organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Chloro-2-hy­droxy­benzyl­­idene)-3,5-di­hydroxy­benzohydrazide mono­hydrate

aCollege of Pharmacy, Dalian Medical University, Liaoning 116044, People's Republic of China, and bLiao Ning Benxi Third Pharmaceuticals Co Ltd, Liaoning 117004, People's Republic of China
*Correspondence e-mail: dldiaoyp@126.com, kexinliu@dlmedu.edu.cn

(Received 1 March 2009; accepted 3 March 2009; online 11 March 2009)

In the title compound, C14H11ClN2O4·H2O, the dihedral angle between the two benzene rings is 8.5 (2)° and an intra­molecular O—H⋯N hydrogen bond is observed in the Schiff base mol­ecule. In the crystal structure, the water mol­ecule accepts an N—H⋯O hydrogen bond and makes O—H⋯O hydrogen bonds to two further Schiff base mol­ecules. Further inter­molecular O—H⋯O hydrogen bonds lead to the formation of layers parallel to the bc plane.

Related literature

For background to the synthesis of Schiff base compounds, see: Herrick et al. (2008[Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619-624.]); Suresh et al. (2007[Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332-1333.]). For the biological activity of Schiff base compounds, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]). For a related structure, see: Jiang et al. (2008[Jiang, Q.-H., Xu, Y.-H., Jian, L.-Y. & Zhao, L.-M. (2008). Acta Cryst. E64, o338.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O4·H2O

  • Mr = 324.71

  • Monoclinic, P 21 /c

  • a = 14.106 (3) Å

  • b = 8.0090 (16) Å

  • c = 13.127 (3) Å

  • β = 108.26 (3)°

  • V = 1408.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.948

  • 6975 measured reflections

  • 2496 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.04

  • 2496 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.98 2.685 (4) 144
O1—H1⋯O5 0.82 2.47 2.952 (4) 119
O3—H3⋯O1i 0.82 2.10 2.916 (4) 173
O4—H4⋯O2ii 0.82 1.99 2.762 (4) 158
N2—H2⋯O5ii 0.86 2.09 2.931 (4) 164
O5—H5A⋯O2 0.85 1.91 2.760 (4) 174
O5—H5B⋯O4iii 0.85 2.11 2.902 (4) 156
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007). These compounds show interesting biological activities, especially antimicrobial activities (Bhandari et al., 2008; Sinha et al., 2008). In this paper, the crystal structure of the title compound, (I), containing a new Schiff base compound derived from the condensation reaction of 5-chlorosalicylaldehyde with 3,5-dihydroxybenzoic acid hydrazide is reported.

The Schiff base molecule of (I) displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound 3,5-dihydroxy-N'-(2-hydroxybenzylidene) benzohydrazide monohydrate (Jiang et al., 2008). The Schiff base molecule is nearly planar, the dihedral angle between the two benzene rings is 8.5 (2)°. An intramolecular O—H···N hydrogen bond is observed. In the crystal structure the water molecule links three symmetry related molecules through O—H···O and O—H···N hydrogen bonds (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the bc plane are formed (Fig. 2).

Related literature top

For background to the synthesis of Schiff base compounds, see: Herrick et al. (2008); Suresh et al. ( 2007). For the biological activity of Schiff base compounds, see: Bhandari et al. (2008); Sinha et al. (2008). For a related structure, see: Jiang et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

5-Chlorosalicylaldehyde (0.1 mmol, 15.6 mg) and 3,5-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear solution. Light yellow blocks of (I) were formed by gradual evaporation of the solvent over a period of nine days at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing of (I). The donor···acceptor contacts for the intermolecular hydrogen bonds are shown as dashed lines. H atoms are omitted for clarity.
(E)-N'-(5-Chloro-2-hydroxybenzylidene)-3,5-dihydroxybenzohydrazide monohydrate top
Crystal data top
C14H11ClN2O4·H2OF(000) = 672
Mr = 324.71Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 575 reflections
a = 14.106 (3) Åθ = 3.1–20.4°
b = 8.0090 (16) ŵ = 0.30 mm1
c = 13.127 (3) ÅT = 298 K
β = 108.26 (3)°Block, light yellow
V = 1408.3 (6) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2496 independent reflections
Radiation source: fine-focus sealed tube1437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1613
Tmin = 0.943, Tmax = 0.948k = 97
6975 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.0153P]
where P = (Fo2 + 2Fc2)/3
2496 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H11ClN2O4·H2OV = 1408.3 (6) Å3
Mr = 324.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.106 (3) ŵ = 0.30 mm1
b = 8.0090 (16) ÅT = 298 K
c = 13.127 (3) Å0.20 × 0.20 × 0.18 mm
β = 108.26 (3)°
Data collection top
Siemens SMART CCD
diffractometer
2496 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1437 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.948Rint = 0.084
6975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
2496 reflectionsΔρmin = 0.30 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45135 (9)1.22680 (17)0.91318 (10)0.0558 (4)
N10.8522 (2)0.8948 (4)0.8966 (3)0.0295 (8)
N20.9299 (2)0.8091 (4)0.9689 (2)0.0291 (8)
H20.92460.77581.02910.035*
O10.7409 (2)1.0093 (4)0.7040 (2)0.0439 (8)
H10.78530.95230.74420.066*
O21.02312 (19)0.8242 (4)0.8572 (2)0.0380 (8)
O31.3085 (2)0.4281 (4)1.0233 (2)0.0491 (9)
H31.29830.44560.95920.074*
O41.1915 (2)0.5757 (4)1.3090 (2)0.0400 (8)
H41.14810.63081.32290.060*
O50.8783 (2)0.7575 (4)0.6646 (2)0.0434 (8)
H5A0.91960.77610.72630.065*
H5B0.84350.67650.67500.065*
C10.6935 (3)1.0274 (5)0.8653 (3)0.0274 (9)
C20.6769 (3)1.0606 (5)0.7568 (3)0.0309 (10)
C30.5923 (3)1.1451 (6)0.6983 (3)0.0426 (12)
H3A0.58191.16660.62600.051*
C40.5231 (3)1.1979 (6)0.7450 (4)0.0437 (12)
H4A0.46621.25500.70500.052*
C50.5392 (3)1.1652 (6)0.8520 (3)0.0364 (11)
C60.6229 (3)1.0829 (5)0.9126 (3)0.0354 (11)
H60.63301.06380.98510.042*
C70.7800 (3)0.9389 (5)0.9314 (3)0.0298 (10)
H70.78380.91271.00160.036*
C81.0139 (3)0.7786 (5)0.9438 (3)0.0254 (9)
C91.0938 (3)0.6850 (5)1.0242 (3)0.0252 (9)
C101.1629 (3)0.6018 (5)0.9869 (3)0.0291 (10)
H101.15740.60650.91450.035*
C111.2398 (3)0.5122 (5)1.0569 (3)0.0304 (10)
C121.2492 (3)0.5052 (5)1.1645 (3)0.0334 (10)
H121.30110.44551.21170.040*
C131.1801 (3)0.5882 (5)1.2015 (3)0.0285 (10)
C141.1025 (3)0.6788 (5)1.1327 (3)0.0297 (10)
H141.05700.73451.15870.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0391 (7)0.0748 (10)0.0587 (8)0.0186 (7)0.0226 (6)0.0009 (7)
N10.0256 (18)0.032 (2)0.0297 (19)0.0018 (16)0.0075 (15)0.0043 (16)
N20.0262 (18)0.039 (2)0.0238 (17)0.0072 (16)0.0095 (15)0.0089 (16)
O10.0415 (18)0.061 (2)0.0333 (17)0.0121 (17)0.0175 (15)0.0069 (16)
O20.0337 (17)0.057 (2)0.0252 (15)0.0057 (15)0.0122 (13)0.0097 (15)
O30.0467 (19)0.069 (2)0.0379 (18)0.0283 (18)0.0223 (16)0.0028 (17)
O40.0422 (19)0.053 (2)0.0282 (16)0.0143 (16)0.0160 (14)0.0059 (14)
O50.0438 (18)0.058 (2)0.0298 (16)0.0058 (17)0.0131 (14)0.0021 (15)
C10.022 (2)0.031 (3)0.026 (2)0.0015 (19)0.0036 (17)0.0020 (19)
C20.029 (2)0.037 (3)0.029 (2)0.000 (2)0.0129 (19)0.000 (2)
C30.041 (3)0.057 (3)0.027 (2)0.010 (2)0.006 (2)0.009 (2)
C40.034 (3)0.050 (3)0.042 (3)0.012 (2)0.004 (2)0.009 (2)
C50.026 (2)0.044 (3)0.041 (3)0.008 (2)0.014 (2)0.002 (2)
C60.035 (2)0.043 (3)0.031 (2)0.000 (2)0.015 (2)0.001 (2)
C70.028 (2)0.036 (3)0.028 (2)0.003 (2)0.0116 (18)0.0002 (19)
C80.025 (2)0.028 (2)0.025 (2)0.0002 (19)0.0087 (17)0.0024 (18)
C90.024 (2)0.029 (2)0.025 (2)0.0001 (18)0.0104 (17)0.0021 (18)
C100.031 (2)0.034 (3)0.025 (2)0.002 (2)0.0119 (18)0.0024 (19)
C110.029 (2)0.035 (3)0.028 (2)0.005 (2)0.0111 (19)0.002 (2)
C120.032 (2)0.039 (3)0.029 (2)0.008 (2)0.0097 (19)0.003 (2)
C130.028 (2)0.032 (3)0.026 (2)0.001 (2)0.0088 (18)0.0033 (19)
C140.027 (2)0.037 (3)0.028 (2)0.003 (2)0.0145 (19)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C51.746 (4)C3—C41.372 (6)
N1—C71.290 (4)C3—H3A0.9300
N1—N21.386 (4)C4—C51.376 (6)
N2—C81.348 (4)C4—H4A0.9300
N2—H20.8600C5—C61.368 (6)
O1—C21.364 (4)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C81.238 (4)C8—C91.484 (5)
O3—C111.362 (4)C9—C101.391 (5)
O3—H30.8200C9—C141.392 (5)
O4—C131.373 (4)C10—C111.382 (5)
O4—H40.8200C10—H100.9300
O5—H5A0.8500C11—C121.378 (5)
O5—H5B0.8500C12—C131.387 (5)
C1—C21.395 (5)C12—H120.9300
C1—C61.401 (5)C13—C141.386 (5)
C1—C71.442 (5)C14—H140.9300
C2—C31.377 (6)
C7—N1—N2115.8 (3)C1—C6—H6120.0
C8—N2—N1119.3 (3)N1—C7—C1122.3 (4)
C8—N2—H2120.4N1—C7—H7118.8
N1—N2—H2120.4C1—C7—H7118.8
C2—O1—H1109.5O2—C8—N2121.6 (3)
C11—O3—H3109.5O2—C8—C9121.8 (3)
C13—O4—H4109.5N2—C8—C9116.6 (3)
H5A—O5—H5B103.8C10—C9—C14119.7 (4)
C2—C1—C6118.5 (4)C10—C9—C8116.8 (3)
C2—C1—C7123.3 (4)C14—C9—C8123.4 (3)
C6—C1—C7118.3 (4)C11—C10—C9120.4 (4)
O1—C2—C3117.5 (4)C11—C10—H10119.8
O1—C2—C1122.4 (4)C9—C10—H10119.8
C3—C2—C1120.1 (4)O3—C11—C12117.6 (4)
C4—C3—C2121.1 (4)O3—C11—C10122.1 (3)
C4—C3—H3A119.5C12—C11—C10120.3 (4)
C2—C3—H3A119.5C11—C12—C13119.2 (4)
C3—C4—C5119.0 (4)C11—C12—H12120.4
C3—C4—H4A120.5C13—C12—H12120.4
C5—C4—H4A120.5O4—C13—C14121.5 (3)
C6—C5—C4121.4 (4)O4—C13—C12117.2 (4)
C6—C5—Cl1118.5 (3)C14—C13—C12121.4 (4)
C4—C5—Cl1120.1 (3)C13—C14—C9119.0 (4)
C5—C6—C1119.9 (4)C13—C14—H14120.5
C5—C6—H6120.0C9—C14—H14120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.685 (4)144
O1—H1···O50.822.472.952 (4)119
O3—H3···O1i0.822.102.916 (4)173
O4—H4···O2ii0.821.992.762 (4)158
N2—H2···O5ii0.862.092.931 (4)164
O5—H5A···O20.851.912.760 (4)174
O5—H5B···O4iii0.852.112.902 (4)156
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O4·H2O
Mr324.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.106 (3), 8.0090 (16), 13.127 (3)
β (°) 108.26 (3)
V3)1408.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.943, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6975, 2496, 1437
Rint0.084
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.04
No. of reflections2496
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.685 (4)144
O1—H1···O50.822.472.952 (4)119
O3—H3···O1i0.822.102.916 (4)173
O4—H4···O2ii0.821.992.762 (4)158
N2—H2···O5ii0.862.092.931 (4)164
O5—H5A···O20.851.912.760 (4)174
O5—H5B···O4iii0.852.112.902 (4)156
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by a Project of the Dalian Science and Technology Bureau (grant No. 2008E11SF168).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem. 693, 619–624.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, Q.-H., Xu, Y.-H., Jian, L.-Y. & Zhao, L.-M. (2008). Acta Cryst. E64, o338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett. 36, 1332–1333.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds