organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Bromo-5-chloro-2-hy­droxy­benzyl­­idene)-2-chloro­benzohydrazide methanol solvate

aCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: qianfeng_weng@163.com

(Received 16 March 2009; accepted 16 March 2009; online 19 March 2009)

In the title compound, C14H9BrCl2N2O2·CH4O, the dihedral angle between the two benzene rings is 49.2 (2)° and an intra­molecular O—H⋯N hydrogen bond occurs. In the crystal struture, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907-o1908.]); Ali et al. (2007[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729-o1730.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrCl2N2O2·CH4O

  • Mr = 420.08

  • Monoclinic, P 21 /n

  • a = 11.221 (4) Å

  • b = 9.642 (3) Å

  • c = 15.908 (5) Å

  • β = 97.537 (5)°

  • V = 1706.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.653, Tmax = 0.735

  • 9257 measured reflections

  • 3666 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.02

  • 3666 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.585 (3) 146
O3—H3⋯O2 0.82 2.04 2.727 (3) 141
N2—H2⋯O3i 0.91 (3) 1.93 (3) 2.830 (4) 176 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the crystal structures of hydrazone compounds have been widely studied (Fun et al., 2008; Ali et al., 2007; Zhi & Yang, 2007). In this paper, the structure of the title compound, (I), is described.

The title compound consists of a hydrazone molecule and a methanol molecule (Fig. 1). The dihedral angle between the two benzene rings is 49.2 (2)°. The methanol molecule is linked to the hydrazone molecule through an intramolecular O–H···O hydrogen bond (Table 1).

Related literature top

For related structures, see: Fun et al. (2008); Ali et al. (2007); Zhi & Yang (2007).

Experimental top

The compound was prepared by the reaction of equimolar quantities (1.0 mmol each) of 3-bromo-5-chloro-2-hydroxybenzaldehyde and 2-chlorobenzohydrazide in methanol (100 ml) for 2 h at room temperature. The solution was kept in air for a week, forming yellow blocks of (I).

Refinement top

The N-bound H atom was located in a difference Fourier map and was refined with an N–H distance restraint of 0.90 (1) Å. Other H atoms were placed in calculated positions (C–H = 0.93–0.96 Å, O–H = 0.82 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and C15).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms. Hydrogen bonds are indicated by dashed lines.
N'-(3-Bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide methanol solvate top
Crystal data top
C14H9BrCl2N2O2·CH4OF(000) = 840
Mr = 420.08Dx = 1.635 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2864 reflections
a = 11.221 (4) Åθ = 2.3–24.0°
b = 9.642 (3) ŵ = 2.74 mm1
c = 15.908 (5) ÅT = 298 K
β = 97.537 (5)°Block, yellow
V = 1706.3 (10) Å30.17 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3666 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.653, Tmax = 0.735k = 127
9257 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4564P]
where P = (Fo2 + 2Fc2)/3
3666 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C14H9BrCl2N2O2·CH4OV = 1706.3 (10) Å3
Mr = 420.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.221 (4) ŵ = 2.74 mm1
b = 9.642 (3) ÅT = 298 K
c = 15.908 (5) Å0.17 × 0.15 × 0.12 mm
β = 97.537 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2345 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.735Rint = 0.035
9257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.49 e Å3
3666 reflectionsΔρmin = 0.46 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32199 (3)0.42107 (4)0.05220 (3)0.06886 (17)
Cl10.23673 (8)0.95108 (9)0.05322 (6)0.0633 (3)
Cl20.49315 (8)0.21596 (9)0.18697 (6)0.0627 (3)
N10.1502 (2)0.5525 (2)0.14404 (16)0.0412 (6)
N20.2713 (2)0.5514 (3)0.17335 (16)0.0421 (6)
O10.06054 (19)0.4397 (2)0.12117 (14)0.0502 (6)
H10.01130.44510.13880.075*
O20.25707 (19)0.3476 (2)0.24068 (15)0.0588 (6)
O30.1088 (2)0.2995 (3)0.36033 (16)0.0635 (6)
H30.12650.34110.31880.095*
C10.0179 (2)0.6676 (3)0.06979 (17)0.0372 (7)
C20.0965 (3)0.5573 (3)0.07949 (18)0.0379 (7)
C30.2162 (3)0.5705 (3)0.04383 (18)0.0422 (7)
C40.2581 (3)0.6892 (3)0.00215 (18)0.0467 (8)
H40.33840.69630.02100.056*
C50.1803 (3)0.7973 (3)0.00500 (19)0.0440 (7)
C60.0613 (3)0.7871 (3)0.02778 (18)0.0432 (7)
H60.00940.86060.02180.052*
C70.1096 (3)0.6595 (3)0.10313 (18)0.0416 (7)
H70.16090.73230.09450.050*
C80.3161 (3)0.4461 (3)0.22296 (19)0.0397 (7)
C90.4474 (3)0.4648 (3)0.25564 (19)0.0407 (7)
C100.5333 (3)0.3652 (3)0.24473 (18)0.0428 (7)
C110.6517 (3)0.3836 (4)0.2764 (2)0.0564 (9)
H110.70840.31630.26830.068*
C120.6858 (3)0.5040 (4)0.3207 (2)0.0635 (10)
H120.76610.51730.34230.076*
C130.6033 (3)0.6032 (4)0.3332 (2)0.0596 (10)
H130.62710.68310.36360.072*
C140.4840 (3)0.5842 (3)0.3004 (2)0.0510 (8)
H140.42780.65210.30850.061*
C150.0087 (4)0.3311 (6)0.3718 (4)0.1076 (17)
H15A0.00860.40560.41180.161*
H15B0.04590.25090.39280.161*
H15C0.05270.35870.31860.161*
H20.313 (3)0.628 (3)0.162 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0512 (2)0.0795 (3)0.0725 (3)0.0221 (2)0.00436 (17)0.0152 (2)
Cl10.0609 (6)0.0508 (5)0.0712 (6)0.0094 (4)0.0180 (4)0.0155 (4)
Cl20.0639 (5)0.0534 (5)0.0687 (6)0.0050 (4)0.0001 (4)0.0110 (5)
N10.0336 (13)0.0412 (14)0.0463 (14)0.0017 (11)0.0044 (11)0.0008 (12)
N20.0308 (13)0.0403 (14)0.0524 (15)0.0008 (11)0.0044 (11)0.0080 (13)
O10.0432 (12)0.0457 (13)0.0583 (14)0.0038 (10)0.0059 (11)0.0127 (11)
O20.0429 (12)0.0537 (14)0.0781 (17)0.0067 (12)0.0015 (11)0.0232 (13)
O30.0563 (14)0.0545 (15)0.0815 (18)0.0038 (12)0.0158 (12)0.0002 (13)
C10.0387 (16)0.0364 (16)0.0347 (15)0.0018 (13)0.0019 (13)0.0008 (13)
C20.0409 (16)0.0401 (16)0.0315 (15)0.0009 (14)0.0002 (12)0.0011 (13)
C30.0393 (16)0.0503 (19)0.0365 (16)0.0029 (15)0.0025 (13)0.0018 (15)
C40.0357 (16)0.065 (2)0.0379 (17)0.0051 (17)0.0002 (13)0.0001 (16)
C50.0471 (17)0.0391 (17)0.0434 (18)0.0091 (15)0.0032 (14)0.0033 (15)
C60.0443 (17)0.0383 (17)0.0448 (17)0.0007 (14)0.0024 (14)0.0006 (15)
C70.0361 (16)0.0420 (17)0.0438 (18)0.0011 (14)0.0056 (13)0.0011 (15)
C80.0371 (16)0.0413 (17)0.0397 (16)0.0020 (14)0.0014 (13)0.0037 (15)
C90.0381 (16)0.0418 (17)0.0404 (17)0.0004 (14)0.0020 (13)0.0077 (14)
C100.0435 (17)0.0456 (17)0.0376 (17)0.0022 (15)0.0012 (14)0.0030 (14)
C110.0411 (18)0.064 (2)0.062 (2)0.0125 (17)0.0019 (16)0.0058 (19)
C120.0423 (19)0.076 (3)0.067 (2)0.002 (2)0.0128 (17)0.004 (2)
C130.055 (2)0.053 (2)0.065 (2)0.0002 (18)0.0144 (18)0.0064 (18)
C140.0508 (19)0.0451 (19)0.054 (2)0.0036 (16)0.0054 (16)0.0038 (16)
C150.066 (3)0.105 (4)0.155 (5)0.020 (3)0.027 (3)0.001 (4)
Geometric parameters (Å, º) top
Br1—C31.883 (3)C4—H40.9300
Cl1—C51.749 (3)C5—C61.372 (4)
Cl2—C101.735 (3)C6—H60.9300
N1—C71.272 (4)C7—H70.9300
N1—N21.378 (3)C8—C91.508 (4)
N2—C81.343 (4)C9—C141.387 (4)
N2—H20.91 (3)C9—C101.388 (4)
O1—C21.348 (3)C10—C111.369 (4)
O1—H10.8200C11—C121.386 (5)
O2—C81.212 (3)C11—H110.9300
O3—C151.388 (5)C12—C131.364 (5)
O3—H30.8200C12—H120.9300
C1—C61.387 (4)C13—C141.383 (5)
C1—C21.404 (4)C13—H130.9300
C1—C71.461 (4)C14—H140.9300
C2—C31.393 (4)C15—H15A0.9600
C3—C41.374 (4)C15—H15B0.9600
C4—C51.374 (4)C15—H15C0.9600
C7—N1—N2116.8 (2)O2—C8—N2123.8 (3)
C8—N2—N1118.7 (2)O2—C8—C9123.5 (3)
C8—N2—H2125 (2)N2—C8—C9112.7 (3)
N1—N2—H2116 (2)C14—C9—C10118.3 (3)
C2—O1—H1109.5C14—C9—C8119.1 (3)
C15—O3—H3109.5C10—C9—C8122.5 (3)
C6—C1—C2119.7 (3)C11—C10—C9121.4 (3)
C6—C1—C7119.0 (3)C11—C10—Cl2118.3 (3)
C2—C1—C7121.3 (3)C9—C10—Cl2120.2 (2)
O1—C2—C3119.2 (3)C10—C11—C12119.0 (3)
O1—C2—C1122.6 (3)C10—C11—H11120.5
C3—C2—C1118.2 (3)C12—C11—H11120.5
C4—C3—C2121.6 (3)C13—C12—C11121.0 (3)
C4—C3—Br1119.5 (2)C13—C12—H12119.5
C2—C3—Br1118.9 (2)C11—C12—H12119.5
C3—C4—C5119.4 (3)C12—C13—C14119.6 (3)
C3—C4—H4120.3C12—C13—H13120.2
C5—C4—H4120.3C14—C13—H13120.2
C6—C5—C4120.7 (3)C13—C14—C9120.7 (3)
C6—C5—Cl1120.4 (2)C13—C14—H14119.6
C4—C5—Cl1118.8 (2)C9—C14—H14119.6
C5—C6—C1120.4 (3)O3—C15—H15A109.5
C5—C6—H6119.8O3—C15—H15B109.5
C1—C6—H6119.8H15A—C15—H15B109.5
N1—C7—C1119.8 (3)O3—C15—H15C109.5
N1—C7—H7120.1H15A—C15—H15C109.5
C1—C7—H7120.1H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.585 (3)146
O3—H3···O20.822.042.727 (3)141
N2—H2···O3i0.91 (3)1.93 (3)2.830 (4)176 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9BrCl2N2O2·CH4O
Mr420.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.221 (4), 9.642 (3), 15.908 (5)
β (°) 97.537 (5)
V3)1706.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.653, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
9257, 3666, 2345
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.02
No. of reflections3666
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.46

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.585 (3)146
O3—H3···O20.822.042.727 (3)141
N2—H2···O3i0.91 (3)1.93 (3)2.830 (4)176 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds