organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(4-Meth­oxy­phen­yl)-N-(2-pyrid­yl)-3-(2-pyridylamino)acrylamide

aCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 25 February 2009; accepted 25 February 2009; online 6 March 2009)

In the title compound, C20H18N4O2, the amino­acrylamide group makes a dihedral angles of 4.0 (1)° with the amino-bound pyridyl ring and 15.66 (12)° with the amide-bound pyridyl ring. The dihedral angle between the amino­acrylamide group and the pendant 4-methoxy­phenyl group is 71.22 (9)°. In the crystal structure, N—H⋯N hydrogen bonds and C—H⋯O and C—H⋯N inter­actions help to establish the packing. Intra­molecular C—H⋯O and C—H⋯(N,O) contacts also occur.

Related literature

For background to the anti­bacteriological activity of enamines, see: Xiao et al. (2007[Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212-4219.], 2008[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O2

  • Mr = 346.38

  • Monoclinic, P 21 /c

  • a = 11.546 (2) Å

  • b = 12.148 (2) Å

  • c = 14.006 (3) Å

  • β = 113.74 (3)°

  • V = 1798.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 3523 measured reflections

  • 3523 independent reflections

  • 1452 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.200

  • S = 1.04

  • 3523 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.25 3.079 (5) 163
C9—H9A⋯O2 0.93 2.33 2.718 (5) 104
C9—H9A⋯N2 0.93 2.42 2.754 (6) 101
C17—H17A⋯O2 0.93 2.27 2.850 (5) 120
C11—H11A⋯N4i 0.93 2.62 3.396 (6) 141
C14—H14A⋯O2ii 0.93 2.59 3.378 (5) 143
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

An enamine, a tautomer of a Schiff base, shows a high similarity to the corresponding Schiff base in chemical structure which shows diverse biological activities. Our recent work affirmed that enamine, like Schiff base, exhibited high antibacterial activity (Xiao et al., 2007, 2008). We herein report the crystal structure of the title compound, (I).

As shown in Fig. 1, the title compound is an enamine containing a functional group of amide moiety. The title compound consists of an aminoacrylamide moiety and three aromatic ring fragments. The aminoacrylamide moiety, C8, C9, C15, N1, N3 and O2, is nearly coplanar with a mean deviation of 0.023 Å, defined as plane I; C10 to C14 and N2 forms a plane with a mean deviation of 0.005 Å, defined as plane II; C16 to C20 and N4 forms a plane with a mean deviation of 0.008 Å, defined as plane III; C2 to C7 forms the fourth plane with a mean deviation of 0.005 Å, defined as plane IV. Plane II, plane III and plane IV make a dihedral angle of 4.018 (8), 15.66 (12) and 71.22 (9) ° with plane I, respectively. The bond distance C8—C9 [1.359 (5) Å] falls in the range of a typical double bond, and C9—N1 bond [1.352 (4) Å] is shorter than the standard C—N single bond (1.48 Å), but longer than a C—N double bond (1.28 Å). This clearly indicates that the p orbital of N1 is conjugated with the π molecular orbital of C8—C9 double bond. For the same reason, we speculate that the p orbital of N1 is also conjugated with pyridyl group (plane II) and the p orbital of N3 is conjugated with both pyridyl group (plane III) and carboxyl group (C15=O2). All other double bonds and single bonds in the molecule fall in normal range of bond lengths.

In the crystal of (I), the structure is stabilized by intermolecular interactions including hydrogen bond N1—H1A···N4, C11—H11A···N4 and C14—H14A···O2; details of hydrogen-bond geometry are given in Table 1.

Related literature top

For background to the antibacteriological activy of enamines, see: Xiao et al. (2007, 2008).

Experimental top

Equimolar quantities (6 mmol) of 2-(4-methoxyphenyl)-3-oxo-N-(pyridin-2-yl)propanamide (1.62 g) and 2-aminobenzenamine (0.56 g) in absolute alcohol (18 ml) were heated at 344–354 K for 2 h. The excess solvent was removed under reduced pressure. The residue was purified by a flash chromatography with EtOAc-petrolum ether to afford two fractions. The first fraction gave a Z-isomer, and the second fraction, after partial solvent evaporation, furnished colourless blocks of (I) suitable for single-crystal structure determination.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93–0.96Å, N—H = 0.86Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
(E)-2-(4-Methoxyphenyl)-N-(2-pyridyl)-3-(2-pyridylamino)acrylamide top
Crystal data top
C20H18N4O2F(000) = 728
Mr = 346.38Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.546 (2) Åθ = 9–12°
b = 12.148 (2) ŵ = 0.09 mm1
c = 14.006 (3) ÅT = 293 K
β = 113.74 (3)°Block, colorless
V = 1798.3 (6) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1452 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω/2θ scansh = 1413
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.975, Tmax = 0.992l = 017
3523 measured reflections3 standard reflections every 200 reflections
3523 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
3523 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H18N4O2V = 1798.3 (6) Å3
Mr = 346.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.546 (2) ŵ = 0.09 mm1
b = 12.148 (2) ÅT = 293 K
c = 14.006 (3) Å0.30 × 0.10 × 0.10 mm
β = 113.74 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1452 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.975, Tmax = 0.9923 standard reflections every 200 reflections
3523 measured reflections intensity decay: none
3523 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3523 reflectionsΔρmin = 0.16 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8670 (3)0.3253 (3)0.3474 (3)0.0628 (10)
H1A0.94830.32440.37250.075*
O11.3868 (3)0.5123 (3)0.3652 (3)0.1153 (14)
C11.4551 (5)0.4266 (5)0.3437 (5)0.137 (3)
H1B1.54340.44500.37180.206*
H1C1.42510.41680.26960.206*
H1D1.44320.35960.37500.206*
O20.6560 (2)0.5617 (3)0.1480 (2)0.0756 (9)
N20.6813 (3)0.2469 (3)0.3418 (3)0.0752 (11)
C21.2592 (4)0.5024 (5)0.3320 (4)0.0820 (15)
N30.8252 (3)0.6425 (3)0.1344 (2)0.0591 (9)
H3A0.90630.64710.16480.071*
C31.1876 (4)0.4216 (4)0.2676 (4)0.0764 (13)
H3B1.22540.36820.24200.092*
N40.8483 (3)0.7805 (3)0.0328 (3)0.0635 (9)
C41.0576 (4)0.4195 (3)0.2404 (3)0.0648 (11)
H4B1.00960.36450.19580.078*
C50.9974 (4)0.4961 (3)0.2771 (3)0.0568 (11)
C61.0728 (4)0.5774 (4)0.3409 (3)0.0743 (13)
H6A1.03560.63130.36650.089*
C71.2003 (4)0.5811 (4)0.3678 (4)0.0874 (15)
H7A1.24790.63730.41070.105*
C80.8599 (3)0.4900 (3)0.2477 (3)0.0545 (10)
C90.8061 (4)0.4077 (3)0.2814 (3)0.0583 (11)
H9A0.71830.40810.25660.070*
C100.8054 (4)0.2412 (3)0.3773 (3)0.0602 (11)
C110.8757 (4)0.1591 (4)0.4414 (4)0.0797 (15)
H11A0.96340.15850.46520.096*
C120.8136 (5)0.0787 (4)0.4691 (4)0.1026 (18)
H12A0.85880.02160.51220.123*
C130.6855 (5)0.0816 (4)0.4340 (4)0.0955 (17)
H13A0.64160.02680.45180.115*
C140.6240 (5)0.1666 (4)0.3725 (4)0.0884 (16)
H14A0.53650.16970.34990.106*
C150.7711 (4)0.5672 (3)0.1737 (3)0.0537 (10)
C160.7672 (4)0.7143 (3)0.0506 (3)0.0559 (10)
C170.6370 (4)0.7165 (4)0.0105 (3)0.0671 (12)
H17A0.58120.67160.00450.080*
C180.5952 (5)0.7878 (4)0.0932 (4)0.0870 (15)
H18A0.50940.79090.13620.104*
C190.6782 (5)0.8542 (4)0.1129 (4)0.0860 (16)
H19A0.65050.90180.16970.103*
C200.8027 (4)0.8489 (4)0.0471 (4)0.0811 (14)
H20A0.85880.89610.05910.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0472 (19)0.066 (2)0.072 (2)0.0045 (18)0.0203 (17)0.011 (2)
O10.056 (2)0.122 (3)0.161 (4)0.003 (2)0.036 (2)0.026 (3)
C10.066 (3)0.138 (6)0.215 (7)0.023 (4)0.064 (4)0.051 (5)
O20.0566 (18)0.090 (2)0.082 (2)0.0110 (16)0.0303 (16)0.0173 (18)
N20.055 (2)0.079 (3)0.086 (3)0.011 (2)0.023 (2)0.018 (2)
C20.046 (3)0.091 (4)0.100 (4)0.005 (3)0.020 (3)0.032 (3)
N30.0523 (19)0.056 (2)0.059 (2)0.0026 (17)0.0119 (17)0.0122 (18)
C30.070 (3)0.073 (3)0.092 (4)0.011 (3)0.038 (3)0.015 (3)
N40.062 (2)0.070 (2)0.056 (2)0.000 (2)0.0210 (18)0.009 (2)
C40.065 (3)0.056 (3)0.067 (3)0.000 (2)0.020 (2)0.002 (2)
C50.059 (2)0.051 (3)0.054 (3)0.005 (2)0.015 (2)0.005 (2)
C60.064 (3)0.077 (3)0.075 (3)0.009 (3)0.021 (2)0.004 (3)
C70.066 (3)0.083 (4)0.094 (4)0.007 (3)0.013 (3)0.008 (3)
C80.052 (2)0.050 (3)0.057 (3)0.006 (2)0.0169 (19)0.003 (2)
C90.056 (2)0.050 (2)0.059 (3)0.007 (2)0.012 (2)0.000 (2)
C100.057 (3)0.063 (3)0.057 (3)0.015 (2)0.019 (2)0.004 (2)
C110.066 (3)0.080 (3)0.084 (3)0.001 (3)0.021 (3)0.034 (3)
C120.093 (4)0.098 (4)0.101 (4)0.008 (3)0.023 (3)0.040 (4)
C130.095 (4)0.081 (4)0.095 (4)0.022 (3)0.023 (3)0.031 (3)
C140.067 (3)0.096 (4)0.098 (4)0.021 (3)0.030 (3)0.014 (3)
C150.055 (2)0.059 (3)0.047 (2)0.004 (2)0.021 (2)0.003 (2)
C160.057 (2)0.056 (3)0.054 (3)0.010 (2)0.022 (2)0.003 (2)
C170.060 (3)0.073 (3)0.062 (3)0.003 (2)0.017 (2)0.009 (3)
C180.066 (3)0.106 (4)0.068 (3)0.016 (3)0.005 (3)0.017 (3)
C190.074 (3)0.103 (4)0.077 (4)0.017 (3)0.025 (3)0.039 (3)
C200.075 (3)0.097 (4)0.071 (3)0.006 (3)0.029 (3)0.023 (3)
Geometric parameters (Å, º) top
N1—C91.352 (4)C5—C81.472 (5)
N1—C101.402 (5)C6—C71.366 (6)
N1—H1A0.8600C6—H6A0.9300
O1—C21.360 (5)C7—H7A0.9300
O1—C11.409 (6)C8—C91.359 (5)
C1—H1B0.9600C8—C151.466 (5)
C1—H1C0.9600C9—H9A0.9300
C1—H1D0.9600C10—C111.368 (5)
O2—C151.231 (4)C11—C121.358 (6)
N2—C101.315 (5)C11—H11A0.9300
N2—C141.343 (5)C12—C131.358 (6)
C2—C31.365 (6)C12—H12A0.9300
C2—C71.379 (6)C13—C141.348 (6)
N3—C151.344 (5)C13—H13A0.9300
N3—C161.398 (5)C14—H14A0.9300
N3—H3A0.8600C16—C171.400 (5)
C3—C41.393 (5)C17—C181.368 (6)
C3—H3B0.9300C17—H17A0.9300
N4—C201.321 (5)C18—C191.364 (6)
N4—C161.332 (5)C18—H18A0.9300
C4—C51.379 (5)C19—C201.361 (6)
C4—H4B0.9300C19—H19A0.9300
C5—C61.380 (5)C20—H20A0.9300
C9—N1—C10123.8 (3)N1—C9—C8126.7 (4)
C9—N1—H1A118.1N1—C9—H9A116.7
C10—N1—H1A118.1C8—C9—H9A116.7
C2—O1—C1119.0 (5)N2—C10—C11123.7 (4)
O1—C1—H1B109.5N2—C10—N1117.1 (4)
O1—C1—H1C109.5C11—C10—N1119.2 (4)
H1B—C1—H1C109.5C12—C11—C10118.0 (4)
O1—C1—H1D109.5C12—C11—H11A121.0
H1B—C1—H1D109.5C10—C11—H11A121.0
H1C—C1—H1D109.5C11—C12—C13120.1 (5)
C10—N2—C14116.3 (4)C11—C12—H12A120.0
O1—C2—C3125.0 (5)C13—C12—H12A120.0
O1—C2—C7116.1 (5)C14—C13—C12117.9 (5)
C3—C2—C7118.8 (4)C14—C13—H13A121.0
C15—N3—C16128.6 (4)C12—C13—H13A121.0
C15—N3—H3A115.7N2—C14—C13124.0 (5)
C16—N3—H3A115.7N2—C14—H14A118.0
C2—C3—C4119.6 (5)C13—C14—H14A118.0
C2—C3—H3B120.2O2—C15—N3122.9 (4)
C4—C3—H3B120.2O2—C15—C8122.5 (4)
C20—N4—C16117.9 (4)N3—C15—C8114.6 (4)
C5—C4—C3122.4 (4)N4—C16—N3113.5 (3)
C5—C4—H4B118.8N4—C16—C17122.5 (4)
C3—C4—H4B118.8N3—C16—C17124.0 (4)
C4—C5—C6116.3 (4)C18—C17—C16117.1 (4)
C4—C5—C8120.7 (4)C18—C17—H17A121.4
C6—C5—C8123.0 (4)C16—C17—H17A121.4
C7—C6—C5122.0 (4)C19—C18—C17120.6 (4)
C7—C6—H6A119.0C19—C18—H18A119.7
C5—C6—H6A119.0C17—C18—H18A119.7
C6—C7—C2120.8 (5)C20—C19—C18118.2 (5)
C6—C7—H7A119.6C20—C19—H19A120.9
C2—C7—H7A119.6C18—C19—H19A120.9
C9—C8—C15115.4 (4)N4—C20—C19123.7 (5)
C9—C8—C5122.2 (4)N4—C20—H20A118.1
C15—C8—C5122.3 (4)C19—C20—H20A118.1
C1—O1—C2—C38.5 (8)N2—C10—C11—C120.5 (7)
C1—O1—C2—C7171.2 (5)N1—C10—C11—C12180.0 (4)
O1—C2—C3—C4179.1 (4)C10—C11—C12—C130.4 (8)
C7—C2—C3—C40.6 (7)C11—C12—C13—C140.6 (9)
C2—C3—C4—C50.7 (7)C10—N2—C14—C131.6 (7)
C3—C4—C5—C61.5 (6)C12—C13—C14—N21.7 (9)
C3—C4—C5—C8179.1 (4)C16—N3—C15—O210.3 (6)
C4—C5—C6—C71.0 (6)C16—N3—C15—C8168.0 (4)
C8—C5—C6—C7179.6 (4)C9—C8—C15—O23.7 (6)
C5—C6—C7—C20.3 (7)C5—C8—C15—O2179.2 (4)
O1—C2—C7—C6178.6 (4)C9—C8—C15—N3174.7 (3)
C3—C2—C7—C61.2 (7)C5—C8—C15—N30.8 (5)
C4—C5—C8—C968.4 (5)C20—N4—C16—N3177.8 (4)
C6—C5—C8—C9112.2 (5)C20—N4—C16—C171.4 (6)
C4—C5—C8—C15106.8 (4)C15—N3—C16—N4178.7 (4)
C6—C5—C8—C1572.6 (5)C15—N3—C16—C172.1 (6)
C10—N1—C9—C8178.4 (4)N4—C16—C17—C182.4 (6)
C15—C8—C9—N1178.4 (4)N3—C16—C17—C18176.8 (4)
C5—C8—C9—N12.9 (6)C16—C17—C18—C191.0 (7)
C14—N2—C10—C110.5 (7)C17—C18—C19—C201.2 (8)
C14—N2—C10—N1179.0 (4)C16—N4—C20—C191.0 (7)
C9—N1—C10—N23.0 (6)C18—C19—C20—N42.3 (8)
C9—N1—C10—C11177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.253.079 (5)163
C9—H9A···O20.932.332.718 (5)104
C9—H9A···N20.932.422.754 (6)101
C17—H17A···O20.932.272.850 (5)120
C11—H11A···N4i0.932.623.396 (6)141
C14—H14A···O2ii0.932.593.378 (5)143
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N4O2
Mr346.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.546 (2), 12.148 (2), 14.006 (3)
β (°) 113.74 (3)
V3)1798.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3523, 3523, 1452
Rint0.000
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.200, 1.04
No. of reflections3523
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.253.079 (5)163
C9—H9A···O20.932.332.718 (5)104
C9—H9A···N20.932.422.754 (6)101
C17—H17A···O20.932.272.850 (5)120
C11—H11A···N4i0.932.623.396 (6)141
C14—H14A···O2ii0.932.593.378 (5)143
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The work was financed by a grant (No. JSDXKYZZ0801) for talent introduction from Jishou University, China.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212–4219.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds