organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitro­phenyl pyrimidin-2-yl ether

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 March 2009; accepted 3 March 2009; online 6 March 2009)

In the title compound, C10H7N3O3, the dihedral angle between the two aromatic rings is 87.5 (1) Å; their ipso-C atoms subtend an angle of 117.4 (1)° at the ether O atom.

Related literature

For the structure of phenyl pyrimidin-2-yl ether, see: Shah Bakhtiar et al. (2009[Shah Bakhtiar, N., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o114.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7N3O3

  • Mr = 217.19

  • Orthorhombic, P b c n

  • a = 18.1360 (3) Å

  • b = 7.3355 (1) Å

  • c = 14.5986 (3) Å

  • V = 1942.15 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 118 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: none

  • 12785 measured reflections

  • 2242 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.02

  • 2242 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of phenyl pyrimidin-2-yl ether, see: Shah Bakhtiar et al. (2009).

Experimental top

3-Nitrophenol (2.78 g, 20 mmol) was mixed with sodium hydroxide (0.08 g, 20 mmol) in several drops of water. The water was then evaporated. The paste was heated with 2-chloropyrimidine (2.30 g, 20 mmol) at 423–433 K for 6 h. The product was dissolved in water and the solution extracted with chloroform. The chloroform phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped very pale brown blocks of (I) 40% yield along with some unidentified brown material.

Refinement top

The H-atoms were placed in calculated positions (C—H 0.95 Å) and refined as riding with U(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
3-Nitrophenyl pyrimidin-2-yl ether top
Crystal data top
C10H7N3O3F(000) = 896
Mr = 217.19Dx = 1.486 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4130 reflections
a = 18.1360 (3) Åθ = 2.8–28.2°
b = 7.3355 (1) ŵ = 0.11 mm1
c = 14.5986 (3) ÅT = 118 K
V = 1942.15 (6) Å3Block, faint brown
Z = 80.40 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1890 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 2323
12785 measured reflectionsk = 99
2242 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.7122P]
where P = (Fo2 + 2Fc2)/3
2242 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H7N3O3V = 1942.15 (6) Å3
Mr = 217.19Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 18.1360 (3) ŵ = 0.11 mm1
b = 7.3355 (1) ÅT = 118 K
c = 14.5986 (3) Å0.40 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1890 reflections with I > 2σ(I)
12785 measured reflectionsRint = 0.029
2242 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2242 reflectionsΔρmin = 0.29 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46423 (5)0.52259 (12)0.36904 (6)0.0222 (2)
O20.34305 (5)0.73218 (14)0.08352 (6)0.0291 (2)
O30.22956 (6)0.7828 (2)0.12079 (7)0.0467 (3)
N10.42087 (6)0.22878 (14)0.35641 (8)0.0228 (2)
N20.54579 (6)0.29874 (15)0.39501 (8)0.0234 (3)
N30.29278 (6)0.73707 (16)0.13953 (7)0.0238 (3)
C10.43734 (8)0.05109 (18)0.36142 (10)0.0280 (3)
H10.39940.03550.35020.034*
C20.50707 (8)0.01134 (18)0.38219 (10)0.0284 (3)
H20.51820.13780.38500.034*
C30.56002 (7)0.12058 (19)0.39866 (10)0.0267 (3)
H30.60870.08240.41320.032*
C40.47660 (7)0.33980 (16)0.37377 (8)0.0180 (3)
C50.39288 (6)0.58007 (15)0.34572 (8)0.0179 (3)
C60.34150 (7)0.60883 (16)0.41443 (8)0.0205 (3)
H60.35320.58200.47640.025*
C70.27269 (7)0.67742 (17)0.39132 (9)0.0218 (3)
H70.23690.69650.43780.026*
C80.25564 (7)0.71852 (17)0.30078 (8)0.0202 (3)
H80.20860.76550.28450.024*
C90.30919 (7)0.68896 (16)0.23527 (8)0.0181 (3)
C100.37846 (6)0.61910 (15)0.25487 (8)0.0180 (2)
H100.41410.59910.20830.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150 (4)0.0171 (4)0.0344 (5)0.0013 (3)0.0053 (4)0.0031 (4)
O20.0272 (5)0.0406 (6)0.0196 (5)0.0023 (4)0.0039 (4)0.0012 (4)
O30.0262 (6)0.0873 (10)0.0266 (6)0.0152 (6)0.0062 (4)0.0083 (6)
N10.0197 (5)0.0192 (5)0.0295 (6)0.0015 (4)0.0035 (4)0.0006 (4)
N20.0175 (5)0.0233 (6)0.0294 (6)0.0008 (4)0.0015 (4)0.0036 (4)
N30.0215 (5)0.0300 (6)0.0199 (5)0.0000 (4)0.0019 (4)0.0000 (4)
C10.0278 (7)0.0187 (6)0.0375 (8)0.0030 (5)0.0046 (6)0.0024 (5)
C20.0300 (7)0.0199 (6)0.0352 (7)0.0038 (5)0.0011 (6)0.0005 (5)
C30.0209 (6)0.0265 (7)0.0326 (7)0.0050 (5)0.0013 (5)0.0033 (5)
C40.0183 (6)0.0186 (6)0.0173 (6)0.0010 (4)0.0003 (4)0.0019 (4)
C50.0150 (5)0.0133 (5)0.0255 (6)0.0016 (4)0.0025 (5)0.0005 (4)
C60.0237 (6)0.0193 (6)0.0186 (6)0.0031 (5)0.0010 (5)0.0015 (4)
C70.0215 (6)0.0224 (6)0.0214 (6)0.0007 (5)0.0046 (5)0.0013 (5)
C80.0154 (5)0.0213 (6)0.0240 (6)0.0022 (4)0.0007 (5)0.0010 (5)
C90.0185 (6)0.0182 (5)0.0175 (6)0.0013 (4)0.0012 (4)0.0005 (4)
C100.0152 (5)0.0173 (5)0.0214 (6)0.0010 (4)0.0023 (4)0.0021 (4)
Geometric parameters (Å, º) top
O1—C41.3613 (15)C2—H20.9500
O1—C51.4029 (14)C3—H30.9500
O2—N31.2252 (14)C5—C101.3819 (17)
O3—N31.2256 (15)C5—C61.3852 (17)
N1—C41.3225 (16)C6—C71.3872 (18)
N1—C11.3392 (17)C6—H60.9500
N2—C41.3273 (16)C7—C81.3907 (18)
N2—C31.3332 (17)C7—H70.9500
N3—C91.4720 (16)C8—C91.3801 (17)
C1—C21.379 (2)C8—H80.9500
C1—H10.9500C9—C101.3867 (17)
C2—C31.384 (2)C10—H100.9500
C4—O1—C5117.41 (9)C10—C5—C6122.42 (11)
C4—N1—C1114.73 (11)C10—C5—O1118.01 (10)
C4—N2—C3114.50 (11)C6—C5—O1119.37 (11)
O2—N3—O3123.73 (11)C5—C6—C7118.97 (11)
O2—N3—C9118.44 (11)C5—C6—H6120.5
O3—N3—C9117.82 (11)C7—C6—H6120.5
N1—C1—C2122.68 (13)C6—C7—C8120.65 (11)
N1—C1—H1118.7C6—C7—H7119.7
C2—C1—H1118.7C8—C7—H7119.7
C1—C2—C3116.25 (12)C9—C8—C7117.91 (11)
C1—C2—H2121.9C9—C8—H8121.0
C3—C2—H2121.9C7—C8—H8121.0
N2—C3—C2122.96 (12)C8—C9—C10123.55 (11)
N2—C3—H3118.5C8—C9—N3118.55 (11)
C2—C3—H3118.5C10—C9—N3117.88 (11)
N1—C4—N2128.87 (12)C5—C10—C9116.49 (11)
N1—C4—O1118.10 (11)C5—C10—H10121.8
N2—C4—O1113.03 (10)C9—C10—H10121.8
C4—N1—C1—C20.6 (2)O1—C5—C6—C7175.68 (10)
N1—C1—C2—C30.5 (2)C5—C6—C7—C80.65 (18)
C4—N2—C3—C20.3 (2)C6—C7—C8—C90.02 (18)
C1—C2—C3—N20.0 (2)C7—C8—C9—C100.66 (18)
C1—N1—C4—N20.2 (2)C7—C8—C9—N3178.15 (11)
C1—N1—C4—O1179.32 (11)O2—N3—C9—C8171.09 (11)
C3—N2—C4—N10.3 (2)O3—N3—C9—C87.71 (18)
C3—N2—C4—O1178.92 (11)O2—N3—C9—C107.78 (17)
C5—O1—C4—N10.16 (16)O3—N3—C9—C10173.41 (13)
C5—O1—C4—N2179.13 (10)C6—C5—C10—C90.15 (17)
C4—O1—C5—C1094.96 (13)O1—C5—C10—C9175.15 (10)
C4—O1—C5—C689.88 (13)C8—C9—C10—C50.57 (18)
C10—C5—C6—C70.74 (18)N3—C9—C10—C5178.25 (10)

Experimental details

Crystal data
Chemical formulaC10H7N3O3
Mr217.19
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)118
a, b, c (Å)18.1360 (3), 7.3355 (1), 14.5986 (3)
V3)1942.15 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12785, 2242, 1890
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.02
No. of reflections2242
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya for supporting this study (FS358/2008 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShah Bakhtiar, N., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds