metal-organic compounds
Tetraquabis(5-fluorosaccharinato)nickel(II)
aChemistry Department, Francis Marion University, Florence, South Carolina 29501, USA, and bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
*Correspondence e-mail: lpeterson@fmarion.edu
In the centrosymmetric title complex, [Ni(C7H3FNO3S)2(H2O)4], the NiII atom exhibits a slightly distorted trans-NiN2O4 octahedral coordination. The nitrogen donors are provided by two 5-fluorosaccharinate ligands and the oxygen donors are provided by four water molecules. The features O—H⋯O and bifurcated O—H⋯(F,O) hydrogen bonds, the latter involving the F atom of the 5-fluorosaccharinate ligand.
Related literature
For a related structure; see: Haider et al. (1983). For background, see: Falvello et al. (2001); Khalil et al. (2005); Plenio (1997).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809007053/hb2907sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007053/hb2907Isup2.hkl
All chemicals and solvents were purchased from commercial sources and used without further purification. The synthesis of sodium 5-fluorosaccharinate will be described elsewhere. A 10 ml solution of sodium 5-fluorosaccharinate (0.10 mmol) was added dropwise to a 10.0 ml solution of nickel(II) chloride tetrahydrate (0.050 mmol). Light blue, block-like crystals of (I) were formed in about three weeks by slow evaporation after the solution volume was reduced to 5.0 ml under ambient conditions.
Hydrogen atoms bonded to carbon were placed in geometrically idealized positions and included as riding atoms with refined isotropic displacement parameters. The water H atoms were located in difference maps and refined freely.
Data collection: SMART (Bruker, 2003); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The coordination environment of Ni(II) in (I), with the atom-labeling scheme. The H atoms of 5-fsacch are omitted for clarity. Displacement ellipsoids for nonhydrogen atoms are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines. | |
Fig. 2. View of the crystal packing in (I). All H atoms except for those of water are omitted for clarity. Hydrogen bonds are represented by dashed lines. |
[Ni(C7H3FNO3S)2(H2O)4] | Z = 1 |
Mr = 531.10 | F(000) = 270 |
Triclinic, P1 | Dx = 1.942 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9649 (3) Å | Cell parameters from 4507 reflections |
b = 8.0484 (3) Å | θ = 2.4–26.4° |
c = 9.5877 (4) Å | µ = 1.38 mm−1 |
α = 101.780 (1)° | T = 150 K |
β = 105.983 (1)° | Block, light blue |
γ = 110.973 (1)° | 0.22 × 0.18 × 0.08 mm |
V = 454.18 (3) Å3 |
Bruker SMART APEX CCD diffractometer | 1858 independent reflections |
Radiation source: fine-focus sealed tube | 1769 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 26.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −8→8 |
Tmin = 0.887, Tmax = 1.000 | k = −10→10 |
6861 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.065 | Only H-atom displacement parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2342P] where P = (Fo2 + 2Fc2)/3 |
1858 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Ni(C7H3FNO3S)2(H2O)4] | γ = 110.973 (1)° |
Mr = 531.10 | V = 454.18 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.9649 (3) Å | Mo Kα radiation |
b = 8.0484 (3) Å | µ = 1.38 mm−1 |
c = 9.5877 (4) Å | T = 150 K |
α = 101.780 (1)° | 0.22 × 0.18 × 0.08 mm |
β = 105.983 (1)° |
Bruker SMART APEX CCD diffractometer | 1858 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 1769 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 1.000 | Rint = 0.022 |
6861 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.065 | Only H-atom displacement parameters refined |
S = 1.06 | Δρmax = 0.38 e Å−3 |
1858 reflections | Δρmin = −0.37 e Å−3 |
161 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01450 (11) | |
S1 | −0.01342 (6) | 0.32955 (6) | 0.24583 (5) | 0.01495 (12) | |
C1 | 0.2752 (3) | 0.2997 (2) | 0.1523 (2) | 0.0176 (4) | |
C2 | 0.0749 (3) | 0.2377 (2) | 0.0098 (2) | 0.0164 (3) | |
C3 | 0.0542 (3) | 0.1736 (2) | −0.1416 (2) | 0.0179 (3) | |
H3 | 0.1724 | 0.1621 | −0.1670 | 0.020 (5)* | |
C4 | −0.1482 (3) | 0.1274 (2) | −0.2531 (2) | 0.0179 (3) | |
C5 | −0.3263 (3) | 0.1414 (3) | −0.2223 (2) | 0.0217 (4) | |
H5 | −0.4613 | 0.1090 | −0.3041 | 0.036 (6)* | |
C6 | −0.3043 (3) | 0.2036 (3) | −0.0695 (2) | 0.0209 (4) | |
H6 | −0.4232 | 0.2132 | −0.0438 | 0.026 (6)* | |
C7 | −0.1013 (3) | 0.2507 (2) | 0.04337 (19) | 0.0169 (3) | |
F1 | −0.17280 (17) | 0.06728 (16) | −0.40248 (12) | 0.0230 (2) | |
N1 | 0.2420 (2) | 0.3605 (2) | 0.28345 (17) | 0.0172 (3) | |
O1 | 0.4490 (2) | 0.2954 (2) | 0.15047 (15) | 0.0258 (3) | |
O2 | −0.1302 (2) | 0.18308 (18) | 0.29833 (15) | 0.0210 (3) | |
O3 | −0.01877 (19) | 0.50819 (17) | 0.30498 (14) | 0.0193 (3) | |
O4 | 0.2988 (2) | 0.3398 (2) | 0.59836 (16) | 0.0197 (3) | |
H4A | 0.190 (5) | 0.249 (4) | 0.535 (4) | 0.048 (8)* | |
H4B | 0.254 (5) | 0.396 (4) | 0.646 (3) | 0.043 (8)* | |
O5 | 0.4047 (2) | 0.71025 (18) | 0.54925 (17) | 0.0187 (3) | |
H5A | 0.284 (5) | 0.685 (4) | 0.490 (3) | 0.046 (8)* | |
H5B | 0.412 (4) | 0.742 (4) | 0.637 (3) | 0.039 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01254 (16) | 0.01878 (18) | 0.01260 (17) | 0.00792 (13) | 0.00498 (12) | 0.00392 (12) |
S1 | 0.0128 (2) | 0.0187 (2) | 0.0134 (2) | 0.00758 (17) | 0.00549 (16) | 0.00357 (17) |
C1 | 0.0179 (8) | 0.0214 (9) | 0.0152 (8) | 0.0101 (7) | 0.0070 (7) | 0.0056 (7) |
C2 | 0.0156 (8) | 0.0175 (8) | 0.0163 (9) | 0.0077 (7) | 0.0058 (7) | 0.0058 (7) |
C3 | 0.0183 (8) | 0.0192 (8) | 0.0183 (9) | 0.0092 (7) | 0.0086 (7) | 0.0066 (7) |
C4 | 0.0228 (8) | 0.0174 (8) | 0.0126 (8) | 0.0079 (7) | 0.0073 (7) | 0.0043 (7) |
C5 | 0.0173 (8) | 0.0242 (9) | 0.0189 (9) | 0.0081 (7) | 0.0031 (7) | 0.0052 (7) |
C6 | 0.0168 (8) | 0.0261 (9) | 0.0190 (9) | 0.0096 (7) | 0.0070 (7) | 0.0052 (7) |
C7 | 0.0180 (8) | 0.0181 (8) | 0.0135 (8) | 0.0079 (7) | 0.0063 (7) | 0.0030 (7) |
F1 | 0.0246 (5) | 0.0294 (6) | 0.0125 (5) | 0.0113 (5) | 0.0064 (4) | 0.0040 (4) |
N1 | 0.0129 (6) | 0.0241 (8) | 0.0148 (7) | 0.0100 (6) | 0.0050 (6) | 0.0040 (6) |
O1 | 0.0188 (6) | 0.0437 (8) | 0.0177 (7) | 0.0188 (6) | 0.0073 (5) | 0.0061 (6) |
O2 | 0.0216 (6) | 0.0228 (7) | 0.0200 (7) | 0.0090 (5) | 0.0109 (5) | 0.0073 (5) |
O3 | 0.0170 (6) | 0.0202 (6) | 0.0196 (6) | 0.0096 (5) | 0.0062 (5) | 0.0030 (5) |
O4 | 0.0184 (6) | 0.0213 (7) | 0.0188 (7) | 0.0082 (6) | 0.0087 (6) | 0.0044 (6) |
O5 | 0.0170 (6) | 0.0229 (7) | 0.0163 (7) | 0.0105 (5) | 0.0060 (5) | 0.0042 (5) |
Ni1—O5i | 2.0440 (13) | C2—C3 | 1.385 (2) |
Ni1—O5 | 2.0440 (13) | C3—C4 | 1.379 (2) |
Ni1—N1 | 2.0856 (14) | C3—H3 | 0.9500 |
Ni1—N1i | 2.0856 (14) | C4—F1 | 1.355 (2) |
Ni1—O4 | 2.1084 (13) | C4—C5 | 1.388 (2) |
Ni1—O4i | 2.1084 (13) | C5—C6 | 1.394 (3) |
S1—O2 | 1.4443 (13) | C5—H5 | 0.9500 |
S1—O3 | 1.4515 (13) | C6—C7 | 1.385 (2) |
S1—N1 | 1.6277 (14) | C6—H6 | 0.9500 |
S1—C7 | 1.7635 (17) | O4—H4A | 0.81 (3) |
C1—O1 | 1.228 (2) | O4—H4B | 0.78 (3) |
C1—N1 | 1.366 (2) | O5—H5A | 0.80 (3) |
C1—C2 | 1.495 (2) | O5—H5B | 0.81 (3) |
C2—C7 | 1.385 (2) | ||
O5i—Ni1—O5 | 180.0 | C3—C2—C1 | 127.30 (15) |
O5i—Ni1—N1 | 87.50 (6) | C4—C3—C2 | 116.09 (15) |
O5—Ni1—N1 | 92.50 (6) | C4—C3—H3 | 122.0 |
O5i—Ni1—N1i | 92.50 (6) | C2—C3—H3 | 122.0 |
O5—Ni1—N1i | 87.50 (6) | F1—C4—C3 | 117.60 (15) |
N1—Ni1—N1i | 180.0 | F1—C4—C5 | 118.11 (16) |
O5i—Ni1—O4 | 88.53 (5) | C3—C4—C5 | 124.28 (17) |
O5—Ni1—O4 | 91.47 (5) | C4—C5—C6 | 119.03 (16) |
N1—Ni1—O4 | 90.65 (6) | C4—C5—H5 | 120.5 |
N1i—Ni1—O4 | 89.35 (6) | C6—C5—H5 | 120.5 |
O5i—Ni1—O4i | 91.47 (5) | C7—C6—C5 | 117.06 (16) |
O5—Ni1—O4i | 88.53 (5) | C7—C6—H6 | 121.5 |
N1—Ni1—O4i | 89.35 (6) | C5—C6—H6 | 121.5 |
N1i—Ni1—O4i | 90.65 (6) | C2—C7—C6 | 122.86 (16) |
O4—Ni1—O4i | 180.0 | C2—C7—S1 | 107.03 (13) |
O2—S1—O3 | 114.08 (7) | C6—C7—S1 | 130.10 (13) |
O2—S1—N1 | 110.96 (8) | C1—N1—S1 | 111.66 (12) |
O3—S1—N1 | 110.42 (7) | C1—N1—Ni1 | 122.66 (11) |
O2—S1—C7 | 111.32 (8) | S1—N1—Ni1 | 125.40 (8) |
O3—S1—C7 | 112.14 (8) | Ni1—O4—H4A | 113 (2) |
N1—S1—C7 | 96.63 (8) | Ni1—O4—H4B | 113 (2) |
O1—C1—N1 | 124.25 (16) | H4A—O4—H4B | 106 (3) |
O1—C1—C2 | 123.43 (16) | Ni1—O5—H5A | 113 (2) |
N1—C1—C2 | 112.32 (14) | Ni1—O5—H5B | 113.5 (19) |
C7—C2—C3 | 120.66 (16) | H5A—O5—H5B | 110 (3) |
C7—C2—C1 | 112.04 (15) | ||
O1—C1—C2—C7 | 177.99 (17) | O3—S1—C7—C6 | −61.72 (19) |
N1—C1—C2—C7 | −1.9 (2) | N1—S1—C7—C6 | −176.96 (18) |
O1—C1—C2—C3 | −2.1 (3) | O1—C1—N1—S1 | −174.70 (15) |
N1—C1—C2—C3 | 178.04 (16) | C2—C1—N1—S1 | 5.15 (19) |
C7—C2—C3—C4 | 0.8 (3) | O1—C1—N1—Ni1 | 11.1 (3) |
C1—C2—C3—C4 | −179.07 (16) | C2—C1—N1—Ni1 | −169.10 (11) |
C2—C3—C4—F1 | 178.87 (14) | O2—S1—N1—C1 | 110.32 (13) |
C2—C3—C4—C5 | 0.0 (3) | O3—S1—N1—C1 | −122.18 (13) |
F1—C4—C5—C6 | −179.76 (16) | C7—S1—N1—C1 | −5.56 (14) |
C3—C4—C5—C6 | −0.9 (3) | O2—S1—N1—Ni1 | −75.62 (11) |
C4—C5—C6—C7 | 0.9 (3) | O3—S1—N1—Ni1 | 51.87 (12) |
C3—C2—C7—C6 | −0.7 (3) | C7—S1—N1—Ni1 | 168.50 (10) |
C1—C2—C7—C6 | 179.18 (16) | O5i—Ni1—N1—C1 | −48.82 (14) |
C3—C2—C7—S1 | 178.11 (14) | O5—Ni1—N1—C1 | 131.18 (14) |
C1—C2—C7—S1 | −1.98 (18) | O4—Ni1—N1—C1 | −137.32 (14) |
C5—C6—C7—C2 | −0.2 (3) | O4i—Ni1—N1—C1 | 42.68 (14) |
C5—C6—C7—S1 | −178.74 (14) | O5i—Ni1—N1—S1 | 137.74 (10) |
O2—S1—C7—C2 | −111.27 (13) | O5—Ni1—N1—S1 | −42.26 (10) |
O3—S1—C7—C2 | 119.56 (12) | O4—Ni1—N1—S1 | 49.24 (10) |
N1—S1—C7—C2 | 4.32 (14) | O4i—Ni1—N1—S1 | −130.76 (10) |
O2—S1—C7—C6 | 67.46 (19) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O2 | 0.81 (3) | 2.51 (3) | 3.1436 (19) | 137 (3) |
O4—H4A···F1ii | 0.81 (3) | 2.54 (3) | 3.0910 (19) | 127 (3) |
O4—H4B···O3iii | 0.78 (3) | 2.17 (3) | 2.8985 (18) | 158 (3) |
O5—H5A···O3 | 0.80 (3) | 2.10 (3) | 2.8346 (18) | 155 (3) |
O5—H5A···F1iv | 0.80 (3) | 2.59 (3) | 3.1050 (17) | 124 (2) |
O5—H5B···O1i | 0.81 (3) | 2.13 (3) | 2.793 (2) | 139 (2) |
O5—H5B···O2iii | 0.81 (3) | 2.44 (3) | 2.9541 (18) | 122 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z; (iii) −x, −y+1, −z+1; (iv) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C7H3FNO3S)2(H2O)4] |
Mr | 531.10 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 6.9649 (3), 8.0484 (3), 9.5877 (4) |
α, β, γ (°) | 101.780 (1), 105.983 (1), 110.973 (1) |
V (Å3) | 454.18 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.38 |
Crystal size (mm) | 0.22 × 0.18 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.887, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6861, 1858, 1769 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.065, 1.06 |
No. of reflections | 1858 |
No. of parameters | 161 |
H-atom treatment | Only H-atom displacement parameters refined |
Δρmax, Δρmin (e Å−3) | 0.38, −0.37 |
Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O2 | 0.81 (3) | 2.51 (3) | 3.1436 (19) | 137 (3) |
O4—H4A···F1i | 0.81 (3) | 2.54 (3) | 3.0910 (19) | 127 (3) |
O4—H4B···O3ii | 0.78 (3) | 2.17 (3) | 2.8985 (18) | 158 (3) |
O5—H5A···O3 | 0.80 (3) | 2.10 (3) | 2.8346 (18) | 155 (3) |
O5—H5A···F1iii | 0.80 (3) | 2.59 (3) | 3.1050 (17) | 124 (2) |
O5—H5B···O1iv | 0.81 (3) | 2.13 (3) | 2.793 (2) | 139 (2) |
O5—H5B···O2ii | 0.81 (3) | 2.44 (3) | 2.9541 (18) | 122 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
Financial support from the National Science Foundation, awards CHE-0314164 and CHE-0315152, is gratefully acknowledged.
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Falvello, L. R., Gomez, J., Pascual, I., Tomas, M., Urriolabeitia, E. P. & Schultz, A. J. (2001). Inorg. Chem. 40, 4455–4463. Web of Science CSD CrossRef PubMed CAS Google Scholar
Haider, S. Z., Malik, K. M. A., Ahmed, K. J., Hess, H., Riffel, H. & Hursthouse, M. B. (1983). Inorg. Chim. Acta, 72, 21–27. CSD CrossRef CAS Web of Science Google Scholar
Khalil, S., Peterson, L. Jr, Goforth, A. M., Hansen, T. J., Smith, M. D. & zur Loye, H.-C. (2005). J. Chem. Crystallogr. 35, 405–411. Web of Science CSD CrossRef Google Scholar
Plenio, H. (1997). Chem. Rev. 97, 3363–3384. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The study of metal saccharinate complexes has been of current interest with respect to their incorporation into novel coordination polymers (Falvello et al., 2001). As a continuation of our own efforts in this area (Khalil et al., 2005), we have deemed it worthwhile to explore the solid state structures of metal organic compounds containing fluorinated saccharinates. The choice of fluorinated saccharinates stems from the novel types of interactions in which carbon bound fluorine may participate (Plenio, 1997). Our initial studies have led to the preparation of the title nickel complex (I) that contains 5-fluorosaccharinate (5-fsacch) as an anionic ligand.
The crystal structure of (I) consists of monomeric Ni(5-fsacch)2(H2O)4 molecular units, as shown in Figure 1. The NiII atom, which lies on an inversion center, is octahedrally coordinated by a pair of trans N atoms from two equivalent 5-fsacch ligands, and by four O atoms from two pairs that contain equivalent water molecules (Table 1).
The average Ni—N and Ni—O bond distances in (I) are 2.086 Å (1) and 2.076 (2) Å, respectively. By comparison to a similar structure, in (I) the average Ni—N distance is shorter whereas the average Ni—O distance is longer than their corresponding values in the previously reported nickel saccharinate complex, namely Ni(sacch)2(H2O)4.2(H2O) (II) (sacch = saccharinate) (Haider et al., 1983). In (II) the average Ni—N distance is 2.154 (1) Å, while the average Ni—O distance is 2.069 (2) Å. All angles in (I) are normal and are comparable to their corresponding values in (II).
The crystal structure in (I) features extensive hydrogen bonding (Table 2) in which both the carbonyl and sulfonyl O atoms of 5-fsacch, as well its carbon bound fluorine, act as hydrogen bond acceptors for the water H atoms, as shown in Fig. 2. This hydrogen bonding scheme is different from that of (II) for two major reasons. First, there is the presence of the previously mentioned C—F···H hydrogen bonding in (I) that is obviously absent in (II). Second, in (II) there exists hydrogen bonding involving lattice water molecules, which because of their absence in (I) precludes such interactions.