organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(3-chloro­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 4 February 2009; accepted 18 March 2009; online 25 March 2009)

In the mol­ecular structure of the title compound, C20H19Cl2NO, the bicyclic system adopts a twin-chair conformation with equatorial orientations of both substituents. The dihedral angle between the aromatic rings is 43.60 (2)° with respect to each other. The crystal structure is stabilized by weak N—H⋯O and strong C—H⋯O inter­actions.

Related literature

For the biological significance, synthesis and stereochemistry of 3-aza­bicyclo­nonan-9-ones, see: Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For similiar structures, see: Parthiban et al. (2008a[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.],b[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.],d[Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.],e[Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708-o1709.]). For puckering parameters, see: Web & Becker (1967[Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317-1321.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Cl2NO

  • Mr = 360.26

  • Orthorhombic, P 21 21 21

  • a = 6.9950 (14) Å

  • b = 12.180 (2) Å

  • c = 20.770 (4) Å

  • V = 1769.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.31 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.922

  • 23614 measured reflections

  • 4284 independent reflections

  • 2762 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.084

  • S = 1.01

  • 4284 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1756 Friedel pairs

  • Flack parameter: −0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.83 (2) 2.35 (2) 3.129 (3) 155.4 (18)
C7—H7⋯O1ii 0.98 2.44 3.296 (2) 146
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to their biological significance (Jeyaraman & Avila, 1981), the synthesis and stereochemistry of 3-azabicyclononan-9-ones are more important in current affairs (Parthiban et al., 2008a,b,c,d,e). The title compound C20 H19 Cl2 N O, exists in twin-chair conformation with equatorial orientations of the meta chlorophenyl groups on both sides of the secondary amino group with the torsion angles of C8—C2—C1—C9 and C8—C6—C7—C15 are -177.78 (4)and 177.42 (3)°, respectively. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.669 (2) and 0.704 (3) Å, respectively, QT = 0.617 (2) Å, q(2)=0.021 (2) and q(3)=0.617 (2) Å, θ = 2.71 (19)°. (Cremer & Pople, 1975; Web & Becker, 1967) whereas the cyclohexane ring deviate from the ideal chair conformation; the cyclohexane atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.545 (4) and 0.714 (3)°, respectively, QT = 0.562 (2) Å, q(2)=0.128 (2) and q(3)=0.549 (2) Å, θ = 12.7 (2)°. (Cremer & Pople, 1975). The aryl groups are oriented at an angle of 43.60 (2)° to each other.

The crystal structure is stabilized by weak N—H···O (3.129 (3)Å and strong C—H···O interactions [C1—H···O1 (3.46 (3)Å and C7—H···O1 3.296 (2) Å]. Interestingly,the same acceptor O1 is involved in trifurcated hydrogen bond with N1,C1 and C7 where the Oxygen atoms is at the apex forming a tripyramidal.

Related literature top

For the biological significance, synthesis and stereochemistry of 3-azabicyclononan-9-ones, see: Jeyaraman & Avila (1981). For similiar structures, see: Parthiban et al. (2008a,b,c,d,e). Fr puckering parameters, see: Web & Becker (1967); Cremer & Pople (1975).

Experimental top

A mixture of cyclohexanone (0.05 mol) and meta chlorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow color was formed during the mixing of the reactants and cooled to room temperature. Then 50 ml of ether was added and allowed to stir over night at room temperature. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid became colourless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 2,4-bis(3-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl,methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecules showing the N—H···O and C—H···O interactions.
2,4-Bis(3-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19Cl2NOF(000) = 752
Mr = 360.26Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5421 reflections
a = 6.9950 (14) Åθ = 2.6–22.5°
b = 12.180 (2) ŵ = 0.37 mm1
c = 20.770 (4) ÅT = 298 K
V = 1769.6 (6) Å3Block, colourless
Z = 40.31 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4284 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 89
Tmin = 0.875, Tmax = 0.922k = 1616
23614 measured reflectionsl = 2716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.181P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4284 reflectionsΔρmax = 0.16 e Å3
221 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1756 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C20H19Cl2NOV = 1769.6 (6) Å3
Mr = 360.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9950 (14) ŵ = 0.37 mm1
b = 12.180 (2) ÅT = 298 K
c = 20.770 (4) Å0.31 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2762 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.922Rint = 0.046
23614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.16 e Å3
S = 1.01Δρmin = 0.25 e Å3
4284 reflectionsAbsolute structure: Flack (1983), 1756 Friedel pairs
221 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1155 (3)0.91094 (15)0.96470 (9)0.0351 (5)
H10.08390.86901.00350.042*
C20.0754 (3)0.94712 (17)0.93253 (10)0.0425 (5)
H20.14830.99100.96350.051*
C30.0574 (3)1.01301 (18)0.86920 (11)0.0522 (6)
H3A0.18291.03980.85710.063*
H3B0.02361.07630.87680.063*
C40.0248 (4)0.94740 (18)0.81344 (10)0.0517 (6)
H4A0.00350.98740.77370.062*
H4B0.16170.94000.81930.062*
C50.0633 (3)0.83391 (19)0.80751 (10)0.0493 (6)
H5A0.01410.79060.77820.059*
H5B0.18940.84110.78860.059*
C60.0815 (3)0.77124 (16)0.87165 (10)0.0405 (5)
H60.15830.70500.86460.049*
C70.1088 (3)0.73829 (16)0.90524 (9)0.0373 (5)
H70.07670.70170.94590.045*
C80.1852 (3)0.84501 (17)0.91799 (9)0.0417 (5)
C90.2390 (3)1.00628 (15)0.98456 (9)0.0353 (5)
C100.3661 (3)1.05578 (17)0.94271 (10)0.0485 (6)
H100.37801.02920.90090.058*
C110.4763 (4)1.14476 (18)0.96219 (12)0.0589 (7)
H110.56091.17730.93340.071*
C120.4608 (3)1.18510 (18)1.02405 (11)0.0514 (6)
H120.53301.24521.03720.062*
C130.3367 (3)1.13481 (15)1.06568 (10)0.0430 (5)
C140.2249 (3)1.04678 (16)1.04695 (9)0.0399 (5)
H140.14041.01481.07600.048*
C150.2255 (3)0.65933 (15)0.86531 (10)0.0388 (5)
C160.2048 (3)0.54727 (17)0.87560 (12)0.0543 (6)
H160.12300.52220.90770.065*
C170.3056 (4)0.47232 (18)0.83825 (15)0.0679 (8)
H170.28950.39750.84530.081*
C180.4283 (4)0.5073 (2)0.79115 (13)0.0619 (7)
H180.49610.45700.76640.074*
C190.4494 (3)0.61781 (19)0.78124 (12)0.0514 (6)
C200.3510 (3)0.69381 (17)0.81787 (10)0.0457 (5)
H200.36920.76840.81060.055*
Cl10.32230 (11)1.18133 (5)1.14500 (3)0.0681 (2)
Cl20.60281 (11)0.66335 (6)0.72080 (3)0.0794 (2)
N10.2172 (3)0.83753 (13)0.92051 (8)0.0358 (4)
O10.3405 (2)0.82264 (14)0.94107 (7)0.0583 (4)
H1A0.324 (3)0.8184 (15)0.9342 (9)0.033 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (12)0.0377 (11)0.0307 (9)0.0016 (9)0.0059 (9)0.0005 (9)
C20.0360 (12)0.0472 (12)0.0443 (12)0.0048 (10)0.0048 (10)0.0061 (10)
C30.0502 (15)0.0476 (13)0.0587 (15)0.0068 (11)0.0079 (12)0.0076 (11)
C40.0549 (14)0.0579 (14)0.0421 (12)0.0040 (12)0.0058 (11)0.0153 (11)
C50.0462 (14)0.0647 (14)0.0370 (11)0.0005 (12)0.0065 (10)0.0008 (11)
C60.0358 (12)0.0435 (12)0.0421 (12)0.0079 (10)0.0046 (10)0.0016 (9)
C70.0386 (12)0.0371 (11)0.0363 (11)0.0059 (10)0.0013 (9)0.0008 (9)
C80.0307 (12)0.0577 (13)0.0366 (11)0.0013 (11)0.0007 (10)0.0090 (10)
C90.0347 (11)0.0353 (11)0.0359 (11)0.0048 (9)0.0008 (9)0.0016 (9)
C100.0553 (14)0.0469 (12)0.0433 (12)0.0088 (12)0.0088 (11)0.0102 (10)
C110.0656 (16)0.0530 (15)0.0580 (14)0.0152 (13)0.0154 (13)0.0035 (12)
C120.0536 (15)0.0388 (12)0.0619 (15)0.0075 (12)0.0048 (12)0.0081 (11)
C130.0500 (13)0.0381 (11)0.0409 (11)0.0058 (10)0.0065 (11)0.0082 (9)
C140.0406 (12)0.0422 (11)0.0368 (11)0.0054 (10)0.0017 (9)0.0006 (9)
C150.0396 (12)0.0355 (11)0.0412 (11)0.0008 (9)0.0085 (10)0.0074 (9)
C160.0499 (15)0.0423 (13)0.0708 (16)0.0074 (12)0.0046 (12)0.0040 (11)
C170.0720 (19)0.0362 (13)0.096 (2)0.0028 (13)0.0140 (17)0.0134 (13)
C180.0565 (16)0.0550 (16)0.0743 (18)0.0137 (13)0.0127 (15)0.0296 (14)
C190.0460 (14)0.0588 (15)0.0494 (13)0.0060 (11)0.0049 (11)0.0193 (11)
C200.0507 (13)0.0386 (11)0.0477 (12)0.0012 (11)0.0006 (11)0.0109 (10)
Cl10.0959 (5)0.0649 (4)0.0435 (3)0.0048 (4)0.0084 (3)0.0171 (3)
Cl20.0814 (5)0.0891 (5)0.0675 (4)0.0069 (4)0.0235 (4)0.0261 (4)
N10.0305 (10)0.0393 (9)0.0376 (9)0.0018 (9)0.0019 (8)0.0052 (8)
O10.0363 (9)0.0793 (11)0.0593 (10)0.0063 (9)0.0087 (8)0.0071 (9)
Geometric parameters (Å, º) top
C1—N11.465 (2)C9—C101.382 (3)
C1—C91.505 (3)C9—C141.390 (3)
C1—C21.557 (3)C10—C111.390 (3)
C1—H10.9800C10—H100.9300
C2—C81.493 (3)C11—C121.380 (3)
C2—C31.546 (3)C11—H110.9300
C2—H20.9800C12—C131.369 (3)
C3—C41.520 (3)C12—H120.9300
C3—H3A0.9700C13—C141.383 (3)
C3—H3B0.9700C13—Cl11.745 (2)
C4—C51.518 (3)C14—H140.9300
C4—H4A0.9700C15—C161.389 (3)
C4—H4B0.9700C15—C201.385 (3)
C5—C61.541 (3)C16—C171.390 (3)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.370 (4)
C6—C81.503 (3)C17—H170.9300
C6—C71.556 (3)C18—C191.369 (3)
C6—H60.9800C18—H180.9300
C7—N11.462 (3)C19—C201.382 (3)
C7—C151.510 (3)C19—Cl21.742 (3)
C7—H70.9800C20—H200.9300
C8—O11.218 (2)N1—H1A0.83 (2)
N1—C1—C9111.35 (16)O1—C8—C2124.5 (2)
N1—C1—C2108.66 (16)O1—C8—C6123.3 (2)
C9—C1—C2113.05 (16)C2—C8—C6112.28 (17)
N1—C1—H1107.9C10—C9—C14118.52 (19)
C9—C1—H1107.9C10—C9—C1122.25 (18)
C2—C1—H1107.9C14—C9—C1119.23 (18)
C8—C2—C3107.59 (18)C9—C10—C11120.9 (2)
C8—C2—C1107.01 (16)C9—C10—H10119.5
C3—C2—C1116.25 (17)C11—C10—H10119.5
C8—C2—H2108.6C12—C11—C10120.3 (2)
C3—C2—H2108.6C12—C11—H11119.8
C1—C2—H2108.6C10—C11—H11119.8
C4—C3—C2113.96 (17)C13—C12—C11118.6 (2)
C4—C3—H3A108.8C13—C12—H12120.7
C2—C3—H3A108.8C11—C12—H12120.7
C4—C3—H3B108.8C12—C13—C14121.8 (2)
C2—C3—H3B108.8C12—C13—Cl1119.18 (17)
H3A—C3—H3B107.7C14—C13—Cl1118.97 (16)
C5—C4—C3112.78 (19)C13—C14—C9119.79 (19)
C5—C4—H4A109.0C13—C14—H14120.1
C3—C4—H4A109.0C9—C14—H14120.1
C5—C4—H4B109.0C16—C15—C20118.3 (2)
C3—C4—H4B109.0C16—C15—C7119.01 (19)
H4A—C4—H4B107.8C20—C15—C7122.72 (18)
C4—C5—C6114.49 (17)C15—C16—C17120.4 (2)
C4—C5—H5A108.6C15—C16—H16119.8
C6—C5—H5A108.6C17—C16—H16119.8
C4—C5—H5B108.6C18—C17—C16120.8 (2)
C6—C5—H5B108.6C18—C17—H17119.6
H5A—C5—H5B107.6C16—C17—H17119.6
C8—C6—C5107.32 (17)C19—C18—C17118.7 (2)
C8—C6—C7106.25 (16)C19—C18—H18120.6
C5—C6—C7116.39 (17)C17—C18—H18120.6
C8—C6—H6108.9C18—C19—C20121.5 (2)
C5—C6—H6108.9C18—C19—Cl2119.17 (19)
C7—C6—H6108.9C20—C19—Cl2119.36 (18)
N1—C7—C15111.44 (16)C19—C20—C15120.3 (2)
N1—C7—C6109.14 (16)C19—C20—H20119.9
C15—C7—C6112.37 (16)C15—C20—H20119.9
N1—C7—H7107.9C7—N1—C1112.88 (15)
C15—C7—H7107.9C7—N1—H1A108.0 (14)
C6—C7—H7107.9C1—N1—H1A113.0 (14)
N1—C1—C2—C858.1 (2)C1—C9—C10—C11179.1 (2)
C9—C1—C2—C8177.77 (16)C9—C10—C11—C120.2 (4)
N1—C1—C2—C362.1 (2)C10—C11—C12—C130.8 (4)
C9—C1—C2—C362.0 (2)C11—C12—C13—C141.3 (3)
C8—C2—C3—C453.3 (2)C11—C12—C13—Cl1177.49 (19)
C1—C2—C3—C466.6 (3)C12—C13—C14—C90.9 (3)
C2—C3—C4—C545.2 (3)Cl1—C13—C14—C9177.89 (16)
C3—C4—C5—C645.3 (3)C10—C9—C14—C130.0 (3)
C4—C5—C6—C852.9 (2)C1—C9—C14—C13179.61 (17)
C4—C5—C6—C765.9 (2)N1—C7—C15—C16143.69 (19)
C8—C6—C7—N158.4 (2)C6—C7—C15—C1693.5 (2)
C5—C6—C7—N160.9 (2)N1—C7—C15—C2037.3 (3)
C8—C6—C7—C15177.42 (16)C6—C7—C15—C2085.5 (2)
C5—C6—C7—C1563.2 (2)C20—C15—C16—C171.1 (3)
C3—C2—C8—O1116.6 (2)C7—C15—C16—C17177.9 (2)
C1—C2—C8—O1117.8 (2)C15—C16—C17—C180.7 (4)
C3—C2—C8—C663.9 (2)C16—C17—C18—C190.3 (4)
C1—C2—C8—C661.7 (2)C17—C18—C19—C200.5 (4)
C5—C6—C8—O1117.0 (2)C17—C18—C19—Cl2179.20 (19)
C7—C6—C8—O1117.9 (2)C18—C19—C20—C151.0 (4)
C5—C6—C8—C263.6 (2)Cl2—C19—C20—C15178.72 (16)
C7—C6—C8—C261.6 (2)C16—C15—C20—C191.3 (3)
N1—C1—C9—C1036.4 (3)C7—C15—C20—C19177.8 (2)
C2—C1—C9—C1086.3 (2)C15—C7—N1—C1174.09 (16)
N1—C1—C9—C14143.97 (18)C6—C7—N1—C161.2 (2)
C2—C1—C9—C1493.4 (2)C9—C1—N1—C7174.24 (16)
C14—C9—C10—C110.6 (3)C2—C1—N1—C760.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.83 (2)2.35 (2)3.129 (3)155.4 (18)
C7—H7···O1ii0.982.443.296 (2)146
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H19Cl2NO
Mr360.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.9950 (14), 12.180 (2), 20.770 (4)
V3)1769.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.31 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.875, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
23614, 4284, 2762
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.084, 1.01
No. of reflections4284
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.25
Absolute structureFlack (1983), 1756 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.83 (2)2.35 (2)3.129 (3)155.4 (18)
C7—H7···O1ii0.982.443.296 (2)146
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeb, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds