metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido-2κ2Cl-{μ-6,6′-dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato-1κ4O1,N,N′,O1′:2κ2O1,O1′}copper(II)zinc(II)

aSchool of Chemical & Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China
*Correspondence e-mail: qyliusdu@163.com

(Received 21 February 2009; accepted 25 February 2009; online 6 March 2009)

In the title compound, [CuZnCl2(C19H20N2O4)], the CuII ion exhibits a slightly distorted square-planar coordination geometry defined by two N atoms and two O atoms of the 6,6′-dimeth­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolate Schiff base ligand. The ZnII ion is also four-coordinated by the two phenolate O atoms of the Schiff base ligand and by two cis-coordinated chloride anions.

Related literature

For the physical and chemical properties of heterometallic complexes, see: Ni et al. (2005[Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem. 44, 2050-2059.], 2007[Ni, Z. H., Zhang, L. F., Tangoulis, V., Wernsdorfer, W., Cui, A. L., Sato, O. & Kou, H. Z. (2007). Inorg. Chem. 46, 6029-6037.]); Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]) and for their roles in biological systems, see: Karlin (1993[Karlin, K. D. (1993). Science, 261, 701-708.]). For bond-length data, see: Korupoju et al. (2000[Korupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845-2852.]); Gheorghe et al. (2006[Gheorghe, R., Cucos, P., Andruh, M., Costes, J. P., Donnadieu, B. & Shova, S. (2006). Chem. Eur. J. 12, 187-203.]). For the restraints used in the refinement, see: Ng (2005[Ng, S. W. (2005). Chin. J. Struct. Chem. 24, 1425-1439.]).

[Scheme 1]

Experimental

Crystal data
  • [CuZnCl2(C19H20N2O4)]

  • Mr = 540.18

  • Orthorhombic, P c a 21

  • a = 13.0181 (9) Å

  • b = 10.8503 (8) Å

  • c = 14.7758 (11) Å

  • V = 2087.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.744, Tmax = 0.828

  • 9818 measured reflections

  • 3486 independent reflections

  • 3084 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.07

  • 3486 reflections

  • 262 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1564 Friedel pairs

  • Flack parameter: 0.006 (15)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Heterometallic complexes have been intensively focused on owing to their unique physical and chemical properties (Ward et al., 2007; Ni et al., 2005 and Ni et al. 2007). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). Whereas, it is necessary to further widen the system of heterometallic compounds. Herein, a new heterometallic dinuclear (CuIIZnII) compound has been obtained. Its structure is depicted in the Figure 1.

Compound I is a dinuclear neutral complex with a slightly distorted planar configuration. The CuII atom is coordinated by two nitrogen atoms and two oxygen atoms from L2- ligand forming a square-planar geometry. The coordination environment of each ZnII atom is in a distorted tetrahedral geometry composed of two oxygen atoms from L2- ligand and two chlorine atoms occupying the the other two positions. The dihedral angle of two aromatic rings is 26.90 (4)°. The CuII atom and ZnII atom are connected via two bridging phenoxo oxygen atoms of L2- ligand, The bond lengths of Cu—O, Cu—N, Zn—O and Zn—Cl are normal (Gheorghe et al. 2006 and Korupoju et al., 2000).

Related literature top

For the physical and chemical properties of heterometallic complexes, see: Ni et al. (2005, 2007); Ward (2007) and for their roles in biological systems, see: Karlin (1993). For bond-length data, see: Korupoju et al. (2000); Gheorghe et al. (2006). For the restraints used in the refinement, see: Ng (2005).

Experimental top

The H2L ligand and complex CuL was synthesized according to the previous literature (Gheorghe et al. 2006). the synthesis method of the compound I was obtained by allowing a mixure of CuL (0.088 g, 0.2 mmol) and ZnCl2.2H2O(0.044 g, 0.2 mmol) to be stirred in the methanol solution at room temperature, cooled down to room temperature and then filtered. Suitable yellow needle-shaped crystals were obtained via slow evaporation of the filtrate at room temperature.

Refinement top

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms. and the 'isor' order is used to restrain the C10 atom with wARP as 0.005 (Ng, 2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, all hydrogen atoms are ommited for clarity.
Dichlorido-2κ2Cl-{µ-6,6'-dimethoxy-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato- 1κ4O1,N,N',O1': 2κ2O1,O1'}copper(II)zinc(II) top
Crystal data top
[CuZnCl2(C19H20N2O4)]F(000) = 1092
Mr = 540.18Dx = 1.719 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4074 reflections
a = 13.0181 (9) Åθ = 2.5–26.1°
b = 10.8503 (8) ŵ = 2.45 mm1
c = 14.7758 (11) ÅT = 298 K
V = 2087.1 (3) Å3Needle, green
Z = 40.20 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube3084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1112
Tmin = 0.744, Tmax = 0.828l = 1715
9818 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.0971P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3486 reflectionsΔρmax = 0.63 e Å3
262 parametersΔρmin = 0.58 e Å3
13 restraintsAbsolute structure: Flack (1983), 1564 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (15)
Crystal data top
[CuZnCl2(C19H20N2O4)]V = 2087.1 (3) Å3
Mr = 540.18Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.0181 (9) ŵ = 2.45 mm1
b = 10.8503 (8) ÅT = 298 K
c = 14.7758 (11) Å0.20 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3084 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.828Rint = 0.025
9818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.63 e Å3
S = 1.07Δρmin = 0.58 e Å3
3486 reflectionsAbsolute structure: Flack (1983), 1564 Friedel pairs
262 parametersAbsolute structure parameter: 0.006 (15)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.59914 (3)0.74035 (3)0.69902 (3)0.04337 (13)
Cu10.59183 (3)1.03456 (3)0.71028 (4)0.04411 (14)
Cl20.71295 (8)0.63787 (10)0.78281 (9)0.0590 (3)
Cl10.48653 (8)0.64556 (11)0.60882 (10)0.0653 (4)
O10.4768 (2)0.6796 (3)0.8322 (2)0.0607 (8)
O40.7243 (2)0.7042 (2)0.5679 (2)0.0531 (7)
O30.6649 (2)0.9031 (2)0.6508 (2)0.0468 (7)
C60.3763 (3)0.9888 (5)0.8239 (3)0.0537 (12)
N10.4874 (3)1.1465 (3)0.7582 (3)0.0596 (10)
O20.5262 (2)0.8915 (2)0.76318 (19)0.0442 (7)
C120.7778 (4)1.1331 (3)0.6360 (3)0.0486 (10)
H120.82301.19890.62940.058*
C150.9470 (4)0.9069 (4)0.5223 (3)0.0557 (11)
H151.01180.90540.49580.067*
C130.8147 (3)1.0147 (3)0.6042 (3)0.0421 (9)
C70.4389 (3)0.8850 (4)0.8080 (3)0.0445 (10)
C170.7914 (3)0.8007 (4)0.5642 (3)0.0439 (9)
C50.2819 (3)0.9734 (5)0.8696 (3)0.0650 (13)
H50.23991.04150.87930.078*
C180.7549 (3)0.9076 (3)0.6083 (3)0.0388 (8)
C10.4576 (4)0.5620 (4)0.8709 (5)0.0845 (18)
H1A0.51320.50740.85660.127*
H1B0.39470.52930.84690.127*
H1C0.45180.57000.93540.127*
C30.3144 (3)0.7587 (5)0.8888 (3)0.0633 (13)
H30.29430.68240.91130.076*
C160.8847 (3)0.8003 (4)0.5211 (3)0.0534 (11)
H160.90690.72980.49100.064*
C110.6734 (4)1.2928 (3)0.6876 (5)0.0794 (15)
H11A0.70121.31440.74650.095*
H11B0.71131.33920.64250.095*
C80.4053 (4)1.1105 (4)0.7987 (4)0.0592 (13)
H80.35861.17220.81350.071*
C190.7605 (4)0.5875 (4)0.5382 (4)0.0653 (13)
H19A0.70660.52760.54400.098*
H19B0.81810.56300.57470.098*
H19C0.78140.59300.47610.098*
C20.4077 (3)0.7705 (4)0.8442 (3)0.0506 (11)
N20.6914 (3)1.1585 (3)0.6717 (3)0.0499 (9)
C100.5740 (5)1.3279 (5)0.6847 (5)0.0981 (17)
H10A0.55041.31040.62370.118*
H10B0.57391.41680.69090.118*
C90.4950 (4)1.2824 (4)0.7450 (6)0.098 (3)
H9A0.42921.31140.72260.118*
H9B0.50561.31990.80380.118*
C40.2511 (4)0.8598 (5)0.8999 (3)0.0700 (14)
H40.18770.85080.92800.084*
C140.9123 (3)1.0109 (5)0.5619 (3)0.0509 (11)
H140.95301.08130.56150.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0359 (2)0.0315 (2)0.0628 (3)0.00014 (17)0.0017 (2)0.0053 (2)
Cu10.0362 (2)0.0294 (2)0.0667 (3)0.00258 (17)0.0002 (3)0.0082 (3)
Cl20.0442 (6)0.0572 (6)0.0758 (8)0.0039 (5)0.0013 (5)0.0129 (6)
Cl10.0448 (6)0.0532 (7)0.0980 (9)0.0004 (5)0.0096 (6)0.0273 (6)
O10.0527 (18)0.0442 (17)0.085 (2)0.0085 (14)0.0185 (16)0.0066 (16)
O40.0498 (17)0.0346 (14)0.075 (2)0.0015 (13)0.0136 (15)0.0052 (14)
O30.0392 (16)0.0337 (13)0.0674 (19)0.0005 (11)0.0092 (14)0.0024 (12)
C60.039 (2)0.065 (3)0.057 (3)0.009 (2)0.001 (2)0.026 (2)
N10.042 (2)0.0386 (19)0.099 (3)0.0044 (15)0.0035 (19)0.0215 (18)
O20.0354 (15)0.0364 (15)0.0608 (18)0.0018 (11)0.0114 (13)0.0094 (12)
C120.055 (3)0.035 (2)0.055 (2)0.0055 (18)0.009 (2)0.0120 (18)
C150.040 (2)0.073 (3)0.054 (3)0.002 (2)0.011 (2)0.007 (2)
C130.037 (2)0.043 (2)0.046 (2)0.0038 (17)0.0034 (17)0.0089 (18)
C70.032 (2)0.052 (3)0.049 (2)0.0009 (17)0.0005 (18)0.0173 (18)
C170.041 (2)0.045 (2)0.046 (2)0.0089 (18)0.0035 (18)0.0039 (18)
C50.044 (3)0.086 (4)0.064 (3)0.016 (3)0.008 (2)0.031 (3)
C180.034 (2)0.042 (2)0.040 (2)0.0014 (17)0.0036 (17)0.0060 (17)
C10.080 (4)0.046 (3)0.128 (5)0.015 (3)0.030 (4)0.007 (3)
C30.050 (3)0.084 (3)0.056 (3)0.014 (2)0.016 (2)0.019 (3)
C160.054 (3)0.058 (3)0.048 (3)0.006 (2)0.010 (2)0.000 (2)
C110.071 (3)0.0296 (19)0.138 (4)0.0002 (19)0.006 (3)0.009 (3)
C80.049 (3)0.053 (3)0.075 (3)0.017 (2)0.009 (2)0.031 (2)
C190.077 (3)0.044 (2)0.075 (3)0.002 (2)0.015 (3)0.004 (2)
C20.040 (2)0.059 (3)0.052 (3)0.0037 (19)0.0075 (19)0.020 (2)
N20.0406 (18)0.0318 (15)0.077 (2)0.0013 (14)0.0081 (17)0.0010 (16)
C100.102 (3)0.050 (2)0.142 (4)0.014 (2)0.011 (3)0.001 (3)
C90.058 (3)0.035 (2)0.201 (8)0.011 (2)0.000 (4)0.031 (3)
C40.051 (3)0.097 (4)0.062 (3)0.005 (3)0.021 (2)0.022 (3)
C140.039 (2)0.060 (3)0.054 (3)0.006 (2)0.0008 (19)0.018 (2)
Geometric parameters (Å, º) top
Zn1—O32.088 (3)C7—C21.412 (6)
Zn1—O22.119 (2)C17—C161.371 (5)
Zn1—Cl22.2280 (12)C17—C181.413 (5)
Zn1—Cl12.2324 (12)C5—C41.371 (6)
Cu1—O31.926 (3)C5—H50.9300
Cu1—O21.936 (3)C1—H1A0.9600
Cu1—N21.953 (3)C1—H1B0.9600
Cu1—N11.956 (4)C1—H1C0.9600
O1—C21.347 (5)C3—C21.388 (6)
O1—C11.421 (6)C3—C41.381 (6)
O4—C171.364 (5)C3—H30.9300
O4—C191.421 (5)C16—H160.9300
O3—C181.330 (5)C11—C101.349 (7)
C6—C71.409 (6)C11—N21.495 (5)
C6—C51.412 (7)C11—H11A0.9700
C6—C81.423 (7)C11—H11B0.9700
N1—C81.286 (6)C8—H80.9300
N1—C91.490 (6)C19—H19A0.9600
O2—C71.318 (5)C19—H19B0.9600
C12—N21.272 (5)C19—H19C0.9600
C12—C131.450 (5)C10—C91.448 (9)
C12—H120.9300C10—H10A0.9700
C15—C141.350 (6)C10—H10B0.9700
C15—C161.413 (6)C9—H9A0.9700
C15—H150.9300C9—H9B0.9700
C13—C181.400 (5)C4—H40.9300
C13—C141.417 (6)C14—H140.9300
O3—Zn1—O271.43 (10)H1A—C1—H1B109.5
O3—Zn1—Cl2109.81 (8)O1—C1—H1C109.5
O2—Zn1—Cl2115.82 (9)H1A—C1—H1C109.5
O3—Zn1—Cl1117.09 (9)H1B—C1—H1C109.5
O2—Zn1—Cl1109.24 (8)C2—C3—C4120.3 (5)
Cl2—Zn1—Cl1122.58 (4)C2—C3—H3119.8
O3—Cu1—O278.97 (10)C4—C3—H3119.8
O3—Cu1—N292.81 (13)C17—C16—C15120.0 (4)
O2—Cu1—N2164.28 (13)C17—C16—H16120.0
O3—Cu1—N1165.52 (14)C15—C16—H16120.0
O2—Cu1—N192.58 (14)C10—C11—N2114.8 (4)
N2—Cu1—N198.00 (15)C10—C11—H11A108.6
C2—O1—C1119.1 (4)N2—C11—H11A108.6
C17—O4—C19117.3 (3)C10—C11—H11B108.6
C18—O3—Cu1128.6 (2)N2—C11—H11B108.6
C18—O3—Zn1123.6 (2)H11A—C11—H11B107.5
Cu1—O3—Zn1105.55 (12)N1—C8—C6128.6 (4)
C7—C6—C5119.2 (5)N1—C8—H8115.7
C7—C6—C8123.0 (4)C6—C8—H8115.7
C5—C6—C8117.7 (4)O4—C19—H19A109.5
C8—N1—C9114.7 (4)O4—C19—H19B109.5
C8—N1—Cu1123.9 (3)H19A—C19—H19B109.5
C9—N1—Cu1121.4 (3)O4—C19—H19C109.5
C7—O2—Cu1128.8 (2)H19A—C19—H19C109.5
C7—O2—Zn1124.7 (2)H19B—C19—H19C109.5
Cu1—O2—Zn1104.01 (11)O1—C2—C3125.5 (4)
N2—C12—C13128.2 (4)O1—C2—C7113.7 (3)
N2—C12—H12115.9C3—C2—C7120.8 (4)
C13—C12—H12115.9C12—N2—C11114.5 (4)
C14—C15—C16119.8 (4)C12—N2—Cu1123.9 (3)
C14—C15—H15120.1C11—N2—Cu1121.4 (3)
C16—C15—H15120.1C11—C10—C9124.4 (6)
C18—C13—C14119.6 (4)C11—C10—H10A106.2
C18—C13—C12122.5 (4)C9—C10—H10A106.2
C14—C13—C12117.7 (4)C11—C10—H10B106.2
O2—C7—C6122.6 (4)C9—C10—H10B106.2
O2—C7—C2119.1 (3)H10A—C10—H10B106.4
C6—C7—C2118.3 (4)C10—C9—N1117.7 (5)
O4—C17—C16125.7 (4)C10—C9—H9A107.9
O4—C17—C18113.3 (3)N1—C9—H9A107.9
C16—C17—C18121.0 (4)C10—C9—H9B107.9
C4—C5—C6121.1 (4)N1—C9—H9B107.9
C4—C5—H5119.4H9A—C9—H9B107.2
C6—C5—H5119.4C5—C4—C3120.0 (4)
O3—C18—C13122.7 (3)C5—C4—H4120.0
O3—C18—C17119.0 (3)C3—C4—H4120.0
C13—C18—C17118.3 (4)C15—C14—C13121.1 (4)
O1—C1—H1A109.5C15—C14—H14119.5
O1—C1—H1B109.5C13—C14—H14119.5

Experimental details

Crystal data
Chemical formula[CuZnCl2(C19H20N2O4)]
Mr540.18
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)13.0181 (9), 10.8503 (8), 14.7758 (11)
V3)2087.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.744, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
9818, 3486, 3084
Rint0.025
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.07
No. of reflections3486
No. of parameters262
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.58
Absolute structureFlack (1983), 1564 Friedel pairs
Absolute structure parameter0.006 (15)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Science Foundation of Shandong Provincial Education Department (J08LC11), China.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGheorghe, R., Cucos, P., Andruh, M., Costes, J. P., Donnadieu, B. & Shova, S. (2006). Chem. Eur. J. 12, 187–203.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarlin, K. D. (1993). Science, 261, 701–708.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKorupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845–2852.  Web of Science CSD CrossRef Google Scholar
First citationNg, S. W. (2005). Chin. J. Struct. Chem. 24, 1425–1439.  CAS Google Scholar
First citationNi, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem. 44, 2050–2059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNi, Z. H., Zhang, L. F., Tangoulis, V., Wernsdorfer, W., Cui, A. L., Sato, O. & Kou, H. Z. (2007). Inorg. Chem. 46, 6029–6037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds