organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-(1,3-Thia­zinan-2-yl­idene­amino)formo­nitrile

aJiang Nan University, Wu-Xi 214112, People's Republic of China, and, Finance Department of Business School, Hunan Normal University, Changsha 412006, People's Republic of China, and bJiang Nan University, Wu-Xi 214112, People's Republic of China;
*Correspondence e-mail: pyw123456@tom.com

(Received 9 March 2009; accepted 11 March 2009; online 19 March 2009)

In the title mol­ecule, C5H7N3S, the thia­zine ring shows a conformation close to a half-boat. The Cremer & Pople puckering parameters of the thia­zine ring are q2 = 0.4645 (2) Å, θ = 132.4 (3) and φ = 285.52 (2)°. The packing is stabilized by inter­molecular N—H⋯N and C—H⋯S inter­actions.

Related literature

For the crystal structures of thia­zine compounds, see: Kálmán, et al. (1977[Kálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett. 48, 4241-4244.]). For the biological activities of thia­zine-containing compounds, see: Soloway et al. (1978[Soloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene Heterocycles as Insecticides. In Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth and T. Smyth, pp. 153-158. New York: Plenum Press.]); Tomizawa et al. (1995[Tomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pestic. Sci. 20, 49-56.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N3S

  • Mr = 141.21

  • Monoclinic, P 21 /c

  • a = 7.0931 (14) Å

  • b = 12.689 (3) Å

  • c = 9.232 (3) Å

  • β = 128.617 (19)°

  • V = 649.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 153 K

  • 0.42 × 0.11 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.849, Tmax = 0.976

  • 4731 measured reflections

  • 1101 independent reflections

  • 970 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.192

  • S = 1.09

  • 1101 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 2.12 2.926 (4) 156
C3—H3B⋯S1ii 0.99 2.74 3.468 (3) 131
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The frequent occurence of pesticide residues accidents and the introduction of Green Trade Barriers to protect human health threaten export and national agriculture market and highlights the importance of food safely. Therefore, the development of pesticides with new chemical structures and high insecticidal activities with low residues is highly desirable. Consequently, spurred by the need for new pesticidal agents and the fact that many new effective pesticides possess heterocyclic rings in their structure, such as the thiazine ring (Soloway et al., 1978; Tomizawa et al., 1995), over the last few years, we have synthesized some novel thiazine derivatives. Here, we report the crystal structure of (Z)-(1,3-thiazinan-2-ylideneamino)formonitrile.

In (Z)-(1,3-thiazinan-2-ylideneamino)formonitrile (Fig. 1), all bond lengths are normal (Allen et al., 1987) and in a good agreement with those reported previously (Kálmán, et al., 1977). It is known that the imino tautomers can exist as two geometrical isomers, syn (Z) and anti (E), but in this crystal, only Z isomers have been observed. The thiazine ring shows a conformation near to half boat with the C2 atom deviating 0.618 (2) Å above the plane formed by S1, C1, N1, C3 and C4 [maximum least squares plane deviation for S1 0.053 (3) Å]. This geometry is proved by the puckering parameters q2 = 0.4645 (2) Å, θ = 132.4 (3)° and ϕ = 285.52 (2)° (Cremer & Pople, 1975). There are some weak N—H···N and C—H···S intermolecular interactions (see Table 1) which stabilize the title structure.

Related literature top

For the crystal structures of thiazine compounds, see: Kálmán, et al. (1977). For the biological activities of thiazine-containing compounds, see: Soloway et al. (1978); Tomizawa et al. (1995). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of dimethyl cyanocarbonimidodithioate 10 mmol (1.46 g) and 3-aminopropane-1-thiol (1.00 g, 11 mmol) was refluxed in absolute EtOH (20 ml) for 3 h. On cooling, the product crystallizes and was filtered and then recrystallized from absolute ethanol. Yield 1.20 g (85%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å, N—H = 0.86 Å with Uiso(H) = 1.2 times Ueq(C, N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
(Z)-(1,3-Thiazinan-2-ylideneamino)formonitrile top
Crystal data top
C5H7N3SF(000) = 296
Mr = 141.21Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2501 reflections
a = 7.0931 (14) Åθ = 2.3–25.1°
b = 12.689 (3) ŵ = 0.40 mm1
c = 9.232 (3) ÅT = 153 K
β = 128.617 (19)°Needle, colorless
V = 649.2 (3) Å30.42 × 0.11 × 0.06 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1101 independent reflections
Radiation source: Rotating Anode970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω Oscillation scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
h = 88
Tmin = 0.849, Tmax = 0.976k = 1415
4731 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1515P)2 + 0.068P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1101 reflectionsΔρmax = 1.14 e Å3
83 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (14)
Crystal data top
C5H7N3SV = 649.2 (3) Å3
Mr = 141.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0931 (14) ŵ = 0.40 mm1
b = 12.689 (3) ÅT = 153 K
c = 9.232 (3) Å0.42 × 0.11 × 0.06 mm
β = 128.617 (19)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1101 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
970 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.976Rint = 0.032
4731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.09Δρmax = 1.14 e Å3
1101 reflectionsΔρmin = 0.32 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97192 (13)0.28689 (6)0.64894 (10)0.0263 (5)
N10.7395 (4)0.47140 (17)0.5152 (3)0.0213 (6)
H1A0.62460.50770.42230.026*
N20.5695 (4)0.33420 (19)0.3151 (3)0.0231 (7)
N30.5490 (5)0.1469 (2)0.2340 (4)0.0324 (8)
C11.1467 (7)0.3667 (3)0.8561 (5)0.0406 (10)
H1B1.07640.36130.92060.049*
H1C1.31360.33900.94040.049*
C21.1539 (7)0.4785 (3)0.8161 (5)0.0403 (9)
H2B1.23300.48400.75820.048*
H2C1.25380.51790.93450.048*
C30.9066 (6)0.5297 (3)0.6889 (5)0.0316 (8)
H3A0.83740.53420.75440.038*
H3B0.92450.60230.66000.038*
C40.7430 (5)0.3711 (2)0.4833 (4)0.0189 (7)
C50.5676 (5)0.2335 (2)0.2802 (4)0.0228 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0269 (6)0.0189 (6)0.0199 (6)0.0071 (3)0.0081 (5)0.0043 (2)
N10.0262 (13)0.0119 (11)0.0189 (13)0.0008 (10)0.0108 (12)0.0002 (9)
N20.0243 (13)0.0159 (13)0.0174 (13)0.0017 (10)0.0073 (11)0.0020 (9)
N30.0362 (17)0.0226 (15)0.0376 (18)0.0079 (12)0.0226 (15)0.0118 (12)
C10.0317 (19)0.052 (2)0.0163 (17)0.0024 (15)0.0041 (15)0.0040 (14)
C20.040 (2)0.044 (2)0.032 (2)0.0136 (16)0.0198 (18)0.0108 (15)
C30.0365 (19)0.0224 (16)0.0284 (18)0.0043 (14)0.0165 (16)0.0111 (13)
C40.0206 (14)0.0179 (14)0.0165 (15)0.0000 (11)0.0107 (13)0.0014 (11)
C50.0180 (14)0.0265 (16)0.0181 (15)0.0046 (12)0.0085 (13)0.0056 (12)
Geometric parameters (Å, º) top
S1—C41.737 (3)C1—C21.474 (6)
S1—C11.806 (4)C1—H1B0.9900
N1—C41.310 (4)C1—H1C0.9900
N1—C31.467 (4)C2—C31.519 (5)
N1—H1A0.8600C2—H2B0.9900
N2—C51.315 (4)C2—H2C0.9900
N2—C41.327 (4)C3—H3A0.9900
N3—C51.156 (4)C3—H3B0.9900
C4—S1—C1103.52 (16)C1—C2—H2C108.8
C4—N1—C3128.3 (3)C3—C2—H2C108.8
C4—N1—H1A115.8H2B—C2—H2C107.7
C3—N1—H1A115.9N1—C3—C2112.6 (3)
C5—N2—C4119.3 (2)N1—C3—H3A109.1
C2—C1—S1112.5 (3)C2—C3—H3A109.1
C2—C1—H1B109.1N1—C3—H3B109.1
S1—C1—H1B109.1C2—C3—H3B109.1
C2—C1—H1C109.1H3A—C3—H3B107.8
S1—C1—H1C109.1N1—C4—N2118.2 (3)
H1B—C1—H1C107.8N1—C4—S1122.6 (2)
C1—C2—C3113.7 (3)N2—C4—S1119.2 (2)
C1—C2—H2B108.8N3—C5—N2174.2 (3)
C3—C2—H2B108.8
C4—S1—C1—C234.3 (3)C5—N2—C4—N1179.3 (3)
S1—C1—C2—C359.4 (4)C5—N2—C4—S13.5 (4)
C4—N1—C3—C225.2 (4)C1—S1—C4—N17.7 (3)
C1—C2—C3—N154.0 (4)C1—S1—C4—N2175.3 (2)
C3—N1—C4—N2178.6 (3)C4—N2—C5—N3177 (3)
C3—N1—C4—S14.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.122.926 (4)156
C3—H3B···S1ii0.992.743.468 (3)131
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H7N3S
Mr141.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.0931 (14), 12.689 (3), 9.232 (3)
β (°) 128.617 (19)
V3)649.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.42 × 0.11 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi 1995)
Tmin, Tmax0.849, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
4731, 1101, 970
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.192, 1.09
No. of reflections1101
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.32

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.122.926 (4)155.6
C3—H3B···S1ii0.992.743.468 (3)130.5
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge Dr Jing-Kun Xu for valuable advice given by him in the preparation of the reported compound.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett. 48, 4241–4244.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene Heterocycles as Insecticides. In Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth and T. Smyth, pp. 153–158. New York: Plenum Press.  Google Scholar
First citationTomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pestic. Sci. 20, 49–56.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds