metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Ferrocenylethyl­­idene)-4-(tri­fluoro­meth­yl)aniline

aInstitute of Inorganic and Analytical Chemistry, Friedrich Schiller University, August-Bebel-Strasse 2, 07743 Jena, Germany
*Correspondence e-mail: Wolfgang.Imhof@uni-jena.de

(Received 19 March 2009; accepted 25 March 2009; online 28 March 2009)

The title compound, [Fe(C5H5)(C13H9F3N)], was prepared by a condensation reaction from ferrocenylcarbaldehyde and 4-(trifluoro­meth­yl)aniline. The cyclo­penta­dienyl (Cp) rings are coplanar [dihedral angle = 1.4 (3)°] and the imine function is situated in the same plane. The aromatic substituent is bent out of the plane of the Cp ring to which the imine group is attached by 44.5 (4)°. The F atoms of the trifluoro­methyl substituent are disordered [occupancies 0.52 (2)/0.48 (2)].

Related literature

For the structures of ferrocenylpropenal and imines derived from it, see: Imhof (1997[Imhof, W. (1997). J. Organomet. Chem. 541, 109-116.], 1998[Imhof, W. (1998). Inorg. Chim. Acta, 282, 111-118.], 2004[Imhof, W. (2004). Acta Cryst. E60, m1234-m1236.], 2005[Imhof, W. (2005). Z. Anorg. Allg. Chem. 631, 174-177.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C13H9F3N)]

  • Mr = 357.15

  • Triclinic, [P \overline 1]

  • a = 5.8446 (7) Å

  • b = 10.383 (1) Å

  • c = 12.972 (2) Å

  • α = 100.467 (8)°

  • β = 91.670 (5)°

  • γ = 99.152 (8)°

  • V = 762.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 183 K

  • 0.12 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 2064 measured reflections

  • 2064 independent reflections

  • 1937 reflections with I > 2σ(I)

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 0.79

  • 2064 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1990[Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

In the course of a study on imines derived from aldehydes and amines exhibiting ferrocenyl substituents we recognized that ferrocenyl-prop-2-enal as well as some of the corresponding imines crystallize in non-centrosymmetric space groups (Imhof, 1997, 1998, 2004, 2005). The title compound crystallizes in the centrosymmetric space group P1. All bond lengths and bond angles are of expected values. The Cp rings are coplanar (dihedral angle 1.4 (3)°) and the imine function is situated in the same plane. The aromatic substituent is bent out of the plane of the Cp the imine moiety is attached to by 44.5 (4)°. The shortest intermolecular distances are observed between fluorine atoms and hydrogen atoms of a Cp ring. Nevertheless, since the CF3 substituent is highly disordered these contacts should not be discussed as C–H···F hydrogen bonds.

Related literature top

For the structures of ferrocenylpropenal and imines derived from it, see: Imhof (1997, 1998, 2004, 2005).

Experimental top

500 mg ferrocenylcarbaldehyde (2.34 mmol) were dissolved in 20 ml of anhydrous ethanol together with an equimolar amount of 4-trifluoromethyl-aniline (376 mg) and 10 mg of p-toluenesulfonic acid. The solution was stirred at room temperature for 1 h. After evaporation of 15 ml of the solvent the remaining solution was put into the refrigerator at 277 K resulting in the precipitation of the title compound as crystalline material (yield: 600 mg, 72%). MS (EI) [m/z, %]: 357 (M+, 100), 338 (M+ - F, 11), 292 (M+ - Cp, 3), 236 (M+ - CpFe, 3), 216 (C12H8NF2+, 71), 186 (C10H10Fe+, 11), 167 (C12H9N+, 49, 121 (CpFe+, 19), 56 (Fe+, 13); 1H-NMR (CDCl3, 298 K) [p.p.m.]: 4.12 (s, 5H, Cp), 4.18–4.45 (m, 4H, Cp), 7.14–7.19 (m, 2H, CHar), 7.58–7.61 (m, 2H, CHar), 8.08 (m, 1H, CH=N).

Refinement top

Hydrogen atoms were positioned geometrically at distances of 0.95 Å for aromatic C—H functions and the imine C—H group and were refined riding on their parent atoms with isotropic thermal parameters of 1.2 times the corresponding values of their parent atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: XP (Siemens, 1990).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 40% probability level.
N-(2-Ferrocenylethylidene)-4-(trifluoromethyl)aniline top
Crystal data top
[Fe(C5H5)(C13H9F3N)]Z = 2
Mr = 357.15F(000) = 364
Triclinic, P1Dx = 1.555 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8446 (7) ÅCell parameters from 2064 reflections
b = 10.383 (1) Åθ = 3.2–23.3°
c = 12.972 (2) ŵ = 1.02 mm1
α = 100.467 (8)°T = 183 K
β = 91.670 (5)°Plate, red
γ = 99.152 (8)°0.12 × 0.08 × 0.02 mm
V = 762.9 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
1937 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 23.3°, θmin = 3.5°
Graphite monochromatorh = 06
ω and ϕ scansk = 1111
2064 measured reflectionsl = 1414
2064 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.4666P]
where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max = 0.003
236 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Fe(C5H5)(C13H9F3N)]γ = 99.152 (8)°
Mr = 357.15V = 762.9 (2) Å3
Triclinic, P1Z = 2
a = 5.8446 (7) ÅMo Kα radiation
b = 10.383 (1) ŵ = 1.02 mm1
c = 12.972 (2) ÅT = 183 K
α = 100.467 (8)°0.12 × 0.08 × 0.02 mm
β = 91.670 (5)°
Data collection top
Nonius KappaCCD
diffractometer
1937 reflections with I > 2σ(I)
2064 measured reflectionsθmax = 23.3°
2064 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.79Δρmax = 0.25 e Å3
2064 reflectionsΔρmin = 0.41 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.48698 (5)0.24098 (3)0.23674 (3)0.03550 (19)
C10.3215 (5)0.3525 (3)0.0515 (2)0.0442 (6)
H10.44210.36030.00430.053*
N10.1114 (4)0.3180 (2)0.01264 (18)0.0461 (6)
C20.0736 (5)0.2917 (3)0.0978 (2)0.0420 (6)
C30.2148 (5)0.2243 (3)0.1663 (2)0.0467 (7)
H30.34360.19280.13910.056*
C40.1667 (5)0.2035 (3)0.2739 (2)0.0483 (7)
H40.26360.15860.32020.058*
C50.0220 (5)0.2480 (3)0.3142 (2)0.0463 (7)
C60.1655 (5)0.3124 (3)0.2467 (2)0.0467 (7)
H60.29610.34200.27400.056*
C70.1173 (4)0.3332 (3)0.1395 (2)0.0463 (7)
H70.21670.37670.09350.056*
C80.0774 (7)0.2247 (4)0.4301 (3)0.0617 (9)
F10.056 (3)0.3334 (12)0.4661 (11)0.101 (5)0.52 (2)
F20.1063 (14)0.1998 (13)0.4864 (8)0.108 (4)0.52 (2)
F30.312 (3)0.184 (3)0.4518 (9)0.170 (8)0.52 (2)
F1X0.140 (4)0.3235 (14)0.4636 (12)0.124 (6)0.48 (2)
F2X0.020 (5)0.144 (2)0.4837 (9)0.195 (9)0.48 (2)
F3X0.225 (3)0.1227 (9)0.4659 (7)0.097 (4)0.48 (2)
C90.3850 (4)0.3802 (3)0.1628 (2)0.0417 (6)
C100.2396 (5)0.3601 (3)0.2476 (2)0.0440 (6)
H100.07630.33150.24180.053*
C110.3828 (5)0.3903 (3)0.3413 (2)0.0492 (7)
H110.33180.38550.40960.059*
C120.6162 (5)0.4291 (3)0.3163 (2)0.0494 (7)
H120.74740.45460.36490.059*
C130.6191 (5)0.4234 (3)0.2070 (2)0.0463 (7)
H130.75240.44430.16920.056*
C140.4441 (5)0.0678 (3)0.1292 (2)0.0520 (7)
H140.37900.05480.05940.062*
C150.6824 (5)0.1108 (3)0.1618 (2)0.0477 (7)
H150.80490.13120.11780.057*
C160.7044 (5)0.1177 (3)0.2719 (2)0.0455 (7)
H160.84440.14350.31490.055*
C170.4799 (5)0.0790 (3)0.3063 (2)0.0498 (7)
H170.44360.07480.37670.060*
C180.3203 (5)0.0479 (3)0.2188 (3)0.0503 (7)
H180.15790.01870.21950.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0315 (3)0.0357 (3)0.0406 (3)0.00535 (17)0.00559 (16)0.01043 (17)
C10.0399 (15)0.0416 (15)0.0553 (17)0.0084 (12)0.0093 (12)0.0175 (12)
N10.0393 (13)0.0502 (14)0.0516 (14)0.0081 (10)0.0064 (10)0.0159 (11)
C20.0398 (14)0.0418 (16)0.0456 (15)0.0028 (12)0.0052 (11)0.0147 (12)
C30.0395 (14)0.0425 (16)0.0614 (18)0.0096 (12)0.0051 (13)0.0160 (13)
C40.0481 (16)0.0436 (16)0.0538 (17)0.0066 (13)0.0155 (13)0.0100 (13)
C50.0520 (16)0.0393 (16)0.0486 (16)0.0025 (13)0.0053 (12)0.0147 (12)
C60.0414 (15)0.0453 (16)0.0550 (17)0.0041 (12)0.0011 (12)0.0174 (13)
C70.0376 (14)0.0494 (17)0.0545 (17)0.0081 (12)0.0080 (12)0.0149 (13)
C80.079 (2)0.053 (2)0.0518 (18)0.002 (2)0.0017 (18)0.0162 (17)
F10.148 (8)0.086 (7)0.061 (4)0.032 (7)0.020 (4)0.042 (4)
F20.082 (5)0.202 (12)0.053 (4)0.038 (5)0.032 (3)0.040 (5)
F30.102 (7)0.304 (19)0.065 (5)0.074 (10)0.022 (4)0.032 (9)
F1X0.217 (15)0.110 (11)0.062 (5)0.098 (10)0.029 (7)0.008 (6)
F2X0.39 (3)0.175 (14)0.056 (5)0.198 (16)0.015 (11)0.023 (7)
F3X0.126 (9)0.094 (6)0.048 (3)0.055 (5)0.000 (5)0.015 (3)
C90.0396 (14)0.0378 (14)0.0508 (16)0.0084 (11)0.0056 (12)0.0141 (12)
C100.0394 (14)0.0407 (15)0.0544 (17)0.0117 (12)0.0072 (12)0.0102 (12)
C110.0588 (18)0.0424 (16)0.0493 (17)0.0145 (13)0.0102 (13)0.0100 (13)
C120.0495 (16)0.0392 (15)0.0571 (18)0.0056 (12)0.0043 (13)0.0060 (13)
C130.0400 (14)0.0403 (15)0.0596 (18)0.0019 (12)0.0045 (12)0.0162 (13)
C140.0546 (17)0.0437 (16)0.0561 (18)0.0146 (13)0.0041 (14)0.0010 (13)
C150.0458 (16)0.0470 (17)0.0532 (17)0.0145 (13)0.0115 (13)0.0094 (13)
C160.0424 (15)0.0432 (16)0.0544 (17)0.0123 (12)0.0019 (12)0.0140 (12)
C170.0567 (18)0.0427 (16)0.0560 (17)0.0136 (13)0.0108 (14)0.0193 (13)
C180.0386 (15)0.0353 (15)0.076 (2)0.0027 (12)0.0068 (14)0.0112 (13)
Geometric parameters (Å, º) top
Fe1—C92.027 (3)C8—F3X1.260 (10)
Fe1—C102.038 (3)C8—F1X1.284 (14)
Fe1—C132.037 (3)C8—F11.288 (11)
Fe1—C152.038 (3)C8—F21.348 (8)
Fe1—C162.039 (3)C8—F31.372 (13)
Fe1—C142.041 (3)F2X—F3X1.44 (4)
Fe1—C172.043 (3)C9—C101.434 (4)
Fe1—C112.049 (3)C9—C131.438 (4)
Fe1—C122.050 (3)C10—C111.412 (4)
Fe1—C182.054 (3)C10—H100.9500
C1—N11.284 (3)C11—C121.424 (4)
C1—C91.446 (4)C11—H110.9500
C1—H10.9500C12—C131.408 (4)
N1—C21.413 (4)C12—H120.9500
C2—C71.388 (4)C13—H130.9500
C2—C31.400 (4)C14—C181.416 (4)
C3—C41.386 (4)C14—C151.420 (4)
C3—H30.9500C14—H140.9500
C4—C51.385 (4)C15—C161.418 (4)
C4—H40.9500C15—H150.9500
C5—C61.387 (4)C16—C171.419 (4)
C5—C81.496 (4)C16—H160.9500
C6—C71.381 (4)C17—C181.404 (4)
C6—H60.9500C17—H170.9500
C7—H70.9500C18—H180.9500
C8—F2X1.213 (12)
C9—Fe1—C1041.32 (11)F1X—C8—F2103.8 (11)
C9—Fe1—C1341.45 (11)F1—C8—F285.3 (10)
C10—Fe1—C1369.23 (11)F2X—C8—F3107 (2)
C9—Fe1—C15119.87 (12)F3X—C8—F338.2 (9)
C10—Fe1—C15155.72 (12)F1X—C8—F377.4 (10)
C13—Fe1—C15106.89 (12)F1—C8—F398.7 (10)
C9—Fe1—C16155.40 (12)F2—C8—F3131.5 (11)
C10—Fe1—C16162.11 (11)F2X—C8—C5116.2 (7)
C13—Fe1—C16120.16 (11)F3X—C8—C5114.9 (5)
C15—Fe1—C1640.69 (12)F1X—C8—C5114.7 (7)
C9—Fe1—C14106.89 (12)F1—C8—C5112.6 (7)
C10—Fe1—C14120.63 (12)F2—C8—C5112.7 (5)
C13—Fe1—C14124.95 (12)F3—C8—C5110.0 (6)
C15—Fe1—C1440.75 (11)C8—F2X—F3X55.8 (11)
C16—Fe1—C1468.29 (12)C8—F3X—F2X52.8 (9)
C9—Fe1—C17161.88 (12)C10—C9—C13107.4 (2)
C10—Fe1—C17125.05 (11)C10—C9—C1128.3 (2)
C13—Fe1—C17155.74 (12)C13—C9—C1124.1 (2)
C15—Fe1—C1768.32 (12)C10—C9—Fe169.78 (15)
C16—Fe1—C1740.68 (11)C13—C9—Fe169.64 (15)
C14—Fe1—C1767.88 (12)C1—C9—Fe1121.78 (19)
C9—Fe1—C1168.69 (12)C11—C10—C9107.8 (2)
C10—Fe1—C1140.42 (12)C11—C10—Fe170.21 (17)
C13—Fe1—C1168.35 (12)C9—C10—Fe168.91 (14)
C15—Fe1—C11162.24 (12)C11—C10—H10126.1
C16—Fe1—C11125.61 (12)C9—C10—H10126.1
C14—Fe1—C11155.91 (13)Fe1—C10—H10126.3
C17—Fe1—C11108.56 (12)C10—C11—C12108.5 (3)
C9—Fe1—C1268.79 (11)C10—C11—Fe169.37 (16)
C10—Fe1—C1268.55 (11)C12—C11—Fe169.71 (16)
C13—Fe1—C1240.31 (12)C10—C11—H11125.7
C15—Fe1—C12124.85 (12)C12—C11—H11125.7
C16—Fe1—C12107.87 (12)Fe1—C11—H11126.8
C14—Fe1—C12161.84 (13)C13—C12—C11108.3 (3)
C17—Fe1—C12121.59 (12)C13—C12—Fe169.33 (16)
C11—Fe1—C1240.65 (12)C11—C12—Fe169.64 (16)
C9—Fe1—C18124.84 (12)C13—C12—H12125.9
C10—Fe1—C18107.73 (11)C11—C12—H12125.9
C13—Fe1—C18162.30 (13)Fe1—C12—H12126.7
C15—Fe1—C1868.31 (12)C12—C13—C9108.0 (2)
C16—Fe1—C1868.09 (11)C12—C13—Fe170.36 (16)
C14—Fe1—C1840.46 (12)C9—C13—Fe168.90 (15)
C17—Fe1—C1840.09 (12)C12—C13—H13126.0
C11—Fe1—C18121.37 (12)C9—C13—H13126.0
C12—Fe1—C18156.31 (13)Fe1—C13—H13126.3
N1—C1—C9123.8 (2)C18—C14—C15108.2 (3)
N1—C1—H1118.1C18—C14—Fe170.27 (16)
C9—C1—H1118.1C15—C14—Fe169.53 (16)
C1—N1—C2118.0 (2)C18—C14—H14125.9
C7—C2—C3118.9 (3)C15—C14—H14125.9
C7—C2—N1117.4 (3)Fe1—C14—H14125.9
C3—C2—N1123.6 (3)C16—C15—C14107.6 (3)
C4—C3—C2120.0 (3)C16—C15—Fe169.69 (16)
C4—C3—H3120.0C14—C15—Fe169.72 (16)
C2—C3—H3120.0C16—C15—H15126.2
C3—C4—C5120.4 (3)C14—C15—H15126.2
C3—C4—H4119.8Fe1—C15—H15126.0
C5—C4—H4119.8C15—C16—C17107.8 (3)
C4—C5—C6120.0 (3)C15—C16—Fe169.62 (17)
C4—C5—C8120.8 (3)C17—C16—Fe169.82 (16)
C6—C5—C8119.2 (3)C15—C16—H16126.1
C7—C6—C5119.7 (3)C17—C16—H16126.1
C7—C6—H6120.2Fe1—C16—H16126.0
C5—C6—H6120.2C18—C17—C16108.5 (3)
C6—C7—C2121.1 (3)C18—C17—Fe170.35 (17)
C6—C7—H7119.4C16—C17—Fe169.50 (16)
C2—C7—H7119.4C18—C17—H17125.8
F2X—C8—F3X71.3 (19)C16—C17—H17125.8
F2X—C8—F1X122.9 (13)Fe1—C17—H17126.0
F3X—C8—F1X108.1 (9)C17—C18—C14107.9 (2)
F2X—C8—F1110.8 (16)C17—C18—Fe169.56 (16)
F3X—C8—F1124.4 (8)C14—C18—Fe169.28 (16)
F1X—C8—F122.1 (12)C17—C18—H18126.0
F2X—C8—F231.8 (15)C14—C18—H18126.0
F3X—C8—F2101.3 (9)Fe1—C18—H18126.7
C9—C1—N1—C2178.9 (2)C18—Fe1—C12—C1148.3 (3)
C1—N1—C2—C7141.5 (3)C11—C12—C13—C90.1 (3)
C1—N1—C2—C339.9 (4)Fe1—C12—C13—C958.81 (19)
C7—C2—C3—C41.9 (4)C11—C12—C13—Fe158.9 (2)
N1—C2—C3—C4179.5 (2)C10—C9—C13—C120.1 (3)
C2—C3—C4—C50.6 (4)C1—C9—C13—C12175.0 (3)
C3—C4—C5—C60.7 (4)Fe1—C9—C13—C1259.7 (2)
C3—C4—C5—C8179.2 (3)C10—C9—C13—Fe159.83 (18)
C4—C5—C6—C70.8 (4)C1—C9—C13—Fe1115.3 (3)
C8—C5—C6—C7179.3 (3)C9—Fe1—C13—C12119.3 (2)
C5—C6—C7—C20.5 (4)C10—Fe1—C13—C1280.94 (18)
C3—C2—C7—C61.8 (4)C15—Fe1—C13—C12124.41 (18)
N1—C2—C7—C6179.4 (2)C16—Fe1—C13—C1282.1 (2)
C4—C5—C8—F2X14.3 (19)C14—Fe1—C13—C12165.50 (16)
C6—C5—C8—F2X164.2 (19)C17—Fe1—C13—C1249.8 (3)
C4—C5—C8—F3X94.9 (9)C11—Fe1—C13—C1237.44 (17)
C6—C5—C8—F3X83.7 (9)C18—Fe1—C13—C12164.2 (3)
C4—C5—C8—F1X139.0 (12)C10—Fe1—C13—C938.38 (16)
C6—C5—C8—F1X42.5 (12)C15—Fe1—C13—C9116.27 (17)
C4—C5—C8—F1114.9 (8)C16—Fe1—C13—C9158.53 (16)
C6—C5—C8—F166.5 (9)C14—Fe1—C13—C975.2 (2)
C4—C5—C8—F220.5 (7)C17—Fe1—C13—C9169.2 (2)
C6—C5—C8—F2161.0 (6)C11—Fe1—C13—C981.87 (18)
C4—C5—C8—F3136.1 (14)C12—Fe1—C13—C9119.3 (2)
C6—C5—C8—F342.5 (14)C18—Fe1—C13—C944.9 (4)
F1X—C8—F2X—F3X99.9 (19)C9—Fe1—C14—C18124.34 (17)
F1—C8—F2X—F3X120.7 (11)C10—Fe1—C14—C1881.4 (2)
F2—C8—F2X—F3X160 (2)C13—Fe1—C14—C18166.32 (17)
F3—C8—F2X—F3X14.1 (12)C15—Fe1—C14—C18119.2 (3)
C5—C8—F2X—F3X109.2 (9)C16—Fe1—C14—C1881.25 (18)
F1X—C8—F3X—F2X119.5 (12)C17—Fe1—C14—C1837.24 (17)
F1—C8—F3X—F2X102.8 (12)C11—Fe1—C14—C1848.9 (4)
F2—C8—F3X—F2X10.8 (11)C12—Fe1—C14—C18162.4 (3)
F3—C8—F3X—F2X157.8 (16)C9—Fe1—C14—C15116.43 (18)
C5—C8—F3X—F2X110.9 (10)C10—Fe1—C14—C15159.34 (17)
N1—C1—C9—C108.2 (4)C13—Fe1—C14—C1574.4 (2)
N1—C1—C9—C13177.7 (3)C16—Fe1—C14—C1537.99 (17)
N1—C1—C9—Fe196.6 (3)C17—Fe1—C14—C1581.99 (19)
C13—Fe1—C9—C10118.5 (2)C11—Fe1—C14—C15168.1 (2)
C15—Fe1—C9—C10159.84 (16)C12—Fe1—C14—C1543.1 (4)
C16—Fe1—C9—C10167.9 (2)C18—Fe1—C14—C15119.2 (3)
C14—Fe1—C9—C10117.46 (17)C18—C14—C15—C160.2 (3)
C17—Fe1—C9—C1047.2 (4)Fe1—C14—C15—C1659.6 (2)
C11—Fe1—C9—C1037.45 (16)C18—C14—C15—Fe159.9 (2)
C12—Fe1—C9—C1081.22 (17)C9—Fe1—C15—C16160.10 (16)
C18—Fe1—C9—C1076.70 (19)C10—Fe1—C15—C16166.3 (2)
C10—Fe1—C9—C13118.5 (2)C13—Fe1—C15—C16116.89 (17)
C15—Fe1—C9—C1381.71 (19)C14—Fe1—C15—C16118.7 (2)
C16—Fe1—C9—C1349.5 (3)C17—Fe1—C15—C1637.88 (17)
C14—Fe1—C9—C13124.09 (17)C11—Fe1—C15—C1645.3 (4)
C17—Fe1—C9—C13165.6 (3)C12—Fe1—C15—C1676.3 (2)
C11—Fe1—C9—C1381.00 (18)C18—Fe1—C15—C1681.18 (18)
C12—Fe1—C9—C1337.23 (17)C9—Fe1—C15—C1481.2 (2)
C18—Fe1—C9—C13164.85 (17)C10—Fe1—C15—C1447.6 (3)
C10—Fe1—C9—C1123.3 (3)C13—Fe1—C15—C14124.39 (18)
C13—Fe1—C9—C1118.2 (3)C16—Fe1—C15—C14118.7 (2)
C15—Fe1—C9—C136.5 (3)C17—Fe1—C15—C1480.83 (19)
C16—Fe1—C9—C168.8 (3)C11—Fe1—C15—C14164.0 (3)
C14—Fe1—C9—C15.9 (2)C12—Fe1—C15—C14164.95 (18)
C17—Fe1—C9—C176.1 (4)C18—Fe1—C15—C1437.54 (18)
C11—Fe1—C9—C1160.8 (2)C14—C15—C16—C170.0 (3)
C12—Fe1—C9—C1155.5 (2)Fe1—C15—C16—C1759.63 (19)
C18—Fe1—C9—C146.6 (3)C14—C15—C16—Fe159.7 (2)
C13—C9—C10—C110.1 (3)C9—Fe1—C16—C1545.2 (3)
C1—C9—C10—C11174.8 (3)C10—Fe1—C16—C15161.5 (3)
Fe1—C9—C10—C1159.68 (19)C13—Fe1—C16—C1580.76 (19)
C13—C9—C10—Fe159.74 (18)C14—Fe1—C16—C1538.04 (17)
C1—C9—C10—Fe1115.1 (3)C17—Fe1—C16—C15118.9 (2)
C9—Fe1—C10—C11119.1 (2)C11—Fe1—C16—C15164.53 (16)
C13—Fe1—C10—C1180.61 (18)C12—Fe1—C16—C15123.09 (17)
C15—Fe1—C10—C11165.7 (2)C18—Fe1—C16—C1581.77 (18)
C16—Fe1—C10—C1144.4 (4)C9—Fe1—C16—C17164.1 (2)
C14—Fe1—C10—C11160.21 (17)C10—Fe1—C16—C1742.6 (4)
C17—Fe1—C10—C1177.1 (2)C13—Fe1—C16—C17160.32 (16)
C12—Fe1—C10—C1137.27 (17)C15—Fe1—C16—C17118.9 (2)
C18—Fe1—C10—C11117.87 (18)C14—Fe1—C16—C1780.88 (19)
C13—Fe1—C10—C938.50 (16)C11—Fe1—C16—C1776.6 (2)
C15—Fe1—C10—C946.6 (3)C12—Fe1—C16—C17118.00 (18)
C16—Fe1—C10—C9163.6 (3)C18—Fe1—C16—C1737.15 (18)
C14—Fe1—C10—C980.67 (19)C15—C16—C17—C180.3 (3)
C17—Fe1—C10—C9163.83 (16)Fe1—C16—C17—C1859.8 (2)
C11—Fe1—C10—C9119.1 (2)C15—C16—C17—Fe159.5 (2)
C12—Fe1—C10—C981.85 (17)C9—Fe1—C17—C1838.9 (4)
C18—Fe1—C10—C9123.01 (17)C10—Fe1—C17—C1875.2 (2)
C9—C10—C11—C120.0 (3)C13—Fe1—C17—C18164.7 (2)
Fe1—C10—C11—C1258.9 (2)C15—Fe1—C17—C1881.65 (18)
C9—C10—C11—Fe158.87 (18)C16—Fe1—C17—C18119.5 (2)
C9—Fe1—C11—C1038.25 (16)C14—Fe1—C17—C1837.57 (17)
C13—Fe1—C11—C1082.96 (18)C11—Fe1—C17—C18116.99 (18)
C15—Fe1—C11—C10160.6 (3)C12—Fe1—C17—C18159.84 (17)
C16—Fe1—C11—C10164.66 (16)C9—Fe1—C17—C16158.5 (3)
C14—Fe1—C11—C1045.5 (4)C10—Fe1—C17—C16165.28 (16)
C17—Fe1—C11—C10122.69 (17)C13—Fe1—C17—C1645.1 (3)
C12—Fe1—C11—C10120.1 (2)C15—Fe1—C17—C1637.89 (17)
C18—Fe1—C11—C1080.5 (2)C14—Fe1—C17—C1681.96 (18)
C9—Fe1—C11—C1281.84 (18)C11—Fe1—C17—C16123.48 (18)
C10—Fe1—C11—C12120.1 (2)C12—Fe1—C17—C1680.6 (2)
C13—Fe1—C11—C1237.14 (17)C18—Fe1—C17—C16119.5 (3)
C15—Fe1—C11—C1240.5 (4)C16—C17—C18—C140.4 (3)
C16—Fe1—C11—C1275.2 (2)Fe1—C17—C18—C1458.8 (2)
C14—Fe1—C11—C12165.6 (3)C16—C17—C18—Fe159.2 (2)
C17—Fe1—C11—C12117.21 (18)C15—C14—C18—C170.4 (3)
C18—Fe1—C11—C12159.45 (17)Fe1—C14—C18—C1759.0 (2)
C10—C11—C12—C130.1 (3)C15—C14—C18—Fe159.4 (2)
Fe1—C11—C12—C1358.7 (2)C9—Fe1—C18—C17166.23 (16)
C10—C11—C12—Fe158.7 (2)C10—Fe1—C18—C17123.81 (17)
C9—Fe1—C12—C1338.26 (17)C13—Fe1—C18—C17159.1 (3)
C10—Fe1—C12—C1382.77 (18)C15—Fe1—C18—C1781.67 (18)
C15—Fe1—C12—C1374.1 (2)C16—Fe1—C18—C1737.69 (17)
C16—Fe1—C12—C13115.86 (18)C14—Fe1—C18—C17119.5 (2)
C14—Fe1—C12—C1341.2 (4)C11—Fe1—C18—C1781.6 (2)
C17—Fe1—C12—C13158.37 (17)C12—Fe1—C18—C1746.9 (3)
C11—Fe1—C12—C13119.8 (3)C9—Fe1—C18—C1474.3 (2)
C18—Fe1—C12—C13168.1 (2)C10—Fe1—C18—C14116.72 (18)
C9—Fe1—C12—C1181.58 (18)C13—Fe1—C18—C1439.6 (4)
C10—Fe1—C12—C1137.07 (17)C15—Fe1—C18—C1437.81 (17)
C13—Fe1—C12—C11119.8 (3)C16—Fe1—C18—C1481.79 (18)
C15—Fe1—C12—C11166.04 (16)C17—Fe1—C18—C14119.5 (2)
C16—Fe1—C12—C11124.31 (18)C11—Fe1—C18—C14158.89 (17)
C14—Fe1—C12—C11161.0 (3)C12—Fe1—C18—C14166.4 (2)
C17—Fe1—C12—C1181.8 (2)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H9F3N)]
Mr357.15
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)5.8446 (7), 10.383 (1), 12.972 (2)
α, β, γ (°)100.467 (8), 91.670 (5), 99.152 (8)
V3)762.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.12 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2064, 2064, 1937
Rint?
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 0.79
No. of reflections2064
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.41

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1990).

 

Acknowledgements

The author thanks the Deutsche Forschungsgemeinschaft (SFB 436) for financial support.

References

First citationImhof, W. (1997). J. Organomet. Chem. 541, 109–116.  CSD CrossRef CAS Web of Science Google Scholar
First citationImhof, W. (1998). Inorg. Chim. Acta, 282, 111–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationImhof, W. (2004). Acta Cryst. E60, m1234–m1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationImhof, W. (2005). Z. Anorg. Allg. Chem. 631, 174–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds