organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 March 2009; accepted 21 March 2009; online 28 March 2009)

In the crystal structure of the title compound, C15H17NO2S, the conformations of the N—C bond in the C—SO2—NH—C segment are trans and gauche, respectively, with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −61.8 (2)°. Furthermore, the conformation of the N—H bond and the 3-methyl group in the aniline benzene ring are nearly anti to each other. The dihedral angle between the benzene rings is 47.8 (1)°. In the crystal, N—H⋯O hydrogen bonds link the molecules into chains.

Related literature

For the preparation of the compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o2190.]; 2009[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o366.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.])

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Monoclinic, P 21 /c

  • a = 9.2528 (7) Å

  • b = 15.329 (1) Å

  • c = 10.4469 (7) Å

  • β = 102.558 (7)°

  • V = 1446.30 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.45 × 0.40 × 0.34 mm

Data collection
  • Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.907, Tmax = 0.929

  • 10438 measured reflections

  • 2902 independent reflections

  • 2360 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.06

  • 2902 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.42 2.963 (2) 122
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our study of substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a; b; 2009), in the present work, the structure of 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide (N34DMP4MBSA) has been determined. The conformations of the N—C bond in the C—SO2—NH—C segment of the structure are "trans" and "gauche" with respect to the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -61.8 (2). The conformation of the N—H bond and the meta-methyl group in the anilino benzene ring are nearly anti to each other. The two benzene rings in the title compound are tilted relative to each other by 47.8 (1)°. The other bond parameters in N34DMP4MBSA are similar to those observed in N-(2,6-dimethylphenyl)-benzenesulfonamide (Gowda et al., 2008a), N-(2,3-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2009), N-(3,5-dichlorophenyl)- benzenesulfonamide (Gowda et al., 2008b)) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The N—H···O hydrogen bonds (Table 1) pack the molecules into infinite chains in the direction of a- axis (Fig. 2).

Related literature top

For the preparation of the compound, see: Shetty & Gowda (2005). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008a,b; 2009); Perlovich et al. (2006)

Experimental top

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl group Uiso(H) = 1.5 Ueq.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,4-Dimethylphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C15H17NO2SF(000) = 584
Mr = 275.36Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5065 reflections
a = 9.2528 (7) Åθ = 2.3–27.3°
b = 15.329 (1) ŵ = 0.22 mm1
c = 10.4469 (7) ÅT = 299 K
β = 102.558 (7)°Prism, colourless
V = 1446.30 (17) Å30.45 × 0.40 × 0.34 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
2902 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1111
Tmin = 0.907, Tmax = 0.929k = 1919
10438 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.5487P]
where P = (Fo2 + 2Fc2)/3
2902 reflections(Δ/σ)max = 0.014
175 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C15H17NO2SV = 1446.30 (17) Å3
Mr = 275.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2528 (7) ŵ = 0.22 mm1
b = 15.329 (1) ÅT = 299 K
c = 10.4469 (7) Å0.45 × 0.40 × 0.34 mm
β = 102.558 (7)°
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
2902 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2360 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.929Rint = 0.014
10438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
2902 reflectionsΔρmin = 0.48 e Å3
175 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0832 (2)0.11183 (12)0.41984 (18)0.0420 (4)
C20.2056 (3)0.08904 (16)0.5149 (2)0.0618 (6)
H20.23820.12490.58720.074*
C30.2793 (3)0.01242 (17)0.5015 (2)0.0676 (7)
H30.36230.00270.56530.081*
C40.2330 (3)0.04188 (14)0.3963 (2)0.0539 (5)
C50.1119 (3)0.01764 (17)0.3024 (3)0.0703 (7)
H50.08000.05340.22990.084*
C60.0366 (3)0.05845 (16)0.3129 (2)0.0640 (6)
H60.04540.07370.24810.077*
C70.2234 (2)0.30486 (12)0.40062 (17)0.0395 (4)
C80.2693 (2)0.35604 (12)0.51153 (18)0.0457 (5)
H80.19950.37690.55600.055*
C90.4176 (2)0.37672 (12)0.55727 (19)0.0485 (5)
C100.5221 (2)0.34840 (13)0.4878 (2)0.0489 (5)
C110.4742 (2)0.29740 (14)0.3767 (2)0.0522 (5)
H110.54300.27770.33040.063*
C120.3270 (2)0.27524 (13)0.33332 (19)0.0468 (5)
H120.29760.24060.25920.056*
C130.3163 (3)0.12473 (17)0.3828 (3)0.0770 (8)
H13A0.34460.15260.46680.092*
H13B0.40330.11110.35070.092*
H13C0.25400.16320.32230.092*
C140.4651 (3)0.42967 (18)0.6811 (2)0.0709 (7)
H14A0.38030.44260.71670.085*
H14B0.50980.48310.66140.085*
H14C0.53550.39690.74400.085*
C150.6836 (3)0.37166 (18)0.5317 (3)0.0703 (7)
H15A0.72400.34350.61380.084*
H15B0.69350.43370.54220.084*
H15C0.73610.35250.46700.084*
N10.06920 (18)0.28438 (10)0.35435 (15)0.0435 (4)
H1N0.01810.31060.28670.052*
O10.15757 (16)0.20372 (11)0.35826 (15)0.0568 (4)
O20.02022 (16)0.23588 (11)0.56602 (12)0.0528 (4)
S10.00854 (5)0.21086 (3)0.43102 (4)0.04195 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (10)0.0444 (10)0.0383 (9)0.0001 (8)0.0092 (8)0.0027 (8)
C20.0734 (15)0.0639 (14)0.0413 (11)0.0187 (12)0.0029 (10)0.0019 (10)
C30.0755 (16)0.0693 (15)0.0529 (13)0.0232 (13)0.0030 (12)0.0091 (11)
C40.0597 (13)0.0427 (10)0.0653 (13)0.0000 (9)0.0264 (11)0.0074 (10)
C50.0685 (15)0.0616 (14)0.0763 (17)0.0044 (12)0.0057 (13)0.0236 (12)
C60.0542 (13)0.0652 (14)0.0641 (14)0.0050 (11)0.0057 (11)0.0163 (11)
C70.0498 (11)0.0377 (9)0.0295 (8)0.0055 (8)0.0058 (7)0.0037 (7)
C80.0596 (12)0.0420 (10)0.0360 (9)0.0058 (9)0.0114 (8)0.0013 (8)
C90.0655 (13)0.0388 (10)0.0375 (10)0.0009 (9)0.0030 (9)0.0002 (8)
C100.0520 (11)0.0421 (10)0.0486 (11)0.0011 (9)0.0022 (9)0.0074 (9)
C110.0552 (12)0.0548 (12)0.0492 (12)0.0074 (10)0.0167 (10)0.0008 (9)
C120.0583 (12)0.0490 (11)0.0326 (9)0.0028 (9)0.0085 (8)0.0041 (8)
C130.0853 (18)0.0517 (13)0.101 (2)0.0086 (13)0.0348 (16)0.0037 (13)
C140.0883 (18)0.0665 (15)0.0534 (13)0.0132 (13)0.0054 (12)0.0177 (11)
C150.0580 (14)0.0666 (15)0.0796 (17)0.0008 (12)0.0001 (12)0.0024 (13)
N10.0493 (9)0.0485 (9)0.0294 (7)0.0078 (7)0.0015 (7)0.0064 (6)
O10.0413 (8)0.0772 (11)0.0495 (8)0.0071 (7)0.0042 (6)0.0027 (7)
O20.0600 (9)0.0693 (9)0.0299 (7)0.0067 (7)0.0118 (6)0.0016 (6)
S10.0414 (3)0.0537 (3)0.0298 (3)0.0059 (2)0.00563 (18)0.00009 (18)
Geometric parameters (Å, º) top
C1—C61.376 (3)C10—C111.389 (3)
C1—C21.379 (3)C10—C151.507 (3)
C1—S11.7557 (19)C11—C121.381 (3)
C2—C31.380 (3)C11—H110.9300
C2—H20.9300C12—H120.9300
C3—C41.371 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.370 (3)C13—H13C0.9600
C4—C131.508 (3)C14—H14A0.9600
C5—C61.375 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C121.382 (3)C15—H15B0.9600
C7—C81.387 (3)C15—H15C0.9600
C7—N11.438 (2)N1—S11.6369 (17)
C8—C91.388 (3)N1—H1N0.8600
C8—H80.9300O1—S11.4267 (15)
C9—C101.398 (3)O2—S11.4296 (13)
C9—C141.509 (3)
C6—C1—C2119.82 (19)C10—C11—H11119.2
C6—C1—S1119.82 (16)C11—C12—C7119.70 (18)
C2—C1—S1120.30 (15)C11—C12—H12120.1
C1—C2—C3119.3 (2)C7—C12—H12120.1
C1—C2—H2120.4C4—C13—H13A109.5
C3—C2—H2120.4C4—C13—H13B109.5
C4—C3—C2121.5 (2)H13A—C13—H13B109.5
C4—C3—H3119.3C4—C13—H13C109.5
C2—C3—H3119.3H13A—C13—H13C109.5
C5—C4—C3118.3 (2)H13B—C13—H13C109.5
C5—C4—C13121.1 (2)C9—C14—H14A109.5
C3—C4—C13120.6 (2)C9—C14—H14B109.5
C4—C5—C6121.5 (2)H14A—C14—H14B109.5
C4—C5—H5119.3C9—C14—H14C109.5
C6—C5—H5119.3H14A—C14—H14C109.5
C5—C6—C1119.6 (2)H14B—C14—H14C109.5
C5—C6—H6120.2C10—C15—H15A109.5
C1—C6—H6120.2C10—C15—H15B109.5
C12—C7—C8119.37 (19)H15A—C15—H15B109.5
C12—C7—N1120.27 (17)C10—C15—H15C109.5
C8—C7—N1120.34 (17)H15A—C15—H15C109.5
C7—C8—C9121.13 (19)H15B—C15—H15C109.5
C7—C8—H8119.4C7—N1—S1119.68 (12)
C9—C8—H8119.4C7—N1—H1N120.2
C8—C9—C10119.58 (18)S1—N1—H1N120.2
C8—C9—C14120.0 (2)O1—S1—O2119.82 (9)
C10—C9—C14120.4 (2)O1—S1—N1105.59 (9)
C11—C10—C9118.52 (19)O2—S1—N1106.90 (9)
C11—C10—C15120.1 (2)O1—S1—C1108.88 (9)
C9—C10—C15121.3 (2)O2—S1—C1107.97 (9)
C12—C11—C10121.7 (2)N1—S1—C1107.01 (9)
C12—C11—H11119.2
C6—C1—C2—C30.4 (4)C14—C9—C10—C151.7 (3)
S1—C1—C2—C3177.58 (19)C9—C10—C11—C120.7 (3)
C1—C2—C3—C40.4 (4)C15—C10—C11—C12179.7 (2)
C2—C3—C4—C51.0 (4)C10—C11—C12—C70.6 (3)
C2—C3—C4—C13179.2 (2)C8—C7—C12—C110.4 (3)
C3—C4—C5—C60.8 (4)N1—C7—C12—C11178.19 (17)
C13—C4—C5—C6179.0 (2)C12—C7—N1—S1105.46 (18)
C4—C5—C6—C10.0 (4)C8—C7—N1—S175.9 (2)
C2—C1—C6—C50.6 (4)C7—N1—S1—O1177.68 (14)
S1—C1—C6—C5177.8 (2)C7—N1—S1—O253.68 (16)
C12—C7—C8—C91.1 (3)C7—N1—S1—C161.80 (15)
N1—C7—C8—C9179.75 (16)C6—C1—S1—O126.4 (2)
C7—C8—C9—C102.5 (3)C2—C1—S1—O1156.35 (18)
C7—C8—C9—C14177.67 (19)C6—C1—S1—O2157.99 (18)
C8—C9—C10—C112.3 (3)C2—C1—S1—O224.8 (2)
C14—C9—C10—C11177.9 (2)C6—C1—S1—N187.25 (19)
C8—C9—C10—C15178.14 (19)C2—C1—S1—N189.97 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.422.963 (2)122
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.2528 (7), 15.329 (1), 10.4469 (7)
β (°) 102.558 (7)
V3)1446.30 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.40 × 0.34
Data collection
DiffractometerOxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.907, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
10438, 2902, 2360
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.06
No. of reflections2902
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.422.963 (2)121.9
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds