metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[ethane-1,2-diyl­bis­(nitrilo­methyl­­idyne)]diphenolato-1κ4O6,O1,O1′,O6′:2κ4O1,N,N′,O1′}(methanol-1κO)(perchlorato-1κO)nickel(II)sodium

aDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 18 February 2009; accepted 3 March 2009; online 14 March 2009)

The mol­ecule of the title compound, [NaNi(C18H18N2O4)(ClO4)(CH3OH)], is almost planar, the maximum deviation from the molecular plane being 5.3 (1) Å. The Ni2+ ion is N2O2 coordinated by the Schiff base ligand, leading to a slightly distorted square-planar environment. The Na atom is chelated by the four O atoms of the Schiff base ligand and is coordinated by the O atoms of a methanol ligand and a perchlorate anion. The perchlorate ion is disordered over two sites with occupancies 0.723 (12):0.277 (12).

Related literature

For background to Schiff bases as ligands for metal ions and their roles in biochemical processes, see: Lindoy et al. (1976[Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724-1727.]). For the steric, electronic and lipophilic properties of N,N-disalicylideneethyl­enediamine type Schiff bases ligands, see: Correia et al. (2005[Correia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. C. G. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [NaNi(C18H18N2O4)(ClO4)(CH4O)]

  • Mr = 539.54

  • Monoclinic, P 21 /n

  • a = 12.026 (2) Å

  • b = 8.1360 (16) Å

  • c = 23.394 (5) Å

  • β = 104.302 (3)°

  • V = 2218.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 273 K

  • 0.14 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.892

  • 10559 measured reflections

  • 3906 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.159

  • S = 1.06

  • 3906 reflections

  • 339 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been known as effective ligands for metal ions and used in the mechanism of many biochemical processes (Lindoy et al., 1976). N,N-disalicylideneethylenediamine type Schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al., 2005). We report here the synthesis and crystal structure of the title compound (I). The molecular structure of (I) is shown in Fig.1. The values of the geometric parameters in (I) are normal (Allen et al., 1987). Ni(II) and Na(I) are connected via two bridging oxygen atoms of the ligand. The six-coordinate Na atom adopts a distorted octahedral coordination geometry is completed by the O atoms derived from a perchlorate anion, while the four-coordinate Ni gives plane coordination.

Related literature top

For background to Schiff bases as ligands for metal ions and their roles in biochemical processes, see: Lindoy et al. (1976). For the steric, electronic and lipophilic properties of N,N-disalicylideneethylenediamine type Schiff bases ligands, see: Correia et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and nickel chloride (1 mmol) in absolute ethanol (15 ml) was stirred for 30 min and sodium perchlorate (1 mmol) was added, stirred for another 15 min and then filtered. The resulting clear orange solution was evaporated at room temperature for 7 days, after which large orange block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93–0.97 Å,or 0.82 Å (methanol hydroxyl) and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O6,O1,O1',O6': 2κ4O1,N,N',O1'}(methanol- 1κO)(perchlorato-1κO)nickel(II)sodium top
Crystal data top
[NaNi(C18H18N2O4)(ClO4)(CH4O)]F(000) = 1111.9
Mr = 539.54Dx = 1.616 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3601 reflections
a = 12.026 (2) Åθ = 2.7–26.6°
b = 8.1360 (16) ŵ = 1.07 mm1
c = 23.394 (5) ÅT = 273 K
β = 104.302 (3)°Block, orange
V = 2218.0 (8) Å30.14 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3906 independent reflections
Radiation source: fine-focus sealed tube3120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1114
Tmin = 0.865, Tmax = 0.892k = 99
10559 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0852P)2 + 3.4175P]
where P = (Fo2 + 2Fc2)/3
3906 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[NaNi(C18H18N2O4)(ClO4)(CH4O)]V = 2218.0 (8) Å3
Mr = 539.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.026 (2) ŵ = 1.07 mm1
b = 8.1360 (16) ÅT = 273 K
c = 23.394 (5) Å0.14 × 0.12 × 0.11 mm
β = 104.302 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3120 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.892Rint = 0.023
10559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 1.03 e Å3
3906 reflectionsΔρmin = 1.14 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.17531 (4)0.91320 (6)1.01069 (2)0.0373 (2)
Na10.14961 (15)0.9105 (2)0.86470 (7)0.0501 (5)
Cl10.00049 (13)1.1323 (2)0.73545 (7)0.0721 (4)
O10.2467 (2)1.0034 (4)0.95724 (11)0.0448 (7)
O20.0756 (2)0.8289 (4)0.94440 (12)0.0447 (7)
O30.3169 (3)1.0958 (4)0.86647 (14)0.0576 (9)
O40.0318 (3)0.7296 (4)0.84088 (13)0.0557 (8)
O50.0995 (6)1.2219 (13)0.7369 (3)0.102 (3)0.723 (12)
O60.0663 (7)1.2518 (12)0.7120 (4)0.104 (3)0.723 (12)
O70.0350 (8)1.0008 (11)0.6966 (4)0.128 (4)0.723 (12)
O80.0599 (6)1.0976 (10)0.7922 (4)0.090 (3)0.723 (12)
O5'0.0360 (19)1.150 (3)0.6850 (10)0.102 (7)0.277 (12)
O6'0.1060 (17)1.082 (3)0.7329 (9)0.098 (7)0.277 (12)
O7'0.0321 (18)1.264 (3)0.7734 (10)0.118 (9)0.277 (12)
O8'0.0764 (13)1.002 (2)0.7645 (8)0.076 (5)0.277 (12)
O90.2372 (3)0.6892 (5)0.83487 (16)0.0696 (10)
H9A0.29280.69820.82090.12 (3)*
N10.2807 (3)0.9918 (5)1.07592 (14)0.0457 (9)
N20.0964 (3)0.8305 (5)1.06239 (15)0.0458 (9)
C10.3996 (4)1.1441 (5)1.02507 (19)0.0441 (10)
C20.3391 (3)1.0965 (5)0.96838 (19)0.0398 (9)
C30.3795 (4)1.1522 (5)0.91995 (19)0.0435 (10)
C40.4748 (4)1.2522 (6)0.9279 (2)0.0552 (12)
H40.50031.28820.89560.066*
C50.5326 (4)1.2990 (6)0.9852 (2)0.0590 (12)
H50.59651.36720.99080.071*
C60.4969 (4)1.2463 (6)1.0322 (2)0.0560 (12)
H60.53681.27761.06990.067*
C70.3659 (4)1.0869 (6)1.0762 (2)0.0486 (11)
H70.40961.12161.11270.058*
C80.3589 (5)1.1308 (8)0.8156 (2)0.0695 (15)
H8A0.35471.24700.80820.104*
H8B0.31301.07380.78210.104*
H8C0.43721.09520.82250.104*
C90.0578 (4)0.6982 (5)0.99182 (19)0.0443 (10)
C100.0165 (3)0.7390 (5)0.94207 (18)0.0409 (9)
C110.0784 (4)0.6823 (6)0.8863 (2)0.0455 (10)
C120.1784 (4)0.5926 (6)0.8798 (2)0.0562 (12)
H120.21920.55780.84270.067*
C130.2176 (4)0.5547 (6)0.9300 (3)0.0593 (13)
H130.28440.49340.92600.071*
C140.1599 (4)0.6058 (6)0.9838 (2)0.0555 (13)
H140.18780.57981.01640.067*
C150.0024 (4)0.7488 (6)1.0494 (2)0.0506 (11)
H150.02940.72001.08040.061*
C160.0870 (5)0.6700 (9)0.7830 (2)0.0777 (17)
H16A0.08880.55200.78340.117*
H16B0.04510.70640.75530.117*
H16C0.16400.71170.77150.117*
C170.2655 (5)0.9255 (7)1.1318 (2)0.0665 (15)
H17A0.28881.00661.16290.080*
H17B0.31260.82821.14280.080*
C180.1423 (5)0.8834 (7)1.1241 (2)0.0668 (15)
H18A0.13450.79551.15090.080*
H18B0.10030.97841.13260.080*
C190.2246 (7)0.5342 (9)0.8564 (4)0.106 (2)
H19A0.29470.50230.88380.159*
H19B0.20690.45720.82440.159*
H19C0.16340.53530.87610.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0411 (3)0.0449 (3)0.0281 (3)0.0071 (2)0.0126 (2)0.0040 (2)
Na10.0508 (10)0.0657 (12)0.0362 (9)0.0019 (8)0.0151 (7)0.0012 (8)
Cl10.0655 (9)0.0880 (11)0.0692 (9)0.0145 (8)0.0287 (7)0.0277 (8)
O10.0419 (16)0.0623 (19)0.0320 (14)0.0024 (14)0.0123 (12)0.0025 (14)
O20.0444 (16)0.0592 (19)0.0349 (15)0.0049 (14)0.0179 (12)0.0009 (13)
O30.0554 (19)0.080 (2)0.0412 (17)0.0055 (17)0.0197 (15)0.0096 (16)
O40.0533 (18)0.071 (2)0.0439 (17)0.0065 (16)0.0147 (14)0.0040 (16)
O50.088 (5)0.121 (7)0.094 (5)0.030 (5)0.017 (4)0.005 (5)
O60.101 (5)0.116 (7)0.101 (6)0.012 (5)0.036 (5)0.032 (5)
O70.136 (7)0.116 (7)0.125 (7)0.020 (6)0.016 (6)0.007 (6)
O80.081 (4)0.105 (7)0.077 (5)0.005 (4)0.008 (3)0.025 (4)
O5'0.097 (15)0.12 (2)0.091 (15)0.004 (14)0.027 (11)0.013 (13)
O6'0.087 (13)0.115 (18)0.090 (13)0.003 (12)0.020 (10)0.012 (12)
O7'0.112 (15)0.123 (18)0.112 (17)0.006 (13)0.015 (12)0.003 (14)
O8'0.072 (9)0.088 (12)0.067 (10)0.006 (9)0.015 (8)0.010 (9)
O90.067 (2)0.082 (3)0.064 (2)0.010 (2)0.0246 (19)0.003 (2)
N10.051 (2)0.055 (2)0.0295 (17)0.0113 (18)0.0066 (15)0.0046 (16)
N20.061 (2)0.048 (2)0.0331 (18)0.0052 (18)0.0199 (16)0.0049 (16)
C10.044 (2)0.044 (2)0.043 (2)0.0100 (19)0.0077 (18)0.0011 (19)
C20.036 (2)0.040 (2)0.043 (2)0.0075 (17)0.0101 (17)0.0023 (18)
C30.042 (2)0.045 (2)0.044 (2)0.0079 (19)0.0119 (18)0.0065 (19)
C40.052 (3)0.047 (3)0.072 (3)0.004 (2)0.024 (2)0.013 (2)
C50.053 (3)0.048 (3)0.075 (3)0.006 (2)0.013 (2)0.000 (2)
C60.055 (3)0.049 (3)0.059 (3)0.003 (2)0.005 (2)0.008 (2)
C70.050 (3)0.054 (3)0.037 (2)0.007 (2)0.0025 (19)0.0044 (19)
C80.075 (4)0.093 (4)0.049 (3)0.007 (3)0.032 (3)0.012 (3)
C90.046 (2)0.045 (2)0.048 (2)0.0090 (19)0.0224 (19)0.0110 (19)
C100.039 (2)0.042 (2)0.046 (2)0.0068 (18)0.0190 (18)0.0045 (19)
C110.039 (2)0.051 (3)0.049 (2)0.0013 (19)0.0151 (19)0.002 (2)
C120.048 (3)0.057 (3)0.063 (3)0.001 (2)0.013 (2)0.000 (2)
C130.045 (3)0.061 (3)0.078 (4)0.006 (2)0.027 (3)0.006 (3)
C140.051 (3)0.056 (3)0.069 (3)0.007 (2)0.034 (3)0.014 (2)
C150.061 (3)0.054 (3)0.047 (3)0.010 (2)0.034 (2)0.012 (2)
C160.080 (4)0.106 (5)0.046 (3)0.023 (3)0.013 (3)0.016 (3)
C170.077 (4)0.090 (4)0.031 (2)0.002 (3)0.010 (2)0.010 (2)
C180.092 (4)0.076 (4)0.038 (3)0.001 (3)0.028 (3)0.003 (2)
C190.114 (6)0.092 (5)0.117 (6)0.042 (5)0.038 (5)0.034 (5)
Geometric parameters (Å, º) top
Ni1—O11.836 (3)C1—C71.432 (6)
Ni1—N21.840 (4)C2—C31.414 (6)
Ni1—N11.841 (4)C3—C41.380 (6)
Ni1—O21.843 (3)C4—C51.402 (7)
Ni1—Na13.3525 (19)C4—H40.9300
Na1—O92.281 (4)C5—C61.346 (7)
Na1—O12.318 (3)C5—H50.9300
Na1—O82.335 (7)C6—H60.9300
Na1—O22.351 (3)C7—H70.9300
Na1—O8'2.408 (16)C8—H8A0.9600
Na1—O32.506 (4)C8—H8B0.9600
Na1—O42.576 (4)C8—H8C0.9600
Cl1—O6'1.33 (2)C9—C141.412 (6)
Cl1—O5'1.36 (2)C9—C101.413 (6)
Cl1—O81.373 (7)C9—C151.423 (7)
Cl1—O7'1.39 (2)C10—C111.410 (6)
Cl1—O71.400 (9)C11—C121.383 (6)
Cl1—O51.414 (7)C12—C131.403 (7)
Cl1—O61.445 (8)C12—H120.9300
Cl1—O8'1.456 (17)C13—C141.343 (7)
O1—C21.315 (5)C13—H130.9300
O2—C101.317 (5)C14—H140.9300
O3—C31.370 (5)C15—H150.9300
O3—C81.432 (5)C16—H16A0.9600
O4—C111.374 (5)C16—H16B0.9600
O4—C161.437 (6)C16—H16C0.9600
O9—C191.380 (8)C17—C181.488 (8)
O9—H9A0.8174C17—H17A0.9700
N1—C71.283 (6)C17—H17B0.9700
N1—C171.468 (6)C18—H18A0.9700
N2—C151.281 (6)C18—H18B0.9700
N2—C181.477 (6)C19—H19A0.9600
C1—C21.401 (6)C19—H19B0.9600
C1—C61.411 (7)C19—H19C0.9600
O1—Ni1—N2176.62 (15)C19—O9—H9A113.8
O1—Ni1—N194.78 (15)Na1—O9—H9A122.5
N2—Ni1—N186.77 (17)C7—N1—C17119.5 (4)
O1—Ni1—O283.82 (12)C7—N1—Ni1126.8 (3)
N2—Ni1—O294.76 (15)C17—N1—Ni1113.5 (3)
N1—Ni1—O2177.16 (14)C15—N2—C18118.5 (4)
O1—Ni1—Na141.38 (9)C15—N2—Ni1127.0 (3)
N2—Ni1—Na1137.28 (13)C18—N2—Ni1114.0 (3)
N1—Ni1—Na1135.89 (12)C2—C1—C6119.8 (4)
O2—Ni1—Na142.52 (9)C2—C1—C7120.8 (4)
O9—Na1—O1112.26 (14)C6—C1—C7119.3 (4)
O9—Na1—O8117.3 (3)O1—C2—C1124.2 (4)
O1—Na1—O8120.1 (3)O1—C2—C3117.8 (4)
O9—Na1—O2108.27 (15)C1—C2—C3118.0 (4)
O1—Na1—O263.49 (11)O3—C3—C4124.9 (4)
O8—Na1—O2124.2 (2)O3—C3—C2113.8 (4)
O9—Na1—O8'91.8 (5)C4—C3—C2121.3 (4)
O1—Na1—O8'141.9 (5)C3—C4—C5119.3 (5)
O8—Na1—O8'25.9 (4)C3—C4—H4120.4
O2—Na1—O8'137.7 (4)C5—C4—H4120.4
O9—Na1—O392.89 (15)C6—C5—C4120.8 (5)
O1—Na1—O364.60 (11)C6—C5—H5119.6
O8—Na1—O381.1 (2)C4—C5—H5119.6
O2—Na1—O3128.05 (13)C5—C6—C1120.9 (5)
O8'—Na1—O386.0 (4)C5—C6—H6119.5
O9—Na1—O485.03 (14)C1—C6—H6119.5
O1—Na1—O4126.36 (12)N1—C7—C1125.6 (4)
O8—Na1—O490.0 (2)N1—C7—H7117.2
O2—Na1—O462.87 (11)C1—C7—H7117.2
O8'—Na1—O483.0 (4)O3—C8—H8A109.5
O3—Na1—O4168.75 (13)O3—C8—H8B109.5
O9—Na1—Ni1112.55 (11)H8A—C8—H8B109.5
O1—Na1—Ni131.57 (7)O3—C8—H8C109.5
O8—Na1—Ni1130.2 (3)H8A—C8—H8C109.5
O2—Na1—Ni131.98 (8)H8B—C8—H8C109.5
O8'—Na1—Ni1155.4 (5)C14—C9—C10119.1 (4)
O3—Na1—Ni196.18 (9)C14—C9—C15120.1 (4)
O4—Na1—Ni194.83 (8)C10—C9—C15120.8 (4)
O6'—Cl1—O5'120.0 (14)O2—C10—C11117.8 (4)
O6'—Cl1—O8104.1 (9)O2—C10—C9124.0 (4)
O5'—Cl1—O8131.5 (10)C11—C10—C9118.2 (4)
O6'—Cl1—O7'112.1 (14)O4—C11—C12124.9 (4)
O5'—Cl1—O7'112.2 (16)O4—C11—C10113.6 (4)
O8—Cl1—O7'62.9 (9)C12—C11—C10121.4 (4)
O6'—Cl1—O766.4 (11)C11—C12—C13119.1 (5)
O5'—Cl1—O768.2 (13)C11—C12—H12120.4
O8—Cl1—O7118.2 (5)C13—C12—H12120.4
O7'—Cl1—O7178.2 (9)C14—C13—C12120.8 (5)
O6'—Cl1—O549.2 (9)C14—C13—H13119.6
O5'—Cl1—O5114.6 (10)C12—C13—H13119.6
O8—Cl1—O5109.0 (5)C13—C14—C9121.4 (4)
O7'—Cl1—O571.7 (9)C13—C14—H14119.3
O7—Cl1—O5106.6 (5)C9—C14—H14119.3
O6'—Cl1—O6143.3 (10)N2—C15—C9125.9 (4)
O5'—Cl1—O643.8 (10)N2—C15—H15117.0
O8—Cl1—O6107.6 (5)C9—C15—H15117.0
O7'—Cl1—O668.4 (10)O4—C16—H16A109.5
O7—Cl1—O6112.1 (6)O4—C16—H16B109.5
O5—Cl1—O6102.1 (6)H16A—C16—H16B109.5
O6'—Cl1—O8'106.3 (12)O4—C16—H16C109.5
O5'—Cl1—O8'100.9 (12)H16A—C16—H16C109.5
O8—Cl1—O8'44.1 (7)H16B—C16—H16C109.5
O7'—Cl1—O8'103.1 (12)N1—C17—C18108.5 (4)
O7—Cl1—O8'78.5 (9)N1—C17—H17A110.0
O5—Cl1—O8'143.6 (7)C18—C17—H17A110.0
O6—Cl1—O8'109.3 (7)N1—C17—H17B110.0
C2—O1—Ni1127.5 (3)C18—C17—H17B110.0
C2—O1—Na1125.4 (3)H17A—C17—H17B108.4
Ni1—O1—Na1107.04 (14)N2—C18—C17107.8 (4)
C10—O2—Ni1127.4 (3)N2—C18—H18A110.1
C10—O2—Na1127.1 (3)C17—C18—H18A110.1
Ni1—O2—Na1105.50 (13)N2—C18—H18B110.1
C3—O3—C8117.7 (4)C17—C18—H18B110.1
C3—O3—Na1118.3 (3)H18A—C18—H18B108.5
C8—O3—Na1123.6 (3)O9—C19—H19A109.5
C11—O4—C16116.9 (4)O9—C19—H19B109.5
C11—O4—Na1118.6 (3)H19A—C19—H19B109.5
C16—O4—Na1124.5 (3)O9—C19—H19C109.5
Cl1—O8—Na1150.8 (6)H19A—C19—H19C109.5
Cl1—O8'—Na1135.7 (13)H19B—C19—H19C109.5
C19—O9—Na1120.6 (4)

Experimental details

Crystal data
Chemical formula[NaNi(C18H18N2O4)(ClO4)(CH4O)]
Mr539.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)12.026 (2), 8.1360 (16), 23.394 (5)
β (°) 104.302 (3)
V3)2218.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.14 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.865, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
10559, 3906, 3120
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.159, 1.06
No. of reflections3906
No. of parameters339
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work is supported by the Zhejiang Provincial Natural Science Foundation (Y4080481).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorreia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. C. G. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  Web of Science CSD CrossRef Google Scholar
First citationLindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724–1727.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds