. & Ito, T. (2008). Acta Cryst. E64, o2121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiss, E., Merényi, R. C. & Hübel, W. (1960). Chem. Ind. 15, 407-408.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds