organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzene­sulfonamido-2-chloro­benzoic acid

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 March 2009; accepted 17 March 2009; online 25 March 2009)

In the title compound, C13H10ClNO4S, the dihedral angle between the aromatic ring planes is 87.07 (6)° and an intra­molecular C—H⋯O inter­action occurs. In the crystal, inversion dimers linked by two O—H⋯O hydrogen bonds arise from the carboxyl groups. N—H⋯O hydrogen bonds link the dimers into chains and short C—Cl⋯π and S—O⋯π contacts are also seen.

Related literature

For related structures: see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]); Arshad, Khan et al. (2009[Arshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.]); Arshad, Tahir et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o281.]). For chemical background, see: Bouchain et al. (2003[Bouchain, G., Leit, S., Frechette, S., Khalil, E. A., Lavoie, R., Moradei, O., Woo, S. H., Fournel, M., Yan, P. T., Kalita, Y. A., Trachy-Bourget, M. C., Beaulieu, C., Li, Z., Robert, M. F., MacLeod, A. R., Besterman, J. M. & Delorme, D. (2003). J. Med. Chem. 46, 820-830.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO4S

  • Mr = 311.73

  • Monoclinic, P 21 /c

  • a = 11.7139 (4) Å

  • b = 5.3957 (2) Å

  • c = 20.7565 (8) Å

  • β = 91.483 (2)°

  • V = 1311.47 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.940

  • 14693 measured reflections

  • 3269 independent reflections

  • 2513 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.02

  • 3269 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.82 1.83 2.648 (2) 178
N1—H1N⋯O3ii 0.86 2.16 2.898 (2) 144
C4—H4⋯O4 0.93 2.41 3.052 (3) 126
C6—Cl1⋯CgBiii 1.73 (1) 3.81 (1) 4.605 (2) 106 (1)
S1—O4⋯CgAiv 1.43 (1) 3.14 (1) 4.2532 (9) 134 (1)
Symmetry codes: (i) -x, -y+3, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z. CgA and CgB are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamide derivatives have been used as antibacterial agents. Recently these type of derivatives (Bouchain et al., 2003) have been reported the as antitumor agents. As part of our onging studies of sulfonamide (Arshad, Khan et al., 2009) and thiazine related heterocycles (Arshad et al., 2008), we now report the crystal structure of the title compound, (I), (Fig 1).

The crystal structure of 2-chloro-5-(2-iodobenzenesulfonamido)benzoic acid (Arshad, Tahir et al., 2009), (II), has been reported recently. The title compound differs from (II) as there is no iodoine atom on the phenylsulfonyl moiety. Therefore, (II) is the best structure with which the bond distances etc can be compared. The title compound consists of dimers due to the carboxylic moiety, forming R22(8) ring motifs (Bernstein et al., 1995), (Fig 2). These dimers link each other through the N—H···O type of intermolecular H-bonding where the accepter is the SO2 moiety (Table 1). The benzene rings A (C1—C6) and B (C8—C13) are oriented at a dihedral angle of 87.07 (6)°. The molecules are stabilized due to intra as well as intermolecular H-bonding and the π-interactions (Table 1).

Related literature top

For related structures: see: Arshad et al. (2008); Arshad, Khan et al. (2009); Arshad, Tahir et al. (2009). For chemical background, see: Bouchain et al. (2003). For graph-set theory, see: Bernstein et al. (1995). CgA and CgB are the centroids of the C1–C6 and C8–C13 benzene rings, respectively

Experimental top

5-Amino-2-chlorobenzoic acid (1 g, 5.27 mmol) was dissolved in distilled water (10 ml). The pH of the solution was maintained at 8–9 using 1M, Na2CO3 solution. Benzene sulfonyl chloride (0.932 g, 5.27 mmol) was then added to the solution, which was stirred at room temperature until the consumption of all the benzene sulfonyl chloride. During the reaction the pH was again strictly maintained at 8–9 using 1M, Na2CO3. On completion of the reaction the pH was adjusted 1–2, using 1 N HCl under vigorous stirring. The precipitates obtained were filtered off, washed with distilled water and dried. Colourless prisms of (I) were obtained by recrystallization from methanol.

Refinement top

The H-atoms were positioned geometrically, with O-H = 0.82 Å for hydroxy, N—H = 0.86 Å for amine and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N, O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines show the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing diagram of (I) which shows that the molecules are dimerized and linked to each other.
5-Benzenesulfonamido-2-chlorobenzoic acid top
Crystal data top
C13H10ClNO4SF(000) = 640
Mr = 311.73Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2234 reflections
a = 11.7139 (4) Åθ = 2.1–27.0°
b = 5.3957 (2) ŵ = 0.46 mm1
c = 20.7565 (8) ÅT = 296 K
β = 91.483 (2)°Prismatic, colorless
V = 1311.47 (8) Å30.24 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3269 independent reflections
Radiation source: fine-focus sealed tube2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.939, Tmax = 0.940l = 2727
14693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.048P)2 + 0.7097P]
where P = (Fo2 + 2Fc2)/3
3269 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H10ClNO4SV = 1311.47 (8) Å3
Mr = 311.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7139 (4) ŵ = 0.46 mm1
b = 5.3957 (2) ÅT = 296 K
c = 20.7565 (8) Å0.24 × 0.18 × 0.15 mm
β = 91.483 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2513 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.940Rint = 0.029
14693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
3269 reflectionsΔρmin = 0.36 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34738 (5)1.16021 (13)0.01036 (3)0.0671 (2)
S10.18337 (4)0.37106 (8)0.24025 (2)0.0317 (1)
O10.00951 (12)1.2492 (3)0.05816 (8)0.0530 (5)
O20.12244 (13)1.3665 (3)0.00925 (8)0.0557 (5)
O30.08966 (12)0.2790 (3)0.27620 (7)0.0460 (5)
O40.25750 (12)0.2023 (3)0.20902 (7)0.0420 (4)
N10.12278 (13)0.5510 (3)0.18667 (8)0.0370 (5)
C10.16292 (15)1.0292 (3)0.06222 (9)0.0320 (5)
C20.11598 (15)0.8798 (3)0.10932 (9)0.0311 (5)
C30.17784 (15)0.6911 (3)0.13923 (9)0.0313 (5)
C40.28911 (17)0.6482 (4)0.12081 (10)0.0420 (6)
C50.33651 (18)0.7953 (4)0.07447 (11)0.0465 (7)
C60.27543 (17)0.9845 (4)0.04525 (10)0.0385 (6)
C70.09147 (16)1.2312 (4)0.03343 (9)0.0344 (6)
C80.26803 (15)0.5589 (3)0.29150 (9)0.0322 (5)
C90.21566 (19)0.7353 (4)0.32856 (11)0.0484 (7)
C100.2813 (2)0.8817 (5)0.36915 (13)0.0645 (9)
C110.3978 (2)0.8482 (5)0.37292 (13)0.0655 (10)
C120.4499 (2)0.6723 (5)0.33606 (12)0.0558 (8)
C130.38461 (17)0.5253 (4)0.29468 (10)0.0432 (7)
H1N0.049570.561880.187300.0444*
H1O0.042831.369940.042790.0636*
H20.040960.907300.121100.0374*
H40.331460.520450.139700.0503*
H50.411380.766570.062610.0558*
H90.136800.755160.326150.0580*
H100.247111.002980.393970.0773*
H110.441820.946050.400840.0786*
H120.528670.651900.338840.0670*
H130.418980.405650.269410.0519*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0512 (3)0.0760 (4)0.0756 (4)0.0223 (3)0.0284 (3)0.0383 (3)
S10.0291 (2)0.0308 (2)0.0350 (3)0.0010 (2)0.0002 (2)0.0017 (2)
O10.0393 (8)0.0620 (10)0.0582 (10)0.0216 (7)0.0088 (7)0.0238 (8)
O20.0443 (8)0.0601 (10)0.0631 (10)0.0182 (7)0.0114 (7)0.0283 (8)
O30.0363 (7)0.0478 (8)0.0540 (9)0.0098 (6)0.0038 (6)0.0115 (7)
O40.0442 (8)0.0354 (7)0.0462 (8)0.0065 (6)0.0018 (6)0.0055 (6)
N10.0261 (8)0.0457 (9)0.0392 (9)0.0047 (7)0.0004 (6)0.0085 (7)
C10.0325 (9)0.0349 (9)0.0284 (9)0.0056 (7)0.0025 (7)0.0021 (7)
C20.0264 (8)0.0373 (9)0.0295 (9)0.0046 (7)0.0020 (7)0.0035 (8)
C30.0306 (9)0.0342 (9)0.0291 (9)0.0030 (7)0.0014 (7)0.0019 (7)
C40.0353 (10)0.0448 (11)0.0460 (12)0.0138 (9)0.0047 (8)0.0102 (9)
C50.0342 (10)0.0539 (13)0.0519 (13)0.0159 (9)0.0114 (9)0.0118 (10)
C60.0356 (10)0.0430 (11)0.0372 (10)0.0060 (8)0.0059 (8)0.0050 (9)
C70.0322 (9)0.0382 (10)0.0326 (10)0.0053 (8)0.0027 (7)0.0012 (8)
C80.0333 (9)0.0335 (9)0.0297 (9)0.0038 (7)0.0016 (7)0.0022 (7)
C90.0438 (12)0.0503 (12)0.0512 (13)0.0002 (10)0.0056 (10)0.0115 (10)
C100.0680 (17)0.0646 (16)0.0611 (16)0.0072 (13)0.0067 (13)0.0284 (13)
C110.0665 (17)0.0720 (18)0.0577 (15)0.0258 (14)0.0038 (13)0.0170 (13)
C120.0362 (11)0.0722 (16)0.0587 (14)0.0131 (11)0.0050 (10)0.0017 (12)
C130.0351 (10)0.0513 (12)0.0433 (12)0.0005 (9)0.0032 (8)0.0024 (10)
Geometric parameters (Å, º) top
Cl1—C61.730 (2)C5—C61.378 (3)
S1—O31.4321 (15)C8—C131.378 (3)
S1—O41.4257 (16)C8—C91.378 (3)
S1—N11.6255 (17)C9—C101.375 (3)
S1—C81.7572 (18)C10—C111.377 (3)
O1—C71.305 (2)C11—C121.372 (4)
O2—C71.211 (3)C12—C131.385 (3)
O1—H1O0.8200C2—H20.9300
N1—C31.411 (2)C4—H40.9300
N1—H1N0.8600C5—H50.9300
C1—C61.394 (3)C9—H90.9300
C1—C71.490 (3)C10—H100.9300
C1—C21.391 (3)C11—H110.9300
C2—C31.387 (2)C12—H120.9300
C3—C41.387 (3)C13—H130.9300
C4—C51.375 (3)
O3—S1—O4119.97 (9)S1—C8—C9118.95 (15)
O3—S1—N1103.69 (9)S1—C8—C13119.76 (14)
O3—S1—C8108.23 (9)C9—C8—C13121.29 (18)
O4—S1—N1109.31 (9)C8—C9—C10119.3 (2)
O4—S1—C8107.63 (9)C9—C10—C11119.8 (2)
N1—S1—C8107.41 (8)C10—C11—C12120.9 (2)
C7—O1—H1O109.00C11—C12—C13119.7 (2)
S1—N1—C3126.74 (13)C8—C13—C12119.03 (19)
C3—N1—H1N117.00C1—C2—H2119.00
S1—N1—H1N117.00C3—C2—H2119.00
C2—C1—C6118.08 (16)C3—C4—H4120.00
C2—C1—C7118.53 (16)C5—C4—H4120.00
C6—C1—C7123.38 (17)C4—C5—H5119.00
C1—C2—C3121.90 (16)C6—C5—H5119.00
N1—C3—C2117.57 (16)C8—C9—H9120.00
N1—C3—C4123.56 (16)C10—C9—H9120.00
C2—C3—C4118.87 (17)C9—C10—H10120.00
C3—C4—C5119.72 (19)C11—C10—H10120.00
C4—C5—C6121.4 (2)C10—C11—H11120.00
C1—C6—C5120.03 (19)C12—C11—H11120.00
Cl1—C6—C5116.31 (16)C11—C12—H12120.00
Cl1—C6—C1123.64 (16)C13—C12—H12120.00
O1—C7—O2122.32 (19)C8—C13—H13120.00
O1—C7—C1113.71 (17)C12—C13—H13120.00
O2—C7—C1123.97 (17)
O3—S1—N1—C3179.16 (16)C2—C1—C7—O2177.51 (19)
O4—S1—N1—C351.79 (18)C6—C1—C7—O1176.84 (18)
C8—S1—N1—C364.71 (17)C6—C1—C7—O23.7 (3)
O3—S1—C8—C947.55 (18)C1—C2—C3—N1179.62 (16)
O3—S1—C8—C13131.51 (16)C1—C2—C3—C41.0 (3)
O4—S1—C8—C9178.57 (16)N1—C3—C4—C5179.45 (19)
O4—S1—C8—C130.48 (18)C2—C3—C4—C51.2 (3)
N1—S1—C8—C963.83 (18)C3—C4—C5—C60.6 (3)
N1—S1—C8—C13117.12 (16)C4—C5—C6—Cl1178.09 (17)
S1—N1—C3—C2163.64 (14)C4—C5—C6—C10.4 (3)
S1—N1—C3—C417.0 (3)S1—C8—C9—C10179.51 (18)
C6—C1—C2—C30.1 (3)C13—C8—C9—C100.5 (3)
C7—C1—C2—C3178.76 (17)S1—C8—C13—C12179.00 (17)
C2—C1—C6—Cl1177.75 (15)C9—C8—C13—C120.0 (3)
C2—C1—C6—C50.6 (3)C8—C9—C10—C110.9 (4)
C7—C1—C6—Cl11.1 (3)C9—C10—C11—C120.8 (4)
C7—C1—C6—C5179.40 (19)C10—C11—C12—C130.3 (4)
C2—C1—C7—O12.0 (3)C11—C12—C13—C80.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.821.832.648 (2)178
N1—H1N···O3ii0.862.162.898 (2)144
C4—H4···O40.932.413.052 (3)126
C6—Cl1···CgBiii1.73 (1)3.81 (1)4.605 (2)106 (1)
S1—O4···CgAiv1.43 (1)3.14 (1)4.2532 (9)134 (1)
Symmetry codes: (i) x, y+3, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10ClNO4S
Mr311.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7139 (4), 5.3957 (2), 20.7565 (8)
β (°) 91.483 (2)
V3)1311.47 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
14693, 3269, 2513
Rint0.029
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.02
No. of reflections3269
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.821.832.648 (2)178
N1—H1N···O3ii0.862.162.898 (2)144
C4—H4···O40.932.413.052 (3)126
C6—Cl1···CgBiii1.730 (2)3.8131 (12)4.605 (2)106.16 (8)
S1—O4···CgAiv1.4257 (16)3.1405 (17)4.2532 (9)133.77 (8)
Symmetry codes: (i) x, y+3, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y1, z.
 

Acknowledgements

MNA gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholarship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

References

First citationArshad, M. N., Khan, I. U., Shafiq, M. & Mukhtar, A. (2009). Acta Cryst. E65, o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBouchain, G., Leit, S., Frechette, S., Khalil, E. A., Lavoie, R., Moradei, O., Woo, S. H., Fournel, M., Yan, P. T., Kalita, Y. A., Trachy-Bourget, M. C., Beaulieu, C., Li, Z., Robert, M. F., MacLeod, A. R., Besterman, J. M. & Delorme, D. (2003). J. Med. Chem. 46, 820–830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds