organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lophine (2,4,5-tri­phenyl-1H-imidazole)

aSchulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: kaftory@tx.technion.ac.il

(Received 16 February 2009; accepted 23 February 2009; online 6 March 2009)

The title compound, C21H16N2, has been known since 1877. Although the crystal structure of 36 derivatives of lophine are known, the structure of parent compound has remained unknown until now. The three phenyl rings bonded to the imidazole core are not coplanar with the latter, with dihedral angles of 21.4 (3), 24.7 (3), and 39.0 (3)°, respectively, between the phenyl ring planes in the 2-, 4- and 5-positions of the imidazole ring. The mol­ecules are packed in layers running perpendicular to the b axis. Although there are acceptor and donor atoms for hydrogen bonds, no such inter­actions are detected in the crystal in contrast to other lophine derivatives.

Related literature

For background on lophine and its derivatives, see: Fridman et al. (2008[Fridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2008). J. Mol. Struct. 917, 101-109.]); Fridman, Kaftory & Speiser (2007[Fridman, N., Kaftory, M. & Speiser, S. (2007). Sens. Actuators, B126, 107-115.]); Fridman, Kaftory, Eichen & Speiser (2007[Fridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2007). J. Photochem. Photobiol. A, 188, 25-33.]); Kamidate et al. (1989[Kamidate, T., Yamaguchi, K., Segawa, T. & Watanabe, H. (1989). Anal. Sci. 5, 429-33.]); Liu et al. (2005[Liu, X.-F., Zhong, Z.-P. & Xu, Z.-L. (2005). Acta Cryst. E61, o1976-o1977.]); Nakashima (2003[Nakashima, K. (2003). Biomed. Chromatogr. 17, 83-95.]); Nakashima et al. (1995[Nakashima, K., Yamasaki, H., Kuroda, N. & Akiyama, S. (1995). Anal. Chim. Acta, 303, 103-107.]); Radziszewski (1877[Radziszewski, B. (1877). Chem. Ber. 10, 70-75.]); Seethalakshmi et al. (2006[Seethalakshmi, T., Puratchikody, A., Lynch, D. E., Kaliannan, P. & Thamotharan, S. (2006). Acta Cryst. E62, o2803-o2804.]); Thiruvalluvar et al. (2007[Thiruvalluvar, A., Balamurugan, S., Puratchikody, A. & Nallu, M. (2007). Acta Cryst. E63, o1650-o1652.]); Thuer et al. (2004[Thuer, W., Gompper, R. & Polborn, K. (2004). Private communication (deposition CCDC 259545). CCDC, Cambridge, England.]). For information about the Cambridge Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related literature, see: Inouye & Sakaino (2000[Inouye, Y. & Sakaino, Y. (2000). Acta Cryst. C56, 884-887.]); Kaftory et al. (1998[Kaftory, M., Taycher, H. & Botoshansky, M. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 407-412.]); Santos et al. (2001[Santos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Gunter, P. (2001). Tetrahedron Lett. 42, 805-808.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2

  • Mr = 296.36

  • Orthorhombic, P b c a

  • a = 20.218 (4) Å

  • b = 7.538 (2) Å

  • c = 20.699 (4) Å

  • V = 3154.6 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.50 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 22192 measured reflections

  • 2747 independent reflections

  • 1036 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.245

  • S = 1.09

  • 2747 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 2006); cell refinement: DENZO HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, heterocyclic imidazole derivatives have attracted considerable attention because of their unique optical properties (Santos et al., 1996). These compounds play a very important role in chemistry as multipurpose analytical tools (Nakashima et al., 1995 & Nakashima, 2003 & Kamidate et al., 1989). Lophine (2,4,5-triphenyl-1H-imidazole) (I) is an attractive fluorescence and chemiluminescence compound. The chemiluminescence properties of this synthetic organic compound was reported for the first time by Radziszewski (1877). He showed that lophine emits a yellow light when it reacts with oxygen in the presence of a strong base. Since then many lophine derivatives have been synthesized and studied with regards to their optical properties. Lophine was chosen as the molecule of the week (December 15, 2008) by the American Chemical Society with the following summary "Lophine (2,4,5-triphenyl-1H-imidazole) exhibits lemon yellow chemiluminescence in solution and is one of the few long-lasting chemiluminescence molecules. It forms dimmers that have piezochromic and photochromic properties. It has been proposed as an analytical reagent for trace metal ion detection." The crystal structure of 36 different lophine derivatives have been deposited at the Cambridge Crystallographic Data Center (Allen, 2002). It is interesting to note, however, that the crystal structure of the parent lophine compound was never published. We undertook a search for new lophine derivatives that will show thermo- and photochromic properties (Fridman et al., 2007, Fridman et al., 2007, Fridman et al., 2008).

During our investigation we have succeeded to identify crystals of neat lophine. Here we describe its crystal structure. The molecular structure of lophine depicted in Figure 1, may be described by the rotation of three phenyl rings about their bonds to the imidazole ring. The rotation angles of the phenyl rings plane are 21.4, 24.7, and 39.0° at the 2, 4 and 5 positions of the imidazole ring respectively. Although the imidazole ring bearing H-donor and H-acceptor N atoms, they do not participate in hydrogen bonding as found in five other lophine derivatives (Seethalakshmi et al., 2006, Ynouye & Sakaino, 1986, Thuer et al., 2004, Liu et al., 2005, Thiruvalluvar et al., 2007) where the lophine derivative molecules packed in chains made up of hydrogen bonded molecules of N—H···N type. All other lophine derivatives form hydrogen bonds through the N—H or the N atoms either with molecules of the same kind or with solvent molecules. The absent of strong intermolecular forces might be the reason for the lack of published crystal structure of neat lophine because it is difficult to crystallize it.

Related literature top

For background on lophine and its derivatives, see: Fridman et al. (2008); Fridman, Kaftory & Speiser (2007); Fridman, Kaftory, Eichen & Speiser (2007); Kamidate et al. (1989); Liu et al. (2005); Nakashima (2003); Nakashima et al. 1995); Radziszewski (1877); Seethalakshmi et al. (2006); Thiruvalluvar et al. (2007); Thuer et al. (2004). For information about the Cambridge Database, see: Allen (2002). For related literature, see: Inouye & Sakaino (2000); Kaftory et al. (1998); Santos et al. (2001).

Experimental top

Lophine synthesis: benzil (1 mmol), suitable benzaldehyde (1 mmol), and ammonium acetate (1.2 g) were dissolved in boiling glacial acetic acid (16 ml) and refluxed for 5–24 h. The reaction progress was monitored by TLC. After the reaction completion, the reaction mixture was poured into ice-water, washed with NaHCO3 and then washed several times with EtOAc. The combined extracts were dried over MgSO4. The purification was done by flash column chromatography. The compound was obtained in 46% yield. Colourless plates of (I) were recrystallised from DMSO.

Refinement top

The quality of the crystals was poor which is also reflected in the crystal structure refinement. H atoms were clearly found in the difference Fourier maps. All H atoms were refined at idealized positions riding on the C and N atoms with C—H = 0.96 Å, and N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: COLLECT (Nonius, 2006); cell refinement: DENZO HKL-2000 (Otwinowski & Minor, 1997); data reduction: DENZO HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I).
2,4,5-triphenyl-1H-imidazole top
Crystal data top
C21H16N2F(000) = 1248
Mr = 296.36Dx = 1.248 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 22192 reflections
a = 20.218 (4) Åθ = 2.0–25.3°
b = 7.538 (2) ŵ = 0.07 mm1
c = 20.699 (4) ÅT = 293 K
V = 3154.6 (12) Å3Plate, colorless
Z = 80.50 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.143
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ϕ and ω scansh = 2322
22192 measured reflectionsk = 88
2747 independent reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088H-atom parameters constrained
wR(F2) = 0.245 w = 1/[σ2(Fo2) + (0.0863P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2747 reflectionsΔρmax = 0.25 e Å3
209 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (18)
Crystal data top
C21H16N2V = 3154.6 (12) Å3
Mr = 296.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 20.218 (4) ŵ = 0.07 mm1
b = 7.538 (2) ÅT = 293 K
c = 20.699 (4) Å0.50 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1036 reflections with I > 2σ(I)
22192 measured reflectionsRint = 0.143
2747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.245H-atom parameters constrained
S = 1.09Δρmax = 0.25 e Å3
2747 reflectionsΔρmin = 0.30 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6928 (2)0.1996 (5)0.14220 (18)0.0556 (11)
H10.68090.18060.10290.067*
N20.7563 (2)0.2458 (5)0.2252 (2)0.0668 (12)
C10.8110 (3)0.1974 (7)0.1209 (3)0.0660 (14)
C20.8052 (3)0.2208 (9)0.0564 (3)0.0928 (19)
H20.76200.24370.03900.111*
C30.8616 (4)0.2073 (9)0.0170 (3)0.108 (2)
H30.85700.22670.02860.129*
C40.9225 (3)0.1634 (8)0.0422 (3)0.0890 (19)
H40.96110.15170.01550.107*
C50.9267 (3)0.1408 (8)0.1067 (4)0.0902 (19)
H50.96940.11340.12440.108*
C60.8727 (3)0.1565 (7)0.1470 (3)0.0822 (18)
H60.87780.14080.19270.099*
C70.7536 (3)0.2141 (7)0.1634 (3)0.0767 (16)
C80.6519 (3)0.2205 (6)0.1946 (3)0.0672 (14)
C90.6911 (3)0.2496 (6)0.2465 (3)0.0690 (14)
C100.6777 (3)0.2762 (7)0.3158 (2)0.0689 (15)
C110.6295 (3)0.1845 (7)0.3489 (3)0.0771 (16)
H110.60280.10110.32550.093*
C120.6206 (3)0.2137 (9)0.4140 (3)0.0876 (18)
H120.58700.15090.43750.105*
C130.6578 (4)0.3288 (10)0.4475 (3)0.098 (2)
H130.65030.34690.49280.118*
C140.7082 (4)0.4240 (10)0.4148 (3)0.098 (2)
H140.73550.50900.43670.118*
C150.7179 (3)0.3959 (8)0.3504 (3)0.0841 (18)
H150.75310.45480.32790.101*
C160.5797 (3)0.2127 (7)0.1838 (2)0.0673 (15)
C170.5352 (3)0.3003 (7)0.2245 (3)0.0739 (16)
H170.55230.36360.26110.089*
C180.4681 (3)0.2945 (8)0.2130 (3)0.0827 (17)
H180.43830.35680.24110.099*
C190.4436 (3)0.2035 (9)0.1613 (3)0.0944 (19)
H190.39680.19830.15360.113*
C200.4872 (4)0.1191 (8)0.1199 (3)0.095 (2)
H200.46970.05570.08350.114*
C210.5545 (3)0.1206 (7)0.1311 (3)0.0805 (17)
H210.58460.06150.10240.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.056 (3)0.067 (2)0.044 (2)0.000 (2)0.008 (2)0.0054 (19)
N20.065 (3)0.072 (3)0.064 (3)0.005 (2)0.003 (3)0.005 (2)
C10.069 (4)0.066 (3)0.062 (4)0.004 (3)0.003 (3)0.001 (3)
C20.077 (5)0.133 (5)0.068 (4)0.024 (4)0.010 (4)0.006 (4)
C30.120 (6)0.138 (6)0.065 (4)0.011 (5)0.008 (4)0.004 (4)
C40.076 (5)0.097 (4)0.094 (5)0.009 (3)0.005 (4)0.007 (4)
C50.074 (5)0.094 (4)0.102 (5)0.003 (3)0.003 (4)0.018 (4)
C60.085 (5)0.087 (4)0.074 (4)0.016 (3)0.011 (4)0.012 (3)
C70.094 (5)0.068 (3)0.068 (4)0.003 (3)0.002 (4)0.008 (3)
C80.074 (4)0.060 (3)0.068 (4)0.002 (3)0.005 (3)0.003 (3)
C90.082 (4)0.056 (3)0.070 (4)0.004 (3)0.002 (3)0.000 (3)
C100.066 (4)0.072 (3)0.068 (4)0.005 (3)0.006 (3)0.000 (3)
C110.070 (4)0.083 (4)0.077 (4)0.011 (3)0.000 (3)0.008 (3)
C120.069 (4)0.122 (5)0.071 (4)0.003 (4)0.003 (4)0.021 (4)
C130.081 (5)0.146 (6)0.067 (4)0.015 (4)0.006 (4)0.010 (4)
C140.102 (6)0.108 (5)0.084 (5)0.004 (4)0.012 (4)0.021 (4)
C150.086 (4)0.090 (4)0.077 (4)0.018 (3)0.001 (3)0.000 (3)
C160.081 (4)0.059 (3)0.062 (3)0.008 (3)0.004 (3)0.002 (3)
C170.086 (5)0.067 (3)0.068 (4)0.006 (3)0.010 (3)0.001 (3)
C180.075 (5)0.083 (4)0.090 (5)0.003 (3)0.006 (4)0.012 (4)
C190.075 (5)0.104 (5)0.105 (5)0.005 (4)0.012 (4)0.020 (4)
C200.106 (6)0.090 (4)0.090 (5)0.016 (4)0.027 (5)0.004 (4)
C210.086 (5)0.083 (4)0.072 (4)0.009 (3)0.010 (4)0.000 (3)
Geometric parameters (Å, º) top
N1—C71.310 (7)C10—C151.410 (7)
N1—C81.374 (6)C11—C121.377 (7)
N1—H10.8600C11—H110.9600
N2—C71.302 (6)C12—C131.342 (8)
N2—C91.391 (6)C12—H120.9600
C1—C21.353 (7)C13—C141.419 (9)
C1—C61.392 (7)C13—H130.9600
C1—C71.462 (7)C14—C151.363 (7)
C2—C31.406 (8)C14—H140.9600
C2—H20.9602C15—H150.9599
C3—C41.378 (8)C16—C171.398 (7)
C3—H30.9600C16—C211.390 (7)
C4—C51.348 (7)C17—C181.377 (7)
C4—H40.9600C17—H170.9602
C5—C61.378 (7)C18—C191.364 (8)
C5—H50.9600C18—H180.9599
C6—H60.9602C19—C201.384 (9)
C8—C91.353 (7)C19—H190.9600
C8—C161.477 (7)C20—C211.380 (8)
C9—C101.474 (7)C20—H200.9601
C10—C111.377 (7)C21—H210.9599
C7—N1—C8107.0 (4)C12—C11—C10119.9 (6)
C7—N1—H1126.5C12—C11—H11121.6
C8—N1—H1126.5C10—C11—H11118.5
C7—N2—C9106.0 (5)C13—C12—C11122.4 (6)
C2—C1—C6119.3 (6)C13—C12—H12117.0
C2—C1—C7120.9 (6)C11—C12—H12120.6
C6—C1—C7119.8 (5)C12—C13—C14118.9 (6)
C1—C2—C3119.5 (6)C12—C13—H13120.6
C1—C2—H2118.3C14—C13—H13120.6
C3—C2—H2122.2C15—C14—C13119.4 (6)
C4—C3—C2121.5 (6)C15—C14—H14118.9
C4—C3—H3119.7C13—C14—H14121.6
C2—C3—H3118.8C14—C15—C10120.9 (6)
C5—C4—C3117.5 (6)C14—C15—H15120.6
C5—C4—H4120.5C10—C15—H15118.5
C3—C4—H4122.0C17—C16—C21118.2 (5)
C4—C5—C6122.5 (6)C17—C16—C8121.7 (5)
C4—C5—H5117.4C21—C16—C8120.1 (5)
C6—C5—H5120.0C18—C17—C16121.0 (5)
C5—C6—C1119.6 (6)C18—C17—H17120.3
C5—C6—H6120.0C16—C17—H17118.7
C1—C6—H6120.4C19—C18—C17120.5 (6)
N1—C7—N2112.5 (6)C19—C18—H18119.5
N1—C7—C1122.4 (5)C17—C18—H18120.0
N2—C7—C1125.0 (6)C18—C19—C20119.1 (6)
C9—C8—N1107.0 (5)C18—C19—H19120.6
C9—C8—C16134.8 (6)C20—C19—H19120.4
N1—C8—C16118.1 (5)C21—C20—C19121.4 (6)
C8—C9—N2107.5 (5)C21—C20—H20119.9
C8—C9—C10133.5 (6)C19—C20—H20118.7
N2—C9—C10119.0 (5)C20—C21—C16119.8 (6)
C11—C10—C15118.5 (5)C20—C21—H21121.3
C11—C10—C9123.1 (5)C16—C21—H21118.9
C15—C10—C9118.4 (5)
C6—C1—C2—C31.4 (9)C8—C9—C10—C1138.5 (8)
C7—C1—C2—C3178.7 (6)N2—C9—C10—C11139.1 (5)
C1—C2—C3—C42.7 (10)C8—C9—C10—C15144.2 (6)
C2—C3—C4—C52.6 (10)N2—C9—C10—C1538.2 (7)
C3—C4—C5—C61.3 (9)C15—C10—C11—C121.4 (9)
C4—C5—C6—C10.1 (9)C9—C10—C11—C12178.7 (5)
C2—C1—C6—C50.1 (8)C10—C11—C12—C130.5 (10)
C7—C1—C6—C5180.0 (5)C11—C12—C13—C140.0 (10)
C8—N1—C7—N21.1 (6)C12—C13—C14—C150.3 (10)
C8—N1—C7—C1179.4 (5)C13—C14—C15—C101.2 (10)
C9—N2—C7—N11.0 (6)C11—C10—C15—C141.8 (9)
C9—N2—C7—C1179.5 (5)C9—C10—C15—C14179.2 (6)
C2—C1—C7—N120.7 (8)C9—C8—C16—C1724.5 (9)
C6—C1—C7—N1159.2 (5)N1—C8—C16—C17153.3 (5)
C2—C1—C7—N2158.7 (6)C9—C8—C16—C21157.2 (5)
C6—C1—C7—N221.4 (8)N1—C8—C16—C2125.0 (7)
C7—N1—C8—C90.7 (5)C21—C16—C17—C180.5 (8)
C7—N1—C8—C16179.1 (4)C8—C16—C17—C18178.8 (4)
N1—C8—C9—N20.1 (5)C16—C17—C18—C190.3 (8)
C16—C8—C9—N2178.1 (5)C17—C18—C19—C200.9 (9)
N1—C8—C9—C10177.9 (5)C18—C19—C20—C212.0 (10)
C16—C8—C9—C104.1 (10)C19—C20—C21—C161.9 (9)
C7—N2—C9—C80.5 (5)C17—C16—C21—C200.6 (8)
C7—N2—C9—C10177.6 (4)C8—C16—C21—C20177.7 (5)

Experimental details

Crystal data
Chemical formulaC21H16N2
Mr296.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)20.218 (4), 7.538 (2), 20.699 (4)
V3)3154.6 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22192, 2747, 1036
Rint0.143
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.245, 1.09
No. of reflections2747
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: COLLECT (Nonius, 2006), DENZO HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2007). J. Photochem. Photobiol. A, 188, 25-33.  Web of Science CrossRef CAS Google Scholar
First citationFridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2008). J. Mol. Struct. 917, 101-109.  Web of Science CSD CrossRef Google Scholar
First citationFridman, N., Kaftory, M. & Speiser, S. (2007). Sens. Actuators, B126, 107-115.  CrossRef CAS Google Scholar
First citationInouye, Y. & Sakaino, Y. (2000). Acta Cryst. C56, 884–887.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaftory, M., Taycher, H. & Botoshansky, M. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 407-412.  CSD CrossRef Google Scholar
First citationKamidate, T., Yamaguchi, K., Segawa, T. & Watanabe, H. (1989). Anal. Sci. 5, 429-33.  CrossRef CAS Web of Science Google Scholar
First citationLiu, X.-F., Zhong, Z.-P. & Xu, Z.-L. (2005). Acta Cryst. E61, o1976–o1977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakashima, K. (2003). Biomed. Chromatogr. 17, 83-95.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakashima, K., Yamasaki, H., Kuroda, N. & Akiyama, S. (1995). Anal. Chim. Acta, 303, 103-107.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationRadziszewski, B. (1877). Chem. Ber. 10, 70-75.  CrossRef Google Scholar
First citationSantos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Gunter, P. (2001). Tetrahedron Lett. 42, 805-808.  Web of Science CrossRef CAS Google Scholar
First citationSeethalakshmi, T., Puratchikody, A., Lynch, D. E., Kaliannan, P. & Thamotharan, S. (2006). Acta Cryst. E62, o2803–o2804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Puratchikody, A. & Nallu, M. (2007). Acta Cryst. E63, o1650–o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThuer, W., Gompper, R. & Polborn, K. (2004). Private communication (deposition CCDC 259545). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds