organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o692-o693

7,11,15,28-Tetra­kis[(2-formyl­phen­­oxy)methyl]-1,21,23,25-tetra­methyl­resorcin[4]arene cavitand ethyl acetate clathrate at 173 K

aSchool of Chemistry, University of KwaZulu-Natal, Durban, 4000, South Africa, and bDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 22 January 2009; accepted 2 March 2009; online 6 March 2009)

The title compound, C68H56O16, was synthesized as a novel synthetic inter­mediate towards deeper and more elaborate resorcin[4]arene cavitands. The structure is the first reported example of a resorcin[4]arene cavitand bearing aromatic aldehyde functional groups at the extra-annular rim of the mol­ecule. The 2-formyl­phen­oxy residues are found to assume two different orientations above the mol­ecular cavity. One half of the resorcin[4]arene cavitand mol­ecule appears in the asymmetric unit; the complete resorcin[4]arene cavitand structure was generated across a mirror plane. In addition, a highly disordered ethyl acetate solvent mol­ecule is present within the mol­ecular cavity.

Related literature

For literature pertaining to the preparation of precursors to the reported compound, see: Middel et al. (2001[Middel, O., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 3998-4005.]); Sorrell & Pigge (1993[Sorrell, T. N. & Pigge, F. C. (1993). J. Org. Chem. 58, 784-785.]). For related literature on synthetic analogues and other precursors which illustrate the host capabilities of resorcin[4]arene cavitand molecules, see: Friedrich et al. (2007[Friedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.]); Mc Kay et al. (2007[McKay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2007). Acta Cryst. E63, o4345.], 2008[Mc Kay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2008). Acta Cryst. E64, o98.]). For the implemetation of the SQUEEZE function in PLATON, see: Tam et al. (2005[Tam, T. F., Leung-Toung, R., Wang, Y., Spino, M. & Lough, A. J. (2005). Acta Cryst. E61, m2601-m2603.]).

[Scheme 1]

Experimental

Crystal data
  • C68H56O16

  • Mr = 1183.17

  • Monoclinic, P 21 /m

  • a = 11.9228 (7) Å

  • b = 23.2806 (15) Å

  • c = 12.2320 (7) Å

  • β = 117.005 (3)°

  • V = 3025.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.37 × 0.34 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (SAINT-NT; Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.977

  • 24858 measured reflections

  • 5470 independent reflections

  • 3556 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.230

  • S = 1.11

  • 5470 reflections

  • 417 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title compound (Scheme 1) the [4]arene moiety is a cyclic tetramer. The labelling scheme for one of the monomers (Fig.1) extends over the whole molecule. Dimensions are available in the archived CIF. Additionally, the bond lengths and bond angles present in the asymmetric unit fall within the normal ranges and are not discussed further.

We have previously reported a number of resorcin[4]arene structures of the synthetic precursors to the title compound. However, the novel title compound was synthesized in a Williamson-type ether synthesis using a bromomethyl resorcin[4]arene cavitand precursor. For literature pertaining to the preparation of precursors to the reported compound, see: Middel et al. (2001); Sorrell & Pigge (1993). For related literature on synthetic analogues and other precursors which illustrate the host capabilities of resorcin[4]arene cavitand molecules, see: Friedrich et al. (2007); Mc Kay et al. (2007, 2008). For the implemetation of the SQUEEZE function in PLATON, see: Tam et al. (2005).

The title compound exhibits two different orientations of the 2-formylphenoxy residues, which are present above the molecular cavity. Two adjacent residues appear upright, while the remaining two appear splayed, in an orientation almost perpendicular to the first two residues. This relative orientation is illustrated in Fig. 2 (above the molecular cavity) and Fig. 3 (side view). Additionally, the asymmetric unit consists of a half of the title compound with the complete molecule being generated by a crystallographic mirror plane with atoms C1, C2, C10 and C21–23 in special positions on the mirror plane. This plane is indicated by a dashed line in Fig. 2.

Our previous resorcin[4]arene structures show the presence of residual solvent molecules present within the confines of the molecular cavity. The title compound exhibited the presence of ethyl acetate occupying the molecular cavity. However, the ethyl acetate was of a highly disordered nature. Therefore, in the final refinement model, the electron density related to the disordered ethyl acetate molecule was removed by using the SQUEEZE function of PLATON (Spek, 2009). This resulted in an improved refinement model, and eliminated the ill-effects of the disorder upon the refinement. The contribution of the ethyl acetate molecule was not included in the molecular formula, but is detailed in the SQUEEZE results which are appended to the CIF text. This further accounts for the discrepancies seen in the calculated and reported parameters of molecular weight, density and absorption coefficient.

Related literature top

For related literature, see: Friedrich et al. (2007); Mc Kay et al. (2008); Mc Kay et al. (2007); Middel et al. (2001); Sorrell & Pigge (1993); Tam et al. (2005). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

To a stirring solution of salicylaldehyde (1.01 g, 8.30 mmol) in dry THF (70 ml) under a nitrogen atmosphere, NaH (60% suspension in mineral oil, 0.33 g, 8.30 mmol) was added. To the resulting bright yellow solution, bromomethyl cavitand (I) (1.00 g, 1.04 mmol) was added as a solution in dry THF (10 ml), dropwise over 30 minutes. The solution was refluxed for 4 days; TLC showed mono-, di-, tri- and tetra-substituted products. Over this time, the solution became grey in colour. Once cooled to room temperature, the solution was concentrated in vacuo. The products were chromatographed on silica gel using a mobile phase of 3:2 hexane-ethyl acetate. Fractions of 12 ml were collected, combining all fractions containing the desired tetra-substituted product (Rf =0.37) after separation. The purified product was concentrated using a rotary evaporator to yield an off-white solid; this was then stirred in methanol overnight. After filtration, the product was collected and stirred overnight in hexane to remove residual aldehyde, before being filtered and collected to yield the title compound as a white solid. (0.35 g, 28%), mp 400 K. 1H NMR [CDCl3, 300 MHz]: δ = 1.88 (d, J = 7.6 Hz, 12 H, CH3), 4.57 (d, J= 6.9 Hz, 4 H, inner of OCH2O),4.96 (s, 8 H, ArOCH2Ar),5.05 (q, J = 7.1 Hz, 4 H, CHCH3), 5.82 (d, J = 6.8 Hz, 4 H, outer of OCH2O), 7.04 (t, J = 7.1 Hz, 4 H, Ar H), 7.14 (d, J = 8.5 Hz,4 H, Ar H), 7.40 (s, 4 H, cavitand ArH), 7.53 (t, J = 7.0 Hz, 4 H, Ar H),7.73 (d, J = 7.6 Hz, 4 H, Ar H), 10.18 (s, 4 H, Ar CHO). 13CNMR [CDCl3, 75 MHz]: δ = 189.83,160.93, 154.04, 139.09, 135.88, 129.70, 125.56, 121.77, 121.43, 114.18, 100.00,62.07, 31.22, 16.14. Anal Calcd for C68H56O16(1129.17): C 72.33, H 4.99. Found: C 72.58, H 5.08.

Crystals suitable for X-ray crystallography were grown by slow evaporation of a solution of the title compound in 1:1 ethyl acetate:hexane, at ambient temperature.

Refinement top

The crystal structure was solved by direct methods using SHELXTL (Sheldrick, 2008). Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. Hydrogen atoms, first located in the difference map, were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3). They were then refined with a riding model with Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(X) for X = CH or CH2.

One of the 2-formylphenoxy residues is disordered. The residue was refined over two positions with the final occupancies being 0.789 (4) for atoms O5, O39 and C32–38, and 0.211 (4) for atoms O5A, O39A and C32A-38 A. The largest residual electron density peak of 0.64 e/Å3 is 0.92 Å from H38A.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of one component of the cyclic tetramer. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii. Dashed bonds indicate links to the neighbouring monomer units. Selected atoms are labelled.
[Figure 2] Fig. 2. The molecular structure of the title compound, as viewed from above the molecular cavity. Displacement ellipsoids are drawn at the 30% probability level. The relative orientations of the 2-formylphenoxy residues are evident. The dashed line indicates the mirror plane, which passes through C2, C10, and C21–23.
[Figure 3] Fig. 3. The molecular structure of the title compound viewed from side-on. Displacement ellipsoids are drawn at the 30% probability level and H atoms, where shown, are drawn as spheres of arbitrary radii. The relative orientations of the 2-formylphenoxy functional groups are illustrated.
7,11,15,28-Tetrakis[(2-formylphenoxy)methylene]-1,21,23,25-tetramethylpentyl- 2,20:3,19-dimetheno-1H,21H,23H,25H- bis[1,3]dioxocino[5,4-i:5',4'-i']benzo[1,2-d:5,4-d']bis[1,3]benzodioxocin stereoisomer top
Crystal data top
C68H56O16Z = 2
Mr = 1183.17F(000) = 1238
Monoclinic, P21/mDx = 1.261 Mg m3
Hall symbol: -P 2ybMelting point: 400 K
a = 11.9228 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 23.2806 (15) ŵ = 0.09 mm1
c = 12.2320 (7) ÅT = 173 K
β = 117.005 (3)°Block, colourless
V = 3025.0 (3) Å30.37 × 0.34 × 0.26 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5470 independent reflections
Radiation source: fine-focus sealed tube3556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: integration
(SAINT-NT; Bruker, 2005)
h = 1413
Tmin = 0.967, Tmax = 0.977k = 2727
24858 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1125P)2 + 0.9365P]
where P = (Fo2 + 2Fc2)/3
5470 reflections(Δ/σ)max < 0.001
417 parametersΔρmax = 0.64 e Å3
21 restraintsΔρmin = 0.48 e Å3
Crystal data top
C68H56O16V = 3025.0 (3) Å3
Mr = 1183.17Z = 2
Monoclinic, P21/mMo Kα radiation
a = 11.9228 (7) ŵ = 0.09 mm1
b = 23.2806 (15) ÅT = 173 K
c = 12.2320 (7) Å0.37 × 0.34 × 0.26 mm
β = 117.005 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5470 independent reflections
Absorption correction: integration
(SAINT-NT; Bruker, 2005)
3556 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.079
24858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07421 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.11Δρmax = 0.64 e Å3
5470 reflectionsΔρmin = 0.48 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0864 (2)0.19966 (13)0.2854 (2)0.0789 (7)
O20.0149 (2)0.04856 (13)0.4185 (2)0.0841 (8)
O30.2250 (2)0.05596 (10)0.3626 (2)0.0684 (6)
O40.4399 (2)0.05649 (11)0.4109 (2)0.0724 (7)
O50.6322 (6)0.1273 (4)0.6538 (3)0.0687 (14)0.789 (4)
O60.7467 (2)0.19955 (12)0.4748 (2)0.0717 (7)
C10.0852 (6)0.25000.0474 (5)0.108 (2)
H1A0.13440.21560.08670.162*0.50
H1B0.00740.25000.05600.162*
H1C0.13440.28440.08670.162*0.50
C20.0529 (5)0.25000.0879 (4)0.0759 (15)
H20.13480.25000.09210.091*
C30.0185 (3)0.19689 (17)0.1568 (3)0.0638 (9)
C40.1057 (3)0.16939 (15)0.1293 (3)0.0612 (9)
H40.11820.18340.06270.073*
C50.1755 (3)0.12235 (15)0.1947 (3)0.0595 (8)
C60.1587 (3)0.10305 (15)0.2943 (3)0.0618 (8)
C70.0711 (3)0.12873 (17)0.3245 (3)0.0651 (9)
C80.0030 (3)0.17497 (17)0.2554 (3)0.0667 (9)
C100.0484 (5)0.25000.3569 (5)0.0784 (15)
H10A0.08460.25000.41550.094*
H10B0.04440.25000.40510.094*
C110.0564 (3)0.10681 (18)0.4335 (3)0.0758 (10)
H11A0.13820.10990.50810.091*
H11B0.00510.13120.44560.091*
C120.3502 (3)0.06610 (17)0.4547 (3)0.0679 (9)
H12A0.35740.10630.48370.081*
H12B0.36870.04050.52540.081*
C130.4750 (3)0.10434 (15)0.3670 (3)0.0624 (9)
C140.4015 (3)0.12373 (14)0.2479 (3)0.0577 (8)
C150.2761 (4)0.09540 (16)0.1678 (3)0.0698 (9)
H150.28390.05450.19540.084*
C160.2419 (5)0.0937 (2)0.0314 (4)0.0927 (13)
H16A0.31030.07540.02050.139*
H16B0.22920.13290.00100.139*
H16C0.16420.07160.01280.139*
C170.4452 (3)0.17050 (14)0.2087 (3)0.0576 (8)
H170.39530.18470.12810.069*
C180.5590 (3)0.19770 (14)0.2820 (3)0.0560 (8)
C190.6293 (3)0.17645 (16)0.3996 (3)0.0618 (9)
C200.5909 (3)0.12927 (15)0.4442 (3)0.0610 (8)
C210.6021 (5)0.25000.2383 (4)0.0624 (12)
H210.69620.25000.28380.075*
C220.5690 (6)0.25000.1040 (5)0.0819 (16)
H22A0.60400.21560.08470.123*0.50
H22B0.60400.28440.08470.123*0.50
H22C0.47740.25000.05510.123*
C230.7479 (5)0.25000.5390 (5)0.0751 (15)
H23A0.67360.25000.55490.090*
H23B0.82420.25000.61930.090*
C240.1063 (3)0.03514 (18)0.3420 (3)0.0698 (10)
C250.1265 (3)0.02235 (19)0.3029 (3)0.0724 (10)
C260.2490 (4)0.04163 (19)0.2342 (3)0.0790 (11)
H260.26400.08070.20960.095*
C270.3492 (4)0.0044 (2)0.2014 (4)0.0877 (12)
H270.43310.01750.15400.105*
C280.3259 (4)0.0512 (2)0.2380 (4)0.0853 (12)
H280.39510.07670.21450.102*
C290.2063 (3)0.07220 (19)0.3078 (3)0.0759 (10)
H290.19320.11140.33160.091*
C300.0200 (4)0.0605 (2)0.3320 (4)0.0855 (12)
H300.06240.04530.37720.103*
O310.0307 (3)0.11081 (18)0.3016 (3)0.1079 (10)
C320.6930 (10)0.1091 (4)0.7722 (4)0.0610 (12)0.789 (4)
C330.6320 (4)0.1178 (2)0.8485 (4)0.0651 (12)0.789 (4)
C340.6952 (5)0.1003 (2)0.9714 (4)0.0819 (15)0.789 (4)
H340.65880.10781.02470.098*0.789 (4)
C350.8071 (9)0.0730 (3)1.0151 (6)0.086 (3)0.789 (4)
H350.84810.06091.09840.103*0.789 (4)
C360.8608 (5)0.0627 (3)0.9406 (6)0.084 (2)0.789 (4)
H360.94010.04380.97290.101*0.789 (4)
C370.8035 (4)0.0789 (2)0.8188 (5)0.0721 (17)0.789 (4)
H370.84080.06910.76720.086*0.789 (4)
C380.5084 (5)0.1450 (2)0.8038 (4)0.0801 (14)0.789 (4)
H380.46850.15780.72100.096*0.789 (4)
O390.4540 (4)0.1522 (2)0.8650 (4)0.1058 (14)0.789 (4)
O5A0.615 (3)0.1252 (18)0.6415 (18)0.076 (2)*0.211 (4)
C32A0.687 (5)0.1056 (19)0.7573 (19)0.076 (2)*0.211 (4)
C33A0.6917 (17)0.1491 (7)0.8415 (13)0.076 (2)*0.211 (4)
C34A0.7500 (17)0.1340 (8)0.9670 (14)0.076 (2)*0.211 (4)
H34A0.74150.15841.02510.091*0.211 (4)
C35A0.817 (4)0.0855 (13)1.005 (2)0.076 (2)*0.211 (4)
H35A0.85620.07601.08970.091*0.211 (4)
C36A0.829 (3)0.0498 (11)0.924 (2)0.076 (2)*0.211 (4)
H36A0.87680.01540.95230.091*0.211 (4)
C37A0.774 (2)0.0625 (10)0.800 (2)0.076 (2)*0.211 (4)
H37A0.79670.04190.74550.091*0.211 (4)
C38A0.6207 (16)0.2018 (7)0.7993 (15)0.076 (2)*0.211 (4)
H38A0.58350.21100.71450.091*0.211 (4)
O39A0.6082 (10)0.2326 (4)0.8661 (10)0.076 (2)*0.211 (4)
C400.6725 (3)0.10524 (18)0.5674 (3)0.0732 (10)
H40A0.66690.06280.56480.088*
H40B0.76130.11620.59320.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0513 (13)0.109 (2)0.0848 (17)0.0066 (13)0.0381 (12)0.0015 (15)
O20.0592 (14)0.110 (2)0.0818 (17)0.0194 (14)0.0305 (13)0.0159 (15)
O30.0759 (15)0.0721 (15)0.0636 (13)0.0104 (12)0.0372 (12)0.0058 (12)
O40.0813 (15)0.0676 (15)0.0778 (15)0.0124 (12)0.0445 (13)0.0155 (12)
O50.060 (3)0.085 (3)0.0437 (17)0.024 (3)0.0084 (17)0.0045 (18)
O60.0500 (12)0.0983 (19)0.0715 (14)0.0077 (12)0.0317 (11)0.0066 (14)
C10.093 (4)0.131 (6)0.064 (3)0.0000.004 (3)0.000
C20.051 (3)0.105 (4)0.055 (3)0.0000.009 (2)0.000
C30.0461 (16)0.089 (3)0.0461 (16)0.0079 (16)0.0124 (14)0.0023 (16)
C40.0585 (18)0.083 (2)0.0351 (15)0.0130 (17)0.0152 (13)0.0064 (15)
C50.0605 (18)0.075 (2)0.0435 (16)0.0131 (17)0.0243 (14)0.0125 (16)
C60.0603 (18)0.072 (2)0.0500 (17)0.0151 (16)0.0220 (15)0.0022 (16)
C70.0482 (16)0.090 (3)0.0596 (19)0.0192 (17)0.0264 (15)0.0011 (18)
C80.0468 (17)0.090 (3)0.0603 (19)0.0107 (17)0.0215 (15)0.0037 (19)
C100.061 (3)0.110 (5)0.079 (3)0.0000.045 (3)0.000
C110.065 (2)0.099 (3)0.069 (2)0.019 (2)0.0360 (18)0.006 (2)
C120.071 (2)0.078 (2)0.061 (2)0.0017 (18)0.0345 (17)0.0129 (18)
C130.072 (2)0.062 (2)0.070 (2)0.0124 (17)0.0477 (18)0.0089 (17)
C140.0650 (18)0.067 (2)0.0520 (17)0.0070 (16)0.0365 (15)0.0007 (15)
C150.088 (2)0.072 (2)0.0560 (19)0.0051 (19)0.0382 (18)0.0074 (17)
C160.117 (3)0.108 (3)0.061 (2)0.013 (3)0.048 (2)0.018 (2)
C170.0688 (19)0.072 (2)0.0451 (16)0.0073 (16)0.0370 (15)0.0013 (15)
C180.0601 (18)0.067 (2)0.0564 (17)0.0081 (15)0.0404 (15)0.0012 (15)
C190.0542 (17)0.082 (2)0.0614 (19)0.0096 (16)0.0366 (16)0.0044 (17)
C200.0608 (19)0.071 (2)0.0608 (18)0.0176 (16)0.0364 (16)0.0126 (16)
C210.067 (3)0.082 (3)0.056 (2)0.0000.044 (2)0.000
C220.106 (4)0.091 (4)0.079 (3)0.0000.068 (3)0.000
C230.054 (3)0.111 (5)0.062 (3)0.0000.028 (2)0.000
C240.066 (2)0.095 (3)0.062 (2)0.0045 (19)0.0404 (17)0.0028 (19)
C250.064 (2)0.108 (3)0.060 (2)0.000 (2)0.0416 (17)0.004 (2)
C260.076 (2)0.097 (3)0.069 (2)0.002 (2)0.0376 (19)0.022 (2)
C270.057 (2)0.115 (4)0.088 (3)0.005 (2)0.0306 (19)0.026 (3)
C280.065 (2)0.100 (3)0.101 (3)0.005 (2)0.046 (2)0.027 (2)
C290.062 (2)0.093 (3)0.083 (2)0.0054 (19)0.0419 (19)0.017 (2)
C300.082 (3)0.113 (4)0.080 (3)0.017 (3)0.052 (2)0.007 (3)
O310.112 (2)0.121 (3)0.107 (2)0.028 (2)0.064 (2)0.005 (2)
C320.054 (2)0.064 (3)0.046 (2)0.002 (2)0.006 (2)0.011 (2)
C330.067 (3)0.069 (3)0.051 (2)0.005 (2)0.020 (2)0.011 (2)
C340.092 (4)0.092 (4)0.046 (2)0.003 (3)0.018 (2)0.003 (2)
C350.099 (5)0.089 (5)0.042 (3)0.005 (4)0.008 (3)0.005 (3)
C360.066 (4)0.093 (5)0.067 (3)0.008 (3)0.006 (3)0.007 (3)
C370.054 (3)0.095 (4)0.060 (3)0.009 (3)0.019 (2)0.010 (3)
C380.073 (3)0.105 (4)0.068 (3)0.005 (3)0.037 (2)0.011 (3)
O390.102 (3)0.140 (4)0.095 (3)0.003 (2)0.062 (2)0.012 (2)
C400.0610 (19)0.094 (3)0.070 (2)0.0192 (18)0.0347 (17)0.021 (2)
Geometric parameters (Å, º) top
O1—C81.399 (4)C22—H22B0.9800
O1—C101.409 (4)C22—H22C0.9800
O2—C241.354 (4)C23—O6i1.410 (4)
O2—C111.426 (5)C23—H23A0.9900
O3—C61.387 (4)C23—H23B0.9900
O3—C121.424 (4)C24—C291.374 (5)
O4—C131.382 (4)C24—C251.405 (6)
O4—C121.414 (4)C25—C261.388 (5)
O6—C191.387 (4)C25—C301.455 (6)
O6—C231.410 (4)C26—C271.379 (6)
C1—C21.519 (8)C26—H260.9500
C1—H1A0.9800C27—C281.357 (6)
C1—H1B0.9800C27—H270.9500
C1—H1C0.9800C28—C291.377 (5)
C2—C3i1.521 (4)C28—H280.9500
C2—C31.521 (4)C29—H290.9500
C2—H21.0000C30—O311.218 (5)
C3—C41.387 (5)C30—H300.9500
C3—C81.397 (5)O5—C321.360 (6)
C4—C51.388 (5)O5—C401.439 (4)
C4—H40.9500C32—C371.369 (7)
C5—C61.396 (4)C32—C331.434 (11)
C5—C151.516 (5)C33—C341.402 (6)
C6—C71.392 (5)C33—C381.461 (7)
C7—C81.382 (5)C34—C351.349 (9)
C7—C111.510 (5)C34—H340.9500
C10—O1i1.409 (4)C35—C361.353 (8)
C10—H10A0.9900C35—H350.9500
C10—H10B0.9900C36—C371.380 (7)
C11—H11A0.9900C36—H360.9500
C11—H11B0.9900C37—H370.9500
C12—H12A0.9900C38—O391.205 (5)
C12—H12B0.9900C38—H380.9500
C13—C141.391 (5)O5A—C32A1.359 (16)
C13—C201.397 (5)O5A—C401.439 (6)
C14—C171.383 (5)C32A—C37A1.367 (16)
C14—C151.516 (5)C32A—C33A1.43 (2)
C15—C161.528 (5)C33A—C34A1.413 (15)
C15—H151.0000C33A—C38A1.445 (16)
C16—H16A0.9800C34A—C35A1.338 (17)
C16—H16B0.9800C34A—H34A0.9500
C16—H16C0.9800C35A—C36A1.354 (18)
C17—C181.393 (5)C35A—H35A0.9500
C17—H170.9500C36A—C37A1.383 (17)
C18—C191.386 (4)C36A—H36A0.9500
C18—C211.511 (4)C37A—H37A0.9500
C19—C201.393 (5)C38A—O39A1.147 (14)
C20—C401.483 (5)C38A—H38A0.9500
C21—C221.505 (7)O39A—O39Ai0.81 (2)
C21—C18i1.511 (4)O39A—C38Ai1.769 (18)
C21—H211.0000C40—H40A0.9900
C22—H22A0.9800C40—H40B0.9900
C8—O1—C10115.9 (3)C21—C22—H22A109.5
C24—O2—C11120.5 (3)C21—C22—H22B109.5
C6—O3—C12116.8 (3)H22A—C22—H22B109.5
C13—O4—C12115.8 (3)C21—C22—H22C109.5
C19—O6—C23116.4 (3)H22A—C22—H22C109.5
C2—C1—H1A109.5H22B—C22—H22C109.5
C2—C1—H1B109.5O6i—C23—O6112.9 (4)
H1A—C1—H1B109.5O6i—C23—H23A109.0
C2—C1—H1C109.5O6—C23—H23A109.0
H1A—C1—H1C109.5O6i—C23—H23B109.0
H1B—C1—H1C109.5O6—C23—H23B109.0
C1—C2—C3i113.9 (3)H23A—C23—H23B107.8
C1—C2—C3113.9 (3)O2—C24—C29124.9 (4)
C3i—C2—C3108.8 (4)O2—C24—C25114.8 (3)
C1—C2—H2106.6C29—C24—C25120.2 (3)
C3i—C2—H2106.6C26—C25—C24119.0 (4)
C3—C2—H2106.6C26—C25—C30120.8 (4)
C4—C3—C8116.7 (3)C24—C25—C30120.2 (4)
C4—C3—C2122.2 (3)C27—C26—C25120.5 (4)
C8—C3—C2121.0 (4)C27—C26—H26119.7
C3—C4—C5123.0 (3)C25—C26—H26119.7
C3—C4—H4118.5C28—C27—C26118.8 (4)
C5—C4—H4118.5C28—C27—H27120.6
C4—C5—C6118.1 (3)C26—C27—H27120.6
C4—C5—C15121.9 (3)C27—C28—C29122.9 (4)
C6—C5—C15119.8 (3)C27—C28—H28118.6
O3—C6—C7118.1 (3)C29—C28—H28118.6
O3—C6—C5120.8 (3)C24—C29—C28118.5 (4)
C7—C6—C5121.1 (3)C24—C29—H29120.8
C8—C7—C6118.4 (3)C28—C29—H29120.8
C8—C7—C11122.2 (3)O31—C30—C25123.6 (4)
C6—C7—C11119.4 (3)O31—C30—H30118.2
C7—C8—C3122.8 (3)C25—C30—H30118.2
C7—C8—O1117.7 (3)C32—O5—C40118.5 (5)
C3—C8—O1119.4 (3)O5—C32—C37123.3 (8)
O1i—C10—O1112.6 (4)O5—C32—C33117.8 (6)
O1i—C10—H10A109.1C37—C32—C33118.6 (6)
O1—C10—H10A109.1C34—C33—C32118.1 (4)
O1i—C10—H10B109.1C34—C33—C38119.2 (4)
O1—C10—H10B109.1C32—C33—C38122.7 (4)
H10A—C10—H10B107.8C35—C34—C33121.1 (5)
O2—C11—C7112.3 (3)C35—C34—H34119.4
O2—C11—H11A109.1C33—C34—H34119.4
C7—C11—H11A109.1C34—C35—C36120.1 (5)
O2—C11—H11B109.1C34—C35—H35120.0
C7—C11—H11B109.1C36—C35—H35120.0
H11A—C11—H11B107.9C35—C36—C37121.7 (5)
O4—C12—O3112.1 (3)C35—C36—H36119.1
O4—C12—H12A109.2C37—C36—H36119.1
O3—C12—H12A109.2C32—C37—C36120.0 (6)
O4—C12—H12B109.2C32—C37—H37120.0
O3—C12—H12B109.2C36—C37—H37120.0
H12A—C12—H12B107.9O39—C38—C33124.3 (5)
O4—C13—C14120.7 (3)O39—C38—H38117.9
O4—C13—C20117.0 (3)C33—C38—H38117.9
C14—C13—C20122.2 (3)C32A—O5A—C40107 (2)
C17—C14—C13117.4 (3)O5A—C32A—C37A130.8 (19)
C17—C14—C15122.3 (3)O5A—C32A—C33A108.2 (19)
C13—C14—C15120.2 (3)C37A—C32A—C33A118 (2)
C5—C15—C14108.9 (3)C34A—C33A—C32A116.4 (15)
C5—C15—C16113.8 (3)C34A—C33A—C38A121.3 (14)
C14—C15—C16114.4 (3)C32A—C33A—C38A121.3 (14)
C5—C15—H15106.4C35A—C34A—C33A120.6 (16)
C14—C15—H15106.4C35A—C34A—H34A119.7
C16—C15—H15106.4C33A—C34A—H34A119.7
C15—C16—H16A109.5C34A—C35A—C36A120.7 (19)
C15—C16—H16B109.5C34A—C35A—H35A119.7
H16A—C16—H16B109.5C36A—C35A—H35A119.7
C15—C16—H16C109.5C35A—C36A—C37A121.2 (19)
H16A—C16—H16C109.5C35A—C36A—H36A119.4
H16B—C16—H16C109.5C37A—C36A—H36A119.4
C14—C17—C18123.0 (3)C32A—C37A—C36A118.3 (19)
C14—C17—H17118.5C32A—C37A—H37A120.9
C18—C17—H17118.5C36A—C37A—H37A120.9
C19—C18—C17117.4 (3)O39A—C38A—C33A121.4 (15)
C19—C18—C21120.8 (3)O39A—C38A—H38A119.3
C17—C18—C21121.8 (3)C33A—C38A—H38A119.3
C18—C19—O6120.1 (3)O39Ai—O39A—C38A128.8 (10)
C18—C19—C20122.4 (3)C38A—O39A—C38Ai98.4 (15)
O6—C19—C20117.3 (3)O5A—C40—C20103.8 (10)
C19—C20—C13117.6 (3)O5—C40—C20109.1 (3)
C19—C20—C40121.0 (3)O5A—C40—H40A107.3
C13—C20—C40121.4 (3)O5—C40—H40A109.9
C22—C21—C18i115.1 (3)C20—C40—H40A109.9
C22—C21—C18115.1 (3)O5A—C40—H40B117.5
C18i—C21—C18107.4 (3)O5—C40—H40B109.9
C22—C21—H21106.2C20—C40—H40B109.9
C18i—C21—H21106.2H40A—C40—H40B108.3
C18—C21—H21106.2
C1—C2—C3—C435.0 (5)C14—C13—C20—C192.5 (5)
C3i—C2—C3—C493.2 (4)O4—C13—C20—C400.3 (4)
C1—C2—C3—C8148.0 (4)C14—C13—C20—C40175.3 (3)
C3i—C2—C3—C883.8 (5)C19—C18—C21—C22146.8 (4)
C8—C3—C4—C50.0 (5)C17—C18—C21—C2236.1 (5)
C2—C3—C4—C5177.2 (3)C19—C18—C21—C18i83.7 (4)
C3—C4—C5—C61.6 (5)C17—C18—C21—C18i93.4 (4)
C3—C4—C5—C15176.1 (3)C19—O6—C23—O6i92.0 (4)
C12—O3—C6—C7101.0 (3)C11—O2—C24—C2924.0 (5)
C12—O3—C6—C581.8 (4)C11—O2—C24—C25159.5 (3)
C4—C5—C6—O3179.5 (3)O2—C24—C25—C26173.7 (3)
C15—C5—C6—O35.9 (5)C29—C24—C25—C263.0 (5)
C4—C5—C6—C72.4 (5)O2—C24—C25—C307.6 (5)
C15—C5—C6—C7177.0 (3)C29—C24—C25—C30175.6 (3)
O3—C6—C7—C8178.8 (3)C24—C25—C26—C272.1 (5)
C5—C6—C7—C81.7 (5)C30—C25—C26—C27176.5 (4)
O3—C6—C7—C113.3 (5)C25—C26—C27—C280.4 (6)
C5—C6—C7—C11179.6 (3)C26—C27—C28—C290.6 (7)
C6—C7—C8—C30.0 (5)O2—C24—C29—C28174.3 (3)
C11—C7—C8—C3177.9 (3)C25—C24—C29—C282.1 (5)
C6—C7—C8—O1178.8 (3)C27—C28—C29—C240.2 (6)
C11—C7—C8—O13.3 (5)C26—C25—C30—O311.8 (6)
C4—C3—C8—C70.8 (5)C24—C25—C30—O31179.6 (4)
C2—C3—C8—C7176.4 (3)C40—O5—C32—C3711.7 (17)
C4—C3—C8—O1178.0 (3)C40—O5—C32—C33162.8 (8)
C2—C3—C8—O14.8 (5)O5—C32—C33—C34178.7 (8)
C10—O1—C8—C799.5 (4)C37—C32—C33—C346.6 (12)
C10—O1—C8—C381.7 (4)O5—C32—C33—C380.3 (13)
C8—O1—C10—O1i95.5 (4)C37—C32—C33—C38174.4 (7)
C24—O2—C11—C774.8 (4)C32—C33—C34—C353.8 (10)
C8—C7—C11—O2119.6 (4)C38—C33—C34—C35177.3 (6)
C6—C7—C11—O262.6 (4)C33—C34—C35—C360.9 (11)
C13—O4—C12—O393.9 (4)C34—C35—C36—C370.8 (11)
C6—O3—C12—O493.4 (3)O5—C32—C37—C36178.9 (9)
C12—O4—C13—C1482.4 (4)C33—C32—C37—C366.7 (13)
C12—O4—C13—C20101.9 (3)C35—C36—C37—C323.9 (11)
O4—C13—C14—C17177.5 (3)C34—C33—C38—O392.2 (8)
C20—C13—C14—C172.1 (4)C32—C33—C38—O39178.9 (7)
O4—C13—C14—C154.9 (4)C40—O5A—C32A—C37A18 (8)
C20—C13—C14—C15179.7 (3)C40—O5A—C32A—C33A142 (4)
C4—C5—C15—C1491.1 (3)O5A—C32A—C33A—C34A173 (3)
C6—C5—C15—C1483.3 (4)C37A—C32A—C33A—C34A24 (6)
C4—C5—C15—C1637.8 (5)O5A—C32A—C33A—C38A4 (6)
C6—C5—C15—C16147.7 (3)C37A—C32A—C33A—C38A167 (3)
C17—C14—C15—C592.5 (3)C32A—C33A—C34A—C35A12 (5)
C13—C14—C15—C585.0 (4)C38A—C33A—C34A—C35A179 (3)
C17—C14—C15—C1636.0 (5)C33A—C34A—C35A—C36A1 (5)
C13—C14—C15—C16146.5 (3)C34A—C35A—C36A—C37A0 (6)
C13—C14—C17—C181.1 (4)O5A—C32A—C37A—C36A177 (6)
C15—C14—C17—C18178.7 (3)C33A—C32A—C37A—C36A24 (7)
C14—C17—C18—C190.6 (4)C35A—C36A—C37A—C32A13 (5)
C14—C17—C18—C21177.8 (3)C34A—C33A—C38A—O39A1 (3)
C17—C18—C19—O6176.4 (3)C32A—C33A—C38A—O39A168 (4)
C21—C18—C19—O66.4 (4)C33A—C38A—O39A—O39Ai141.6 (14)
C17—C18—C19—C201.0 (4)C33A—C38A—O39A—C38Ai141.6 (14)
C21—C18—C19—C20178.3 (3)C32A—O5A—C40—O545 (13)
C23—O6—C19—C1883.0 (4)C32A—O5A—C40—C20179 (4)
C23—O6—C19—C20101.4 (4)C32—O5—C40—O5A130 (15)
C18—C19—C20—C131.9 (5)C32—O5—C40—C20178.1 (9)
O6—C19—C20—C13177.4 (3)C19—C20—C40—O5A104.3 (19)
C18—C19—C20—C40175.8 (3)C13—C20—C40—O5A78.1 (19)
O6—C19—C20—C400.3 (4)C19—C20—C40—O598.3 (6)
O4—C13—C20—C19178.0 (3)C13—C20—C40—O584.1 (6)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC68H56O16
Mr1183.17
Crystal system, space groupMonoclinic, P21/m
Temperature (K)173
a, b, c (Å)11.9228 (7), 23.2806 (15), 12.2320 (7)
β (°) 117.005 (3)
V3)3025.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.34 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(SAINT-NT; Bruker, 2005)
Tmin, Tmax0.967, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
24858, 5470, 3556
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.230, 1.11
No. of reflections5470
No. of parameters417
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

 

Acknowledgements

The financial support of the DST-NRF Centre of Excellence in Catalysis, is duly acknowledged. Our thanks to Dr Manuel Fernandes at the University of the Witwatersrand for performing the data acquisition and structure solution.

References

First citationBruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2007). Acta Cryst. E63, o4345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMc Kay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2008). Acta Cryst. E64, o98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiddel, O., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 3998-4005.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorrell, T. N. & Pigge, F. C. (1993). J. Org. Chem. 58, 784-785.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, T. F., Leung-Toung, R., Wang, Y., Spino, M. & Lough, A. J. (2005). Acta Cryst. E61, m2601–m2603.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o692-o693
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds