organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(1H-pyrazol-1-yl)meth­yl]benzene dihydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 19 February 2009; accepted 2 March 2009; online 6 March 2009)

The asymmetric unit of the title compound, C14H14N4·2H2O consists of two half-mol­ecules of the main mol­ecule, each situated on an inversion center, and two mol­ecules of water. One-dimensional chains of water mol­ecules are built up by O—H⋯O hydrogen bonds which are then linked with the main mol­ecule via O—H⋯N hydrogen bonds, forming a two-dimensional supra­molecular network in the ac plane.

Related literature

For background and the synthesis, see: Chang et al. (1993[Chang, W.-K., Sheu, S.-C., Lee, G.-H., Wang, Y., Ho, T.-I. & Lin, Y.-C. (1993). Dalton Trans. pp. 687-694.]). For similar structures, see: Bourne et al. (2006[Bourne, S. A., De Villiers, K. & Egan, T. J. (2006). Acta Cryst. C62, o53-o57.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4·2H2O

  • Mr = 274.32

  • Monoclinic, P 21 /c

  • a = 4.680 (2) Å

  • b = 18.640 (8) Å

  • c = 16.974 (10) Å

  • β = 91.15 (2)°

  • V = 1480.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.29 × 0.27 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.984

  • 14065 measured reflections

  • 3361 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 1.00

  • 3361 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H15⋯N4 0.85 2.08 2.929 (3) 178
O1—H16⋯O2i 0.85 1.87 2.717 (2) 177
O2—H17⋯N2ii 0.85 2.08 2.923 (2) 170
O2—H18⋯O1 0.85 1.89 2.733 (2) 172
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is not only an excellent flexible ligand, but also a hydrogen bonding acceptor that can be used to construct supramolecular structures (Chang et al. (1993). In this paper, we report a two-dimensional supramolecular network similar to that reported earlier (Bourne et al. 2006), composed of 1,4-bis((1H-pyrazol-1-yl)methyl)benzene and water.

In (I), all bond lengths and angles are normal. The flexible ligand molecules display a 'Z' shape, with the pyrazole rings on opposite sides of the plane of the phenyl ring (Fig. 1).

In the crystal, one-dimensional water chains are built up by O—H···O hydrogen bonding interactions. The chains are then linked to the ligands (I),via O—H···N hydrogen bonds, forming a two-dimensional supramolecular network along the ac plane (Fig. 2, Table 1).

Related literature top

For background and the synthesis, see: Chang et al. (1993). For similar structures, see: Bourne et al. (2006).

Experimental top

The title compound was prepared from pyrazole (6.8 g, 100 mmol), Na2CO3 (16 g, 100 mmol) and 1,4-bis(bromomethyl)benzene (21.3 g, 50 mmol)in benzene. The solution was refluxed for 3 h. The title compound (4.7 g, 20 mmol) was then dissolved in hot water (30 ml) to give a clear solution and allowed to stand in a desiccator at room temperature for several days after which colorless crystals of (I) were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry codes; (I) -x + 2, -y + 1, -z + 1]
[Figure 2] Fig. 2. A partial packing view, showing the two-dimensional network. Dashed lines indicate the hydrogen-bonding interactions. Only H atoms involved in hydrogren bonds are shown.
1,4-Bis[(1H-pyrazol-1-yl)methyl]benzene dihydrate top
Crystal data top
C14H14N4·2H2OF(000) = 584
Mr = 274.32Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8012 reflections
a = 4.680 (2) Åθ = 6.5–54.9°
b = 18.640 (8) ŵ = 0.09 mm1
c = 16.974 (10) ÅT = 291 K
β = 91.15 (2)°Block, colorless
V = 1480.6 (13) Å30.29 × 0.27 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3361 independent reflections
Radiation source: fine-focus sealed tube1735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scanθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 65
Tmin = 0.956, Tmax = 0.984k = 2324
14065 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
3361 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H14N4·2H2OV = 1480.6 (13) Å3
Mr = 274.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.680 (2) ŵ = 0.09 mm1
b = 18.640 (8) ÅT = 291 K
c = 16.974 (10) Å0.29 × 0.27 × 0.19 mm
β = 91.15 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3361 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1735 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.984Rint = 0.050
14065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
3361 reflectionsΔρmin = 0.13 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8625 (5)0.35411 (10)0.69781 (13)0.0727 (6)
H10.75840.32090.66800.087*
C21.0682 (5)0.33893 (11)0.75233 (13)0.0784 (6)
H21.13450.29390.76770.094*
C31.1572 (4)0.40427 (12)0.77993 (12)0.0737 (6)
H31.29830.41040.81870.088*
C40.6675 (4)0.46818 (11)0.63845 (12)0.0709 (6)
H40.60930.51240.66350.085*
H50.49630.44190.62310.085*
C50.8366 (3)0.48549 (9)0.56601 (11)0.0551 (4)
C60.8351 (4)0.43987 (10)0.50232 (12)0.0642 (5)
H60.72320.39870.50340.077*
C71.0049 (4)0.54625 (9)0.56293 (11)0.0622 (5)
H71.00990.57790.60530.075*
C80.5827 (4)0.27680 (10)0.07594 (13)0.0724 (6)
H80.66420.29090.12300.087*
C90.3835 (5)0.22438 (10)0.06711 (15)0.0776 (6)
H90.30160.19550.10610.093*
C100.3302 (4)0.22347 (9)0.01191 (14)0.0706 (6)
H100.20150.19250.03540.085*
C110.8187 (4)0.36625 (9)0.01523 (13)0.0663 (5)
H110.98080.36740.01950.080*
H120.89160.36120.06880.080*
C120.6550 (3)0.43624 (8)0.00771 (11)0.0527 (4)
C130.6725 (4)0.47764 (9)0.05894 (11)0.0616 (5)
H130.78980.46300.09950.074*
C140.4809 (4)0.45945 (9)0.06678 (11)0.0624 (5)
H140.46630.43240.11260.075*
N10.8358 (3)0.42535 (8)0.69450 (8)0.0559 (4)
N21.0191 (3)0.45779 (8)0.74505 (9)0.0660 (4)
N30.6401 (3)0.30445 (7)0.00459 (10)0.0579 (4)
N40.4843 (3)0.27223 (7)0.05120 (10)0.0638 (4)
O10.4928 (3)0.31462 (7)0.21740 (9)0.0847 (4)
H150.49390.30310.16900.127*
H160.33740.33730.22380.127*
O20.9966 (3)0.38581 (8)0.24291 (10)0.1062 (6)
H170.97460.43110.24210.159*
H180.83290.36630.23860.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0920 (14)0.0568 (11)0.0693 (14)0.0064 (10)0.0027 (12)0.0032 (10)
C20.0967 (15)0.0713 (13)0.0674 (14)0.0235 (12)0.0093 (12)0.0138 (11)
C30.0689 (12)0.0959 (16)0.0562 (12)0.0135 (12)0.0021 (10)0.0092 (11)
C40.0529 (10)0.0895 (13)0.0704 (14)0.0117 (9)0.0054 (10)0.0187 (11)
C50.0413 (9)0.0633 (10)0.0605 (12)0.0094 (8)0.0013 (8)0.0145 (9)
C60.0646 (11)0.0599 (10)0.0679 (13)0.0089 (9)0.0060 (10)0.0122 (10)
C70.0708 (11)0.0571 (10)0.0587 (12)0.0052 (9)0.0026 (10)0.0019 (9)
C80.0854 (14)0.0656 (12)0.0664 (15)0.0127 (11)0.0027 (11)0.0025 (10)
C90.0921 (15)0.0559 (11)0.0839 (18)0.0042 (11)0.0177 (13)0.0075 (11)
C100.0695 (12)0.0487 (10)0.0935 (18)0.0009 (9)0.0001 (12)0.0009 (10)
C110.0505 (10)0.0544 (10)0.0936 (16)0.0012 (8)0.0073 (10)0.0040 (10)
C120.0423 (8)0.0491 (9)0.0665 (12)0.0049 (7)0.0047 (8)0.0034 (8)
C130.0599 (10)0.0607 (11)0.0646 (13)0.0022 (8)0.0130 (9)0.0007 (9)
C140.0708 (11)0.0570 (10)0.0596 (12)0.0019 (9)0.0029 (10)0.0135 (9)
N10.0495 (8)0.0641 (9)0.0543 (9)0.0008 (7)0.0061 (7)0.0091 (7)
N20.0680 (9)0.0699 (9)0.0601 (10)0.0009 (8)0.0042 (8)0.0023 (8)
N30.0561 (8)0.0491 (7)0.0682 (11)0.0080 (7)0.0015 (8)0.0022 (8)
N40.0669 (9)0.0537 (8)0.0709 (11)0.0047 (8)0.0043 (8)0.0025 (8)
O10.0878 (9)0.0774 (9)0.0887 (11)0.0004 (7)0.0012 (8)0.0027 (8)
O20.0867 (10)0.0885 (10)0.1433 (16)0.0021 (8)0.0031 (10)0.0361 (10)
Geometric parameters (Å, º) top
C1—N11.335 (2)C9—C101.369 (3)
C1—C21.352 (3)C9—H90.9300
C1—H10.9300C10—N41.331 (2)
C2—C31.367 (3)C10—H100.9300
C2—H20.9300C11—N31.459 (2)
C3—N21.322 (2)C11—C121.517 (2)
C3—H30.9300C11—H110.9700
C4—N11.460 (2)C11—H120.9700
C4—C51.510 (2)C12—C131.373 (2)
C4—H40.9700C12—C141.375 (2)
C4—H50.9700C13—C14ii1.380 (2)
C5—C61.375 (3)C13—H130.9300
C5—C71.381 (2)C14—C13ii1.380 (2)
C6—C7i1.374 (3)C14—H140.9300
C6—H60.9300N1—N21.345 (2)
C7—C6i1.374 (3)N3—N41.348 (2)
C7—H70.9300O1—H150.8500
C8—N31.339 (2)O1—H160.8500
C8—C91.361 (3)O2—H170.8500
C8—H80.9300O2—H180.8500
N1—C1—C2107.56 (18)C10—C9—H9127.6
N1—C1—H1126.2N4—C10—C9112.01 (18)
C2—C1—H1126.2N4—C10—H10124.0
C1—C2—C3104.84 (18)C9—C10—H10124.0
C1—C2—H2127.6N3—C11—C12111.94 (14)
C3—C2—H2127.6N3—C11—H11109.2
N2—C3—C2112.08 (19)C12—C11—H11109.2
N2—C3—H3124.0N3—C11—H12109.2
C2—C3—H3124.0C12—C11—H12109.2
N1—C4—C5111.25 (14)H11—C11—H12107.9
N1—C4—H4109.4C13—C12—C14118.04 (16)
C5—C4—H4109.4C13—C12—C11120.95 (17)
N1—C4—H5109.4C14—C12—C11121.00 (16)
C5—C4—H5109.4C12—C13—C14ii121.16 (16)
H4—C4—H5108.0C12—C13—H13119.4
C6—C5—C7118.11 (16)C14ii—C13—H13119.4
C6—C5—C4120.89 (17)C12—C14—C13ii120.80 (16)
C7—C5—C4120.97 (18)C12—C14—H14119.6
C7i—C6—C5121.54 (17)C13ii—C14—H14119.6
C7i—C6—H6119.2C1—N1—N2111.26 (16)
C5—C6—H6119.2C1—N1—C4128.31 (17)
C6i—C7—C5120.36 (17)N2—N1—C4119.92 (15)
C6i—C7—H7119.8C3—N2—N1104.26 (16)
C5—C7—H7119.8C8—N3—N4111.25 (16)
N3—C8—C9107.6 (2)C8—N3—C11128.06 (17)
N3—C8—H8126.2N4—N3—C11120.37 (16)
C9—C8—H8126.2C10—N4—N3104.34 (16)
C8—C9—C10104.80 (19)H15—O1—H16105.7
C8—C9—H9127.6H17—O2—H18108.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H15···N40.852.082.929 (3)178
O1—H16···O2iii0.851.872.717 (2)177
O2—H17···N2i0.852.082.923 (2)170
O2—H18···O10.851.892.733 (2)172
Symmetry codes: (i) x+2, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14N4·2H2O
Mr274.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)4.680 (2), 18.640 (8), 16.974 (10)
β (°) 91.15 (2)
V3)1480.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.27 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14065, 3361, 1735
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.00
No. of reflections3361
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H15···N40.852.082.929 (3)177.9
O1—H16···O2i0.851.872.717 (2)177.3
O2—H17···N2ii0.852.082.923 (2)169.7
O2—H18···O10.851.892.733 (2)171.6
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20872030), the Research Foundation of Heilongjiang Provincial Education Department (grant No. 11513073), the Project of the Special Fund of the Science and Technology Innovation People of Harbin (grant No. RC2006QN018001) and Heilongjiang University.

References

First citationBourne, S. A., De Villiers, K. & Egan, T. J. (2006). Acta Cryst. C62, o53–o57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChang, W.-K., Sheu, S.-C., Lee, G.-H., Wang, Y., Ho, T.-I. & Lin, Y.-C. (1993). Dalton Trans. pp. 687–694.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds