organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o727-o728

Nicotinamide–2,2,2-tri­fluoro­ethanol (2/1)

aStrathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 3 February 2009; accepted 2 March 2009; online 11 March 2009)

The nicotinamide (NA) mol­ecules of the title compound, 2C6H6N2O·C2H3F3O, form centrosymmetric R22(8) hydrogen-bonded dimers via N—H⋯O contacts. The asymmetric unit contains two mol­ecules of NA and one trifluoroethanol molecule disordered over two sites of equal occupancy. The packing consists of alternating layers of nicotinamide dimers and disordered 2,2,2-trifluoro­ethanol mol­ecules stacking in the c-axis direction. Intra­molecular C—H⋯O and inter­molecular N—H⋯N, O—H⋯N, C—H⋯N, C—H⋯O and C—H⋯F inter­actions are present.

Related literature

For nicotinamide polymorphs, see: Wright & King (1954[Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283-288.]); Miwa et al. (1999[Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78-84.]); Hino et al. (2001[Hino, T., Ford, J. L. & Powell, M. W. (2001). Thermochimica Acta, 374, 85-92.]). For nicotinamide co-crystals and salts, see: Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Koman et al. (2003[Koman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441-o442.]); Athimoolam & Natarajan (2007a[Athimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, o1811-o1813.],b[Athimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, o2430-o2432.]); Berry et al. (2008[Berry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hurthouse, M. B., Storey, R., Jones, W., Friščić, T. & Blagden, N. (2008). Cryst. Growth Des. 8, 1697-1712.]). For graph-set motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For initial identification using multi-sample foil transmission X-ray powder diffraction analysis, see: Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H6N2O·C2H3F3O

  • Mr = 344.30

  • Triclinic, [P \overline 1]

  • a = 5.0472 (3) Å

  • b = 11.2930 (7) Å

  • c = 15.0877 (10) Å

  • α = 107.002 (3)°

  • β = 96.636 (3)°

  • γ = 95.753 (3)°

  • V = 808.70 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 K

  • 0.15 × 0.10 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.998

  • 15936 measured reflections

  • 4008 independent reflections

  • 3416 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.04

  • 4008 reflections

  • 260 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯N3i 0.897 (16) 2.122 (16) 2.9994 (15) 165.7 (15)
N2—H2N⋯O1ii 0.898 (16) 2.013 (16) 2.9093 (13) 176.8 (14)
N4—H3N⋯O2iii 0.877 (16) 2.047 (16) 2.9139 (13) 170.1 (16)
O3—H3O⋯N1iv 0.84 1.91 2.7511 (15) 178
N4—H4N⋯O1v 0.878 (17) 2.222 (17) 3.0867 (14) 168.4 (15)
C1—H1⋯N3i 0.95 2.51 3.4220 (16) 161
C3—H3⋯O2vi 0.95 2.40 3.0103 (15) 122
C5—H5⋯F3Avii 0.95 2.46 3.408 (7) 177
C7—H7⋯O1v 0.95 2.36 3.2118 (14) 149
C11—H11⋯O3 0.95 2.50 3.2590 (16) 137
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y, -z+1; (iii) -x-1, -y+1, -z+1; (iv) x+1, y+1, z; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z; (vii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The crystal structure of nicotinamide (NA) was first reported in 1954 (Wright & King, 1954; Miwa et al., 1999) and a number of polymorphic forms have also been identified (Hino et al., 2001). In recent years NA has also been investigated as a pharmaceutically acceptable co-crystal former to modify the crystal structure and physico-chemical properties of drug compounds including carbamazepine (Fleischman et al., 2003), salicylic acid and both racemic and S(+)-ibuprofen (Berry et al., 2008). Crystal structures of 3,5-dinitrosalicylate (Koman et al., 2003) as well as 2R,3R-tartrate and trifluoroacetate (Athimoolam & Natarajan, 2007a and Athimoolam & Natarajan, 2007b) salts of NA have also been reported.

In the 2,2,2-trifluoroethanol (TFE) hemisolvate reported here, the molecules crystallize in space group P1 with two molecules of NA and one molecule of TFE in the asymetric unit (Fig. 1). Both independent NA molecules form centro-symmetric R22(8) (Etter, 1990) dimer motifs via N—H..O hydrogen bonds (Table 1). The anti-oriented hydrogen atoms on both amide groups form further contacts between adjacent non-symmetry equivalent dimers, either to the aromatic nitrogen, N3 (N2—H1N···N3) or the carbonyl oxygen atom, O1 (N4—H4N···O1).This gives rise to a two-dimensional hydrogen bonded layer of nicotinamide dimers lying parallel to the a-b plane. The remaining aromatic acceptor nitrogen atom, N1, forms an N—H···O hydrogen bond to the solvent molecule producing a structure with alternating layers of NA dimers and TFE that stack in the direction of the c-axis (Fig. 2). The structure is further stabilized by six weak C—H···O and C—H···F interactions (Table 1). The CF3 atoms of the TFE molecule are disordered over two sites with equal occupancies.

Related literature top

For nicotinamide polymorphs, see: Wright & King (1954); Miwa et al. (1999); Hino et al. (2001). For nicotinamide co-crystals and salts, see: Fleischman et al. (2003); Koman et al. (2003); Athimoolam & Natarajan (2007a,b) ; Berry et al. (2008). For graph-set motifs, see: Etter (1990). For initial identification using multi-sample foil transmission X-ray powder diffraction analysis, see: Florence et al. (2003).

Experimental top

The novel structure reported here was discovered during a study of solvate formation in organic compounds with a range of fluorinated solvents. A crystalline sample was obtained by isothermal evaporation at 263 K from a saturated TFE solution held on a Reactarray RM2 crystalliser. Identification of the novel phase was initially made using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003) and a suitable single-crystal for structure determination was selected from the sample.

Refinement top

The amine H atoms were located in a difference synthesis and were refined isotropically [N—H = 0.877 (16)–0.898 (16) Å]. All other H atoms were positioned geometrically at distances of 0.95, 0.99 and 0.84 Å from the parent atoms for CH, CH2 and OH groups respectively. For these atoms, a riding model was used during the refinement process. The Uiso(H) values were constrained to be 1.2 times Ueq of the carrier C atom or 1.5 times Ueq of the carrier O atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. One of the disordered site for the CF3 atoms has been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the reported compound viewed down the a axis, showing the two-dimensional hydrogen-bonded network of alternating dimers, separated by layers of solvent molecules. Hydrogen bonds are shown as blue dashed lines.
nicotinamide–2,2,2-trifluoroethanol (2/1) top
Crystal data top
2(C6H6N2O)·C2H3F3OZ = 2
Mr = 344.30F(000) = 356
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0472 (3) ÅCell parameters from 8696 reflections
b = 11.2930 (7) Åθ = 2.9–28.2°
c = 15.0877 (10) ŵ = 0.12 mm1
α = 107.002 (3)°T = 123 K
β = 96.636 (3)°Slab, colourless
γ = 95.753 (3)°0.15 × 0.10 × 0.02 mm
V = 808.70 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube3416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 66
Tmin = 0.903, Tmax = 0.998k = 1514
15936 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.2237P]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
2(C6H6N2O)·C2H3F3Oγ = 95.753 (3)°
Mr = 344.30V = 808.70 (9) Å3
Triclinic, P1Z = 2
a = 5.0472 (3) ÅMo Kα radiation
b = 11.2930 (7) ŵ = 0.12 mm1
c = 15.0877 (10) ÅT = 123 K
α = 107.002 (3)°0.15 × 0.10 × 0.02 mm
β = 96.636 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3416 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.998Rint = 0.025
15936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
4008 reflectionsΔρmin = 0.29 e Å3
260 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.87250 (15)0.11455 (7)0.45065 (6)0.0226 (2)
N10.05569 (19)0.02252 (9)0.23414 (7)0.0240 (3)
N20.7054 (2)0.09004 (9)0.40991 (7)0.0225 (3)
C10.2538 (2)0.04184 (10)0.29313 (8)0.0212 (3)
C20.4782 (2)0.04629 (9)0.33748 (7)0.0186 (3)
C30.4931 (2)0.16131 (10)0.32072 (8)0.0236 (3)
C40.2882 (2)0.18307 (11)0.26047 (9)0.0274 (3)
C50.0760 (2)0.08876 (11)0.21836 (8)0.0261 (3)
C60.7000 (2)0.02482 (9)0.40354 (7)0.0188 (3)
O20.39941 (17)0.44262 (7)0.39075 (6)0.0264 (3)
N30.33815 (19)0.66946 (9)0.31270 (7)0.0236 (3)
N40.2073 (2)0.62420 (9)0.49873 (7)0.0236 (3)
C70.1753 (2)0.65082 (10)0.37294 (8)0.0219 (3)
C80.0429 (2)0.55638 (9)0.34852 (8)0.0198 (3)
C90.0899 (2)0.47587 (11)0.25734 (9)0.0271 (3)
C100.0788 (3)0.49317 (12)0.19462 (9)0.0303 (3)
C110.2891 (2)0.59119 (11)0.22515 (8)0.0258 (3)
C120.2296 (2)0.53745 (10)0.41530 (8)0.0205 (3)
F1A0.5655 (16)0.6926 (4)0.0538 (5)0.0869 (18)0.500
F1B0.5243 (12)0.6494 (4)0.0430 (5)0.0706 (13)0.500
F2A0.8008 (18)0.8692 (5)0.0041 (6)0.0644 (16)0.500
F2B0.7971 (17)0.8192 (6)0.0144 (6)0.0647 (19)0.500
F3A0.4000 (15)0.8549 (5)0.0620 (5)0.0653 (16)0.500
F3B0.3721 (15)0.8033 (4)0.0738 (4)0.0614 (12)0.500
O30.6456 (2)0.78427 (9)0.14649 (7)0.0424 (3)
C130.4745 (3)0.82394 (14)0.08562 (9)0.0345 (4)
C14A0.5622 (6)0.8123 (3)0.0096 (2)0.0320 (7)*0.500
C14B0.5411 (6)0.7718 (4)0.0096 (2)0.0322 (7)*0.500
H10.240200.120000.305300.0250*
H1N0.592 (3)0.1567 (14)0.3723 (11)0.028 (4)*
H2N0.839 (3)0.0991 (14)0.4511 (11)0.030 (4)*
H30.642300.224400.350300.0280*
H40.293700.261200.248400.0330*
H50.062400.103300.176100.0310*
H3N0.324 (3)0.6138 (15)0.5355 (11)0.036 (4)*
H4N0.094 (3)0.6940 (15)0.5172 (11)0.032 (4)*
H70.211100.705100.435700.0260*
H90.236300.409600.238100.0320*
H100.050800.438900.132000.0360*
H110.403600.603300.181900.0310*
H3O0.772200.842100.174400.0640*
H13A0.457500.912700.116200.0410*
H13B0.293600.774800.075300.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (4)0.0156 (4)0.0256 (4)0.0015 (3)0.0023 (3)0.0052 (3)
N10.0222 (5)0.0233 (5)0.0252 (5)0.0009 (4)0.0002 (4)0.0075 (4)
N20.0224 (5)0.0162 (4)0.0274 (5)0.0010 (4)0.0029 (4)0.0081 (4)
C10.0214 (5)0.0181 (5)0.0244 (5)0.0015 (4)0.0030 (4)0.0075 (4)
C20.0195 (5)0.0167 (5)0.0191 (5)0.0031 (4)0.0035 (4)0.0044 (4)
C30.0243 (5)0.0177 (5)0.0283 (6)0.0007 (4)0.0023 (4)0.0075 (4)
C40.0306 (6)0.0211 (5)0.0330 (6)0.0033 (4)0.0018 (5)0.0133 (5)
C50.0251 (5)0.0278 (6)0.0274 (6)0.0054 (4)0.0009 (4)0.0124 (5)
C60.0191 (5)0.0167 (5)0.0200 (5)0.0013 (4)0.0036 (4)0.0051 (4)
O20.0278 (4)0.0172 (4)0.0324 (5)0.0040 (3)0.0079 (3)0.0059 (3)
N30.0232 (5)0.0181 (4)0.0300 (5)0.0001 (4)0.0056 (4)0.0084 (4)
N40.0251 (5)0.0189 (4)0.0258 (5)0.0022 (4)0.0061 (4)0.0062 (4)
C70.0231 (5)0.0164 (5)0.0254 (5)0.0003 (4)0.0038 (4)0.0060 (4)
C80.0204 (5)0.0150 (5)0.0252 (5)0.0027 (4)0.0035 (4)0.0079 (4)
C90.0253 (6)0.0224 (5)0.0290 (6)0.0047 (4)0.0035 (4)0.0039 (4)
C100.0329 (6)0.0281 (6)0.0244 (6)0.0029 (5)0.0060 (5)0.0014 (5)
C110.0261 (6)0.0246 (5)0.0287 (6)0.0022 (4)0.0079 (4)0.0103 (5)
C120.0202 (5)0.0157 (5)0.0268 (5)0.0016 (4)0.0029 (4)0.0089 (4)
F1A0.112 (4)0.063 (3)0.058 (2)0.019 (3)0.003 (2)0.022 (3)
F1B0.0614 (18)0.055 (3)0.064 (2)0.0127 (19)0.0039 (15)0.026 (2)
F2A0.0451 (16)0.110 (4)0.048 (2)0.003 (3)0.0128 (15)0.040 (3)
F2B0.0340 (15)0.116 (5)0.052 (2)0.012 (3)0.0162 (13)0.034 (3)
F3A0.054 (2)0.107 (4)0.042 (2)0.018 (3)0.0097 (16)0.038 (3)
F3B0.0508 (17)0.097 (3)0.0316 (14)0.008 (3)0.0059 (11)0.018 (2)
O30.0431 (6)0.0369 (5)0.0434 (6)0.0155 (4)0.0138 (4)0.0212 (4)
C130.0278 (6)0.0432 (7)0.0291 (6)0.0010 (5)0.0013 (5)0.0083 (5)
Geometric parameters (Å, º) top
F1A—C14A1.324 (7)C2—C31.3906 (16)
F1B—C14B1.316 (7)C2—C61.4978 (14)
F2A—C14A1.289 (9)C3—C41.3858 (16)
F2B—C14B1.366 (9)C4—C51.3796 (17)
F3A—C14A1.296 (8)C1—H10.9500
F3B—C14B1.365 (7)C3—H30.9500
O1—C61.2446 (13)C4—H40.9500
O2—C121.2366 (14)C5—H50.9500
O3—C131.3874 (18)C7—C81.3882 (15)
O3—H3O0.8400C8—C121.5013 (15)
N1—C51.3421 (17)C8—C91.3876 (17)
N1—C11.3383 (15)C9—C101.3855 (18)
N2—C61.3311 (15)C10—C111.3847 (19)
N2—H2N0.898 (16)C7—H70.9500
N2—H1N0.897 (16)C9—H90.9500
N3—C71.3401 (15)C10—H100.9500
N3—C111.3361 (15)C11—H110.9500
N4—C121.3345 (15)C13—C14B1.477 (3)
N4—H3N0.877 (16)C13—C14A1.525 (3)
N4—H4N0.878 (17)C13—H13A0.9900
C1—C21.3894 (15)C13—H13B0.9900
F1A···O32.859 (7)C4···O2ii3.1510 (15)
F1A···C10i3.342 (7)C5···C3vi3.5363 (15)
F1A···F2A2.096 (9)C6···N1ii3.2396 (14)
F1A···F3A2.119 (9)C6···C1ii3.4524 (15)
F1B···F3B2.118 (8)C7···O2ii3.3847 (14)
F1B···O32.780 (7)C7···C12ii3.4460 (15)
F2A···F3A2.080 (12)C7···O1v3.2118 (14)
F2A···O32.869 (8)C9···C11vi3.5486 (15)
F2B···O32.750 (8)C10···F1Ai3.342 (7)
F2B···F3B2.196 (11)C11···C9ii3.5486 (15)
F3A···F1A2.119 (9)C11···O33.2590 (16)
F3A···F2A2.080 (12)C12···C7vi3.4460 (15)
F3B···F2B2.196 (11)C12···C12xii3.5927 (16)
F3B···F1B2.118 (8)C12···N3vi3.2557 (15)
F1A···H10i2.7300C12···N4xii3.3776 (15)
F1B···H10i2.7800C13···C1xi3.4220 (18)
F2A···H3O2.8200C13···N1viii3.4382 (18)
F2B···H13Bii2.8700C1···H13Ax2.9000
F2B···H3O2.8000C1···H1N2.627 (16)
F3A···H5iii2.4600C1···H3Oix2.8000
F3B···H5iii2.5800C3···H3Nxii3.086 (16)
F3B···H9iii2.8600C5···H3Oix2.8900
O1···N2iv2.9093 (13)C6···H2Niv2.878 (16)
O1···N4v3.0867 (14)C7···H4N2.649 (16)
O1···C7v3.2118 (14)C7···H1xi3.0500
O2···C7vi3.3847 (14)C7···H1Nxi2.872 (16)
O2···C3vi3.0103 (15)C12···H3Nvii2.984 (16)
O2···N4vii2.9139 (13)H1···N3x2.5100
O2···C4vi3.1510 (15)H1···C7x3.0500
O3···N1viii2.7511 (15)H1···N22.6100
O3···F1A2.859 (7)H1···H1N2.0800
O3···F2A2.869 (8)H1N···N3x2.122 (16)
O3···C113.2590 (16)H1N···C12.627 (16)
O3···F2B2.750 (8)H1N···H12.0800
O3···F1B2.780 (7)H1N···C7x2.872 (16)
O1···H7v2.3600H2N···H2Niv2.57 (2)
O1···H2Niv2.013 (16)H2N···O1iv2.013 (16)
O1···H4Nv2.222 (17)H2N···C6iv2.878 (16)
O1···H32.4800H3···O12.4800
O2···H3Nvii2.047 (16)H3···O2ii2.4000
O2···H4vi2.6900H3N···C12vii2.984 (16)
O2···H3vi2.4000H3N···C3xii3.086 (16)
O2···H92.4700H3N···O2vii2.047 (16)
O3···H112.5000H3O···C1viii2.8000
N1···C6vi3.2396 (14)H3O···C5viii2.8900
N1···C13ix3.4382 (18)H3O···N1viii1.9100
N1···O3ix2.7510 (15)H3O···F2A2.8200
N2···O1iv2.9093 (13)H3O···F2B2.8000
N2···N3x2.9994 (15)H4···O2ii2.6900
N3···C1xi3.4220 (16)H4N···O1v2.222 (17)
N3···C12ii3.2557 (15)H4N···C72.649 (16)
N3···N2xi2.9994 (15)H4N···H72.0900
N4···C12xii3.3776 (15)H5···F3Biii2.5800
N4···O1v3.0867 (14)H5···F3Aiii2.4600
N4···O2vii2.9139 (13)H7···N42.6000
N1···H13Ax2.8600H7···H4N2.0900
N1···H3Oix1.9100H7···O1v2.3600
N2···H12.6100H9···O22.4700
N3···H1Nxi2.122 (16)H9···F3Biii2.8600
N3···H1xi2.5100H10···F1Ai2.7300
N4···H72.6000H10···F1Bi2.7800
C1···N3x3.4220 (16)H11···O32.5000
C1···C13x3.4220 (18)H13A···N1xi2.8600
C1···C6vi3.4524 (15)H13A···C1xi2.9000
C3···O2ii3.0103 (15)H13B···F2Bvi2.8700
C3···C5ii3.5363 (15)
C13—O3—H3O109.00C9—C10—C11118.64 (12)
C1—N1—C5117.62 (10)N3—C11—C10122.95 (11)
C6—N2—H2N116.2 (11)N4—C12—C8118.69 (10)
C6—N2—H1N122.9 (10)O2—C12—N4122.47 (10)
H1N—N2—H2N120.7 (15)O2—C12—C8118.84 (10)
C7—N3—C11117.80 (10)C8—C7—H7118.00
H3N—N4—H4N117.7 (15)N3—C7—H7118.00
C12—N4—H4N124.6 (10)C8—C9—H9120.00
C12—N4—H3N117.4 (11)C10—C9—H9120.00
N1—C1—C2123.48 (11)C9—C10—H10121.00
C1—C2—C6123.54 (10)C11—C10—H10121.00
C3—C2—C6118.67 (9)C10—C11—H11119.00
C1—C2—C3117.78 (10)N3—C11—H11119.00
C2—C3—C4119.37 (10)O3—C13—C14B107.67 (18)
C3—C4—C5118.54 (12)O3—C13—C14A115.28 (16)
N1—C5—C4123.19 (11)F1A—C14A—F3A108.0 (5)
O1—C6—C2119.14 (9)F1A—C14A—F2A106.7 (5)
N2—C6—C2118.66 (9)F1A—C14A—C13108.7 (4)
O1—C6—N2122.20 (10)F2A—C14A—F3A107.2 (5)
C2—C1—H1118.00F2A—C14A—C13113.6 (4)
N1—C1—H1118.00F3A—C14A—C13112.5 (4)
C2—C3—H3120.00F1B—C14B—F2B106.3 (5)
C4—C3—H3120.00F1B—C14B—F3B104.3 (4)
C3—C4—H4121.00F1B—C14B—C13117.2 (4)
C5—C4—H4121.00F2B—C14B—F3B107.0 (5)
N1—C5—H5118.00F2B—C14B—C13110.6 (4)
C4—C5—H5118.00F3B—C14B—C13110.7 (4)
N3—C7—C8123.44 (11)O3—C13—H13A108.00
C9—C8—C12118.67 (10)O3—C13—H13B108.00
C7—C8—C9117.85 (10)C14A—C13—H13A108.00
C7—C8—C12123.48 (10)C14B—C13—H13B98.00
C8—C9—C10119.30 (11)
C5—N1—C1—C20.71 (16)N3—C7—C8—C91.42 (17)
C1—N1—C5—C40.62 (17)C9—C8—C12—N4171.07 (11)
C11—N3—C7—C81.22 (17)C7—C8—C12—N48.74 (16)
C7—N3—C11—C100.22 (18)C9—C8—C12—O28.43 (16)
N1—C1—C2—C6180.00 (13)C7—C8—C12—O2171.77 (11)
N1—C1—C2—C31.37 (16)C7—C8—C9—C100.60 (17)
C1—C2—C6—O1169.45 (10)C12—C8—C9—C10179.21 (11)
C3—C2—C6—N2170.96 (10)C8—C9—C10—C110.30 (19)
C3—C2—C6—O19.14 (15)C9—C10—C11—N30.5 (2)
C1—C2—C6—N210.45 (15)O3—C13—C14B—F1B58.1 (4)
C6—C2—C3—C4179.39 (10)O3—C13—C14B—F2B64.0 (5)
C1—C2—C3—C40.72 (16)O3—C13—C14B—F3B177.6 (3)
C2—C3—C4—C50.49 (17)O3—C13—C14A—F1A62.9 (4)
C3—C4—C5—N11.21 (18)O3—C13—C14A—F2A55.7 (4)
N3—C7—C8—C12178.39 (11)O3—C13—C14A—F3A177.7 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x1, y+1, z+1; (viii) x+1, y+1, z; (ix) x1, y1, z; (x) x, y1, z; (xi) x, y+1, z; (xii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···N3x0.897 (16)2.122 (16)2.9994 (15)165.7 (15)
N2—H2N···O1iv0.898 (16)2.013 (16)2.9093 (13)176.8 (14)
N4—H3N···O2vii0.877 (16)2.047 (16)2.9139 (13)170.1 (16)
O3—H3O···N1viii0.841.912.7511 (15)178
N4—H4N···O1v0.878 (17)2.222 (17)3.0867 (14)168.4 (15)
C1—H1···N3x0.952.513.4220 (16)161
C3—H3···O2ii0.952.403.0103 (15)122
C5—H5···F3Aiii0.952.463.408 (7)177
C7—H7···O1v0.952.363.2118 (14)149
C11—H11···O30.952.503.2590 (16)137
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+1, y+1, z+1; (vii) x1, y+1, z+1; (viii) x+1, y+1, z; (x) x, y1, z.

Experimental details

Crystal data
Chemical formula2(C6H6N2O)·C2H3F3O
Mr344.30
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)5.0472 (3), 11.2930 (7), 15.0877 (10)
α, β, γ (°)107.002 (3), 96.636 (3), 95.753 (3)
V3)808.70 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.15 × 0.10 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.903, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
15936, 4008, 3416
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.04
No. of reflections4008
No. of parameters260
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···N3i0.897 (16)2.122 (16)2.9994 (15)165.7 (15)
N2—H2N···O1ii0.898 (16)2.013 (16)2.9093 (13)176.8 (14)
N4—H3N···O2iii0.877 (16)2.047 (16)2.9139 (13)170.1 (16)
O3—H3O···N1iv0.84001.91002.7511 (15)178.00
N4—H4N···O1v0.878 (17)2.222 (17)3.0867 (14)168.4 (15)
C1—H1···N3i0.95002.51003.4220 (16)161.00
C3—H3···O2vi0.95002.40003.0103 (15)122.00
C5—H5···F3Avii0.95002.46003.408 (7)177.00
C7—H7···O1v0.95002.36003.2118 (14)149.00
C11—H11···O30.95002.50003.2590 (16)137.00
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+1; (iii) x1, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y+1, z.
 

Acknowledgements

The authors thank the University of Strathclyde for funding JB, the Basic Technology programme of the UK Research Councils for project funding under the Control and Prediction of the Organic Solid State (www.cposs.org.uk), and the Glasgow Centre for Physical Organic Chemistry for access to single-crystal diffraction facilities.

References

First citationAthimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, o1811–o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, o2430–o2432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hurthouse, M. B., Storey, R., Jones, W., Friščić, T. & Blagden, N. (2008). Cryst. Growth Des. 8, 1697–1712.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHino, T., Ford, J. L. & Powell, M. W. (2001). Thermochimica Acta, 374, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationKoman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441–o442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o727-o728
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds