organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-(2-hydr­­oxy-4-meth­oxy­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: qianfeng_weng@163.com

(Received 16 March 2009; accepted 16 March 2009; online 19 March 2009)

In the title compound, C15H13ClN2O3, the dihedral angle between the two benzene rings is 82.09 (10)° and an intra­molecular O—H⋯N hydrogen bond occurs. In the crystal structure, N—H⋯O hydrogen bonds link mol­ecules into chains propagating in [100].

Related literature

For related structures, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907-o1908.]); Ali et al. (2007[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729-o1730.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O3

  • Mr = 304.72

  • Triclinic, [P \overline 1]

  • a = 5.002 (1) Å

  • b = 10.866 (2) Å

  • c = 13.169 (3) Å

  • α = 83.946 (3)°

  • β = 81.721 (4)°

  • γ = 89.540 (3)°

  • V = 704.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.972

  • 4214 measured reflections

  • 3017 independent reflections

  • 2342 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.03

  • 3017 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.86 2.583 (2) 146
N1—H1⋯O1i 0.897 (10) 1.976 (14) 2.817 (2) 156 (2)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the crystal structures of hydrazone compounds have been widely studied (Fun et al., 2008; Ali et al., 2007; Zhi & Yang, 2007). In this paper, the structure of the title compound, (I), is reported.

In (I), Fig. 1, the dihedral angle between the two benzene rings is 97.9 (2)°. There is an intramolecular O–H···N hydrogen bond (Table 1) in the molecule.

Related literature top

For related structures, see: Fun et al. (2008); Ali et al. (2007); Zhi & Yang (2007).

Experimental top

The compound was prepared by the reaction of equimolar quantities (1.0 mmol each) of 2-hydroxy-4-methoxybenzaldehyde and 2-chlorobenzohydrazide in methanol (100 ml) for 2 h at room temperature. The solution was kept in air for two weeks, forming yellow blocks of (I).

Refinement top

The N-bound H atom was located in a difference Fourier map and was refined with an N–H distance restraint of 0.90 (1) Å. Other H atoms were placed in calculated positions (C–H = 0.93–0.96 Å, O–H = 0.82 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O2 and C15).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids for the non-hydrogen atoms. The H bond is shown as a dashed line.
2-Chloro-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H13ClN2O3Z = 2
Mr = 304.72F(000) = 316
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.002 (1) ÅCell parameters from 1381 reflections
b = 10.866 (2) Åθ = 2.3–26.1°
c = 13.169 (3) ŵ = 0.28 mm1
α = 83.946 (3)°T = 298 K
β = 81.721 (4)°Block, yellow
γ = 89.540 (3)°0.13 × 0.12 × 0.10 mm
V = 704.3 (2) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3017 independent reflections
Radiation source: fine-focus sealed tube2342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.964, Tmax = 0.972k = 1313
4214 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2179P]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C15H13ClN2O3γ = 89.540 (3)°
Mr = 304.72V = 704.3 (2) Å3
Triclinic, P1Z = 2
a = 5.002 (1) ÅMo Kα radiation
b = 10.866 (2) ŵ = 0.28 mm1
c = 13.169 (3) ÅT = 298 K
α = 83.946 (3)°0.13 × 0.12 × 0.10 mm
β = 81.721 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3017 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2342 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.972Rint = 0.012
4214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
3017 reflectionsΔρmin = 0.28 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46805 (11)0.16315 (5)0.36552 (4)0.05502 (19)
N10.0337 (3)0.45450 (15)0.28647 (12)0.0395 (4)
N20.0359 (3)0.54868 (14)0.20805 (12)0.0398 (4)
O10.3975 (3)0.44360 (13)0.31753 (12)0.0524 (4)
O20.3019 (3)0.74949 (15)0.13643 (11)0.0581 (4)
H20.26260.68670.17590.087*
O30.1119 (3)0.94970 (14)0.18396 (11)0.0549 (4)
C10.0671 (4)0.32016 (16)0.43192 (14)0.0348 (4)
C20.2007 (4)0.20956 (17)0.45277 (15)0.0396 (4)
C30.1198 (5)0.13155 (19)0.54152 (17)0.0521 (5)
H30.21050.05770.55430.063*
C40.0949 (5)0.1634 (2)0.61080 (17)0.0577 (6)
H40.14770.11150.67100.069*
C50.2326 (4)0.2716 (2)0.59178 (16)0.0527 (5)
H50.37860.29250.63880.063*
C60.1531 (4)0.34920 (18)0.50246 (15)0.0422 (4)
H60.24800.42170.48940.051*
C70.1614 (3)0.41011 (16)0.34009 (14)0.0357 (4)
C80.1114 (4)0.56612 (18)0.13669 (15)0.0415 (4)
H80.26060.51530.13750.050*
C90.0462 (4)0.66529 (17)0.05418 (14)0.0383 (4)
C100.1562 (4)0.75315 (18)0.05729 (14)0.0400 (4)
C110.2109 (4)0.84952 (19)0.02082 (15)0.0457 (5)
H110.34260.90820.01710.055*
C120.0700 (4)0.85834 (18)0.10403 (14)0.0425 (5)
C130.1288 (4)0.7717 (2)0.10967 (16)0.0488 (5)
H130.22260.77710.16600.059*
C140.1851 (4)0.67777 (19)0.03091 (15)0.0460 (5)
H140.32020.62070.03450.055*
C150.3106 (5)1.0415 (2)0.17935 (18)0.0566 (6)
H15A0.26431.08150.11760.085*
H15B0.31731.10180.23850.085*
H15C0.48401.00310.17890.085*
H10.205 (3)0.427 (2)0.300 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0551 (3)0.0522 (3)0.0583 (3)0.0181 (2)0.0093 (2)0.0084 (2)
N10.0276 (8)0.0432 (9)0.0443 (9)0.0003 (6)0.0041 (7)0.0097 (7)
N20.0331 (8)0.0414 (9)0.0420 (9)0.0022 (6)0.0047 (7)0.0083 (7)
O10.0245 (7)0.0592 (9)0.0677 (10)0.0014 (6)0.0054 (6)0.0187 (7)
O20.0571 (9)0.0685 (10)0.0483 (9)0.0179 (8)0.0210 (7)0.0156 (7)
O30.0616 (10)0.0567 (9)0.0430 (8)0.0006 (7)0.0085 (7)0.0118 (7)
C10.0308 (9)0.0364 (9)0.0379 (9)0.0023 (7)0.0092 (7)0.0006 (7)
C20.0392 (10)0.0385 (10)0.0429 (10)0.0018 (8)0.0138 (8)0.0023 (8)
C30.0627 (14)0.0394 (11)0.0541 (13)0.0000 (10)0.0184 (11)0.0092 (9)
C40.0657 (15)0.0581 (14)0.0451 (12)0.0149 (11)0.0081 (11)0.0158 (10)
C50.0485 (12)0.0648 (14)0.0419 (11)0.0100 (11)0.0010 (9)0.0013 (10)
C60.0368 (10)0.0439 (11)0.0448 (11)0.0008 (8)0.0050 (8)0.0007 (8)
C70.0287 (9)0.0351 (9)0.0418 (10)0.0021 (7)0.0035 (7)0.0007 (7)
C80.0342 (10)0.0437 (11)0.0451 (11)0.0025 (8)0.0052 (8)0.0011 (8)
C90.0340 (9)0.0414 (10)0.0384 (10)0.0079 (8)0.0045 (8)0.0012 (8)
C100.0365 (10)0.0459 (11)0.0361 (10)0.0039 (8)0.0053 (8)0.0022 (8)
C110.0427 (11)0.0481 (11)0.0438 (11)0.0017 (9)0.0044 (9)0.0039 (9)
C120.0431 (11)0.0450 (11)0.0357 (10)0.0107 (8)0.0002 (8)0.0045 (8)
C130.0531 (13)0.0533 (12)0.0415 (11)0.0070 (10)0.0161 (9)0.0002 (9)
C140.0446 (11)0.0469 (11)0.0473 (11)0.0012 (9)0.0122 (9)0.0013 (9)
C150.0579 (14)0.0532 (13)0.0520 (13)0.0003 (11)0.0010 (10)0.0131 (10)
Geometric parameters (Å, º) top
Cl1—C21.741 (2)C5—C61.384 (3)
N1—C71.343 (2)C5—H50.9300
N1—N21.384 (2)C6—H60.9300
N1—H10.897 (10)C8—C91.451 (3)
N2—C81.273 (2)C8—H80.9300
O1—C71.224 (2)C9—C141.395 (3)
O2—C101.352 (2)C9—C101.405 (3)
O2—H20.8200C10—C111.388 (3)
O3—C121.363 (2)C11—C121.381 (3)
O3—C151.426 (3)C11—H110.9300
C1—C21.392 (3)C12—C131.390 (3)
C1—C61.392 (3)C13—C141.376 (3)
C1—C71.495 (2)C13—H130.9300
C2—C31.382 (3)C14—H140.9300
C3—C41.373 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.376 (3)C15—H15C0.9600
C4—H40.9300
C7—N1—N2117.48 (14)N2—C8—C9119.94 (18)
C7—N1—H1123.4 (17)N2—C8—H8120.0
N2—N1—H1119.1 (17)C9—C8—H8120.0
C8—N2—N1118.57 (16)C14—C9—C10117.45 (18)
C10—O2—H2109.5C14—C9—C8121.07 (18)
C12—O3—C15117.32 (17)C10—C9—C8121.47 (17)
C2—C1—C6118.04 (17)O2—C10—C11117.14 (17)
C2—C1—C7122.16 (17)O2—C10—C9122.07 (17)
C6—C1—C7119.72 (16)C11—C10—C9120.78 (18)
C3—C2—C1121.08 (19)C12—C11—C10120.03 (19)
C3—C2—Cl1118.05 (16)C12—C11—H11120.0
C1—C2—Cl1120.83 (15)C10—C11—H11120.0
C4—C3—C2119.7 (2)O3—C12—C11123.68 (19)
C4—C3—H3120.1O3—C12—C13115.99 (18)
C2—C3—H3120.1C11—C12—C13120.33 (18)
C3—C4—C5120.49 (19)C14—C13—C12119.22 (18)
C3—C4—H4119.8C14—C13—H13120.4
C5—C4—H4119.8C12—C13—H13120.4
C4—C5—C6119.8 (2)C13—C14—C9122.17 (19)
C4—C5—H5120.1C13—C14—H14118.9
C6—C5—H5120.1C9—C14—H14118.9
C5—C6—C1120.87 (19)O3—C15—H15A109.5
C5—C6—H6119.6O3—C15—H15B109.5
C1—C6—H6119.6H15A—C15—H15B109.5
O1—C7—N1122.63 (16)O3—C15—H15C109.5
O1—C7—C1122.38 (16)H15A—C15—H15C109.5
N1—C7—C1114.96 (15)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.862.583 (2)146
N1—H1···O1i0.90 (1)1.98 (1)2.817 (2)156 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O3
Mr304.72
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.002 (1), 10.866 (2), 13.169 (3)
α, β, γ (°)83.946 (3), 81.721 (4), 89.540 (3)
V3)704.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.964, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
4214, 3017, 2342
Rint0.012
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.03
No. of reflections3017
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.862.583 (2)146
N1—H1···O1i0.897 (10)1.976 (14)2.817 (2)156 (2)
Symmetry code: (i) x1, y, z.
 

References

First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds