metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­di­methyl­­idyne)]diphenolato-κ2O1,N,N′,O1′}cobalt(III) monohydrate

aDepartment of Biology, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: jianxin_xing@163.com

(Received 19 March 2009; accepted 26 March 2009; online 31 March 2009)

The title compound, [Co(C18H18N2O4)Cl(H2O)]·H2O, contains a distorted octa­hedral cobalt(III) complex with a 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­dimethyl­idyne)]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent mol­ecule (half-occupancy). The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H⋯O hydrogen bonds may help to stabilize the crystal packing.

Related literature

For related literature, see: Aurangzeb et al. (1994[Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Li et al. (2008[Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141-3143.]); Fei & Fang (2008[Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.]); Wang et al. (1979[Wang, B.-C., Huie, B. T. & Schaefer, W. P. (1979). Acta Cryst. B35, 1232-1234.]); Xia et al. (2007[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40-o41.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C18H18N2O4)Cl(H2O)]·H2O

  • Mr = 456.76

  • Trigonal, [R \overline 3]

  • a = 26.490 (2) Å

  • c = 15.6234 (17) Å

  • V = 9494.5 (14) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.917

  • 13737 measured reflections

  • 4116 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.259

  • S = 1.03

  • 4116 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 1.55 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7D⋯O3i 0.86 2.44 2.883 (5) 113
O7—H7D⋯O5i 0.86 2.22 3.078 (5) 178
O7—H7C⋯O6i 0.84 2.58 3.033 (6) 115
O7—H7C⋯O4i 0.84 1.95 2.798 (5) 178
O2—H2D⋯O2ii 0.86 2.01 2.861 (9) 178
O2—H2C⋯O8ii 0.84 2.13 2.868 (19) 147
O2—H2C⋯O1ii 0.84 1.72 2.56 (3) 175
O8—H8E⋯O2iii 0.85 2.04 2.868 (19) 163
O8—H8D⋯Cl1 0.84 2.34 3.147 (12) 163
O1—H1D⋯Cl1 0.85 2.34 3.11 (3) 150
Symmetry codes: (i) [-x+{\script{5\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (ii) [x-y+{\script{1\over 3}}, x-{\script{1\over 3}}, -z+{\script{2\over 3}}]; (iii) [y+{\script{1\over 3}}, -x+y+{\script{2\over 3}}, -z+{\script{2\over 3}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

The synthesis and structural investigation of Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Fei & Fang, 2008; Zhang & Janiak, 2001). Here, we report a new Schiff base cobalt complex based on the tetradentate Schiff base ligand 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol.

The molecular structure of title compound is shown in Fig. 1. The coordination sphere for the CoIII ion in the title complex is a distorted octahedron, in which four equational positions come from two N atoms, two O atoms of the Schiff base ligand, and the other two trans ones are occupied by one chloro ion and the O atom of water molecule. The Co—O and Co—N bond lengths are basically consistent with the corresponding distances in the similar cobalt tetradentate Schiff base complex bis[[µ-bis(salicylaldehyde)ethylenediimine]-dicobalt(III) dichloride chloroform solvate(Wang, et al., 1979), while the Co—O (H2O) and the Co—Cl bond lengths are slightly longer than those found in the same complex. Additional, molecules are held together via intermolecular O—H···O and intramolecular O—H···Cl and O—H···O hydrogen bonds.

Related literature top

For related literature, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Fei & Fang (2008); Wang et al. (1979); Xia et al. (2007); Zhang & Janiak (2001).

Experimental top

6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol was synthesized according to a modified reported method (Xia, et al., 2007). A mixture of CoCl2.6H2O (1 mmol, 237 mg), 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol, 326.4 mg) and 40 ml methanol was stirred for 30 min at 323 K, before it was filtered to remove the insolvable materials. Crystals suitable for X-ray diffraction analysis were obtained by slow evaparation at room temperature for three weeks with a yield about 40%.

Refinement top

All H atoms bonded to the C atoms were placed in geometrically calculated positions with C—H = 0.96 Å for methyl H atoms, C—H = 0.97 Å for methylene H atoms, C—H = 0.93 Å for aromatic H atoms and were refined isotropic with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) of parent atom using a riding model. The H atoms of the disordered H2O were located from difference maps, in which the H2B and H2C were also disordered with the individual occupancy of 25%, and the O—H bond lengths were constrained to the value of 0.85 (1)Å with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The solvate water molecule and all the H atoms have been omitted for clarity.
Aquachlorido{6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilodimethylidyne)]diphenolato- κ2O1,N,N',O1'}cobalt(III) monohydrate top
Crystal data top
[Co(C18H18N2O4)Cl(H2O)]·H2ODx = 1.438 Mg m3
Dm = 1.438 Mg m3
Dm measured by not measured
Mr = 456.76Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5356 reflections
Hall symbol: -R 3θ = 2.7–26.9°
a = 26.490 (2) ŵ = 0.98 mm1
c = 15.6234 (17) ÅT = 293 K
V = 9494.5 (14) Å3Block, orange
Z = 180.15 × 0.13 × 0.09 mm
F(000) = 4248
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4116 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 26.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2832
Tmin = 0.868, Tmax = 0.917k = 3225
13737 measured reflectionsl = 1912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.259H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1835P)2]
where P = (Fo2 + 2Fc2)/3
4116 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Co(C18H18N2O4)Cl(H2O)]·H2OZ = 18
Mr = 456.76Mo Kα radiation
Trigonal, R3µ = 0.98 mm1
a = 26.490 (2) ÅT = 293 K
c = 15.6234 (17) Å0.15 × 0.13 × 0.09 mm
V = 9494.5 (14) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4116 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2834 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.917Rint = 0.062
13737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.259H-atom parameters constrained
S = 1.03Δρmax = 1.55 e Å3
4116 reflectionsΔρmin = 1.03 e Å3
274 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.73792 (3)0.12280 (3)0.59262 (4)0.0357 (3)
Cl10.62851 (7)0.08016 (8)0.61355 (10)0.0637 (5)
O10.5945 (14)0.144 (3)0.478 (3)0.057 (16)0.15 (3)
H1C0.61270.16360.43550.068*0.15 (3)
H1D0.61440.13050.50140.068*0.15 (3)
O80.5817 (6)0.1059 (11)0.4435 (11)0.058 (7)0.35 (3)
H8E0.59710.14060.42410.069*0.35 (3)
H8D0.59900.10680.48870.069*0.35 (3)
O20.7381 (4)0.2826 (4)0.3172 (5)0.055 (2)0.50
H2C0.75320.27730.27350.066*0.25
H2D0.75390.31930.32580.066*0.50
H2B0.70120.26750.31090.066*0.25
O30.74870 (15)0.07928 (14)0.6768 (2)0.0349 (8)
O40.76146 (16)0.18833 (15)0.6619 (2)0.0404 (8)
O50.77398 (18)0.04171 (17)0.8092 (2)0.0481 (9)
O60.78604 (19)0.25833 (17)0.7866 (3)0.0552 (10)
O70.83443 (14)0.15912 (15)0.5522 (2)0.0401 (8)
H7C0.85520.15390.58810.048*
H7D0.84990.19580.54340.048*
N10.71890 (18)0.06087 (19)0.5088 (2)0.0376 (9)
N20.73614 (19)0.1675 (2)0.4961 (3)0.0422 (10)
C10.7312 (2)0.0054 (2)0.5961 (3)0.0417 (12)
C20.7457 (2)0.0273 (2)0.6710 (3)0.0352 (10)
C30.7579 (3)0.0050 (2)0.7421 (3)0.0429 (12)
C40.7545 (3)0.0489 (3)0.7403 (4)0.0608 (17)
H40.76330.06280.78940.073*
C50.7387 (4)0.0815 (3)0.6683 (5)0.074 (2)
H50.73540.11810.66850.088*
C60.7280 (3)0.0612 (3)0.5979 (5)0.0592 (16)
H60.71820.08350.54820.071*
C70.7192 (2)0.0129 (2)0.5214 (3)0.0399 (11)
H70.71020.01180.47450.048*
C80.7796 (3)0.0185 (4)0.8876 (4)0.070 (2)
H8A0.74450.01770.89880.104*
H8B0.78610.04560.93290.104*
H8C0.81200.01180.88440.104*
C90.7448 (2)0.2507 (3)0.5713 (4)0.0462 (12)
C100.7583 (2)0.2354 (2)0.6479 (3)0.0406 (12)
C110.7708 (3)0.2746 (2)0.7164 (4)0.0473 (13)
C120.7685 (3)0.3254 (3)0.7061 (5)0.0666 (18)
H120.77660.35030.75250.080*
C130.7547 (4)0.3394 (3)0.6299 (6)0.079 (2)
H130.75270.37330.62430.095*
C140.7439 (3)0.3038 (3)0.5620 (5)0.0635 (17)
H140.73580.31400.50890.076*
C150.8063 (3)0.2980 (3)0.8565 (4)0.0628 (18)
H15A0.84270.33180.84150.094*
H15B0.81170.27950.90560.094*
H15C0.77810.30960.86950.094*
C160.7376 (3)0.2170 (3)0.4987 (4)0.0477 (13)
H160.73340.23170.44680.057*
C170.7351 (3)0.1387 (3)0.4155 (3)0.0537 (15)
H17A0.77450.15080.39750.064*
H17B0.71660.14960.37120.064*
C180.7020 (3)0.0749 (3)0.4289 (3)0.0537 (14)
H18A0.66060.06130.42940.064*
H18B0.70990.05550.38240.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0441 (5)0.0379 (4)0.0280 (4)0.0226 (3)0.0021 (3)0.0013 (2)
Cl10.0478 (9)0.0909 (12)0.0596 (10)0.0402 (9)0.0133 (7)0.0135 (8)
O10.053 (18)0.08 (3)0.05 (2)0.04 (2)0.001 (14)0.02 (2)
O80.054 (8)0.079 (15)0.050 (9)0.041 (9)0.001 (6)0.023 (9)
O20.059 (5)0.064 (5)0.038 (4)0.028 (4)0.016 (3)0.006 (4)
O30.048 (2)0.0316 (17)0.0316 (16)0.0247 (16)0.0040 (14)0.0019 (13)
O40.055 (2)0.0358 (19)0.0366 (18)0.0271 (17)0.0075 (15)0.0045 (14)
O50.067 (3)0.050 (2)0.0366 (19)0.036 (2)0.0030 (17)0.0073 (16)
O60.070 (3)0.041 (2)0.052 (2)0.025 (2)0.0006 (19)0.0114 (17)
O70.039 (2)0.0397 (19)0.0370 (19)0.0165 (16)0.0023 (14)0.0003 (14)
N10.035 (2)0.044 (2)0.031 (2)0.0166 (19)0.0035 (16)0.0091 (17)
N20.043 (2)0.052 (3)0.033 (2)0.025 (2)0.0031 (18)0.0039 (18)
C10.040 (3)0.033 (3)0.051 (3)0.018 (2)0.001 (2)0.009 (2)
C20.032 (2)0.033 (2)0.043 (3)0.018 (2)0.0029 (19)0.0007 (19)
C30.052 (3)0.040 (3)0.041 (3)0.027 (3)0.004 (2)0.008 (2)
C40.083 (5)0.048 (4)0.063 (4)0.041 (4)0.004 (3)0.008 (3)
C50.100 (6)0.042 (4)0.091 (6)0.044 (4)0.014 (4)0.005 (3)
C60.072 (4)0.038 (3)0.070 (4)0.029 (3)0.002 (3)0.013 (3)
C70.035 (3)0.037 (3)0.041 (3)0.014 (2)0.004 (2)0.015 (2)
C80.096 (5)0.088 (5)0.038 (3)0.056 (5)0.000 (3)0.018 (3)
C90.044 (3)0.047 (3)0.055 (3)0.028 (3)0.001 (2)0.007 (2)
C100.040 (3)0.035 (3)0.052 (3)0.021 (2)0.004 (2)0.002 (2)
C110.047 (3)0.038 (3)0.057 (3)0.021 (3)0.002 (2)0.005 (2)
C120.082 (5)0.046 (4)0.080 (5)0.039 (4)0.002 (4)0.011 (3)
C130.093 (6)0.051 (4)0.108 (6)0.047 (4)0.005 (5)0.003 (4)
C140.068 (4)0.055 (4)0.079 (4)0.040 (3)0.003 (3)0.008 (3)
C150.060 (4)0.053 (4)0.056 (4)0.014 (3)0.002 (3)0.023 (3)
C160.047 (3)0.053 (3)0.046 (3)0.026 (3)0.005 (2)0.013 (2)
C170.064 (4)0.063 (4)0.029 (3)0.028 (3)0.005 (2)0.001 (2)
C180.062 (4)0.066 (4)0.033 (3)0.032 (3)0.008 (2)0.009 (3)
Geometric parameters (Å, º) top
Co1—O31.863 (3)C2—C31.370 (7)
Co1—O41.868 (3)C3—C41.385 (8)
Co1—N21.932 (4)C4—C51.350 (9)
Co1—N11.957 (4)C4—H40.9300
Co1—O72.324 (3)C5—C61.315 (10)
Co1—Cl12.5513 (17)C5—H50.9300
O1—H1C0.8381C6—H60.9300
O1—H1D0.8514C7—H70.9300
O1—H8E0.8596C8—H8A0.9600
O1—H8D1.0649C8—H8B0.9600
O8—H1D1.1965C8—H8C0.9600
O8—H8E0.8530C9—C101.367 (8)
O8—H8D0.8360C9—C161.396 (8)
O2—H2C0.8374C9—C141.426 (8)
O2—H2D0.8561C10—C111.411 (8)
O2—H2B0.8563C11—C121.385 (9)
O3—C21.342 (6)C12—C131.350 (11)
O4—C101.309 (6)C12—H120.9300
O5—C31.347 (7)C13—C141.352 (10)
O5—C81.412 (7)C13—H130.9300
O6—C111.314 (7)C14—H140.9300
O6—C151.422 (7)C15—H15A0.9600
O7—H7C0.8439C15—H15B0.9600
O7—H7D0.8561C15—H15C0.9600
N1—C71.290 (7)C16—H160.9300
N1—C181.436 (7)C17—C181.480 (9)
N2—C161.294 (8)C17—H17A0.9700
N2—C171.465 (7)C17—H17B0.9700
C1—C71.362 (7)C18—H18A0.9700
C1—C21.391 (7)C18—H18B0.9700
C1—C61.438 (8)
O3—Co1—O494.76 (14)C6—C5—C4119.7 (6)
O3—Co1—N2171.32 (17)C6—C5—H5120.1
O4—Co1—N288.92 (18)C4—C5—H5120.1
O3—Co1—N190.48 (16)C5—C6—C1121.5 (6)
O4—Co1—N1172.92 (17)C5—C6—H6119.3
N2—Co1—N185.24 (18)C1—C6—H6119.3
O3—Co1—O788.31 (14)N1—C7—C1126.8 (5)
O4—Co1—O789.17 (15)N1—C7—H7116.6
N2—Co1—O783.87 (16)C1—C7—H7116.6
N1—Co1—O786.23 (15)O5—C8—H8A109.5
O3—Co1—Cl197.31 (12)O5—C8—H8B109.5
O4—Co1—Cl196.58 (13)H8A—C8—H8B109.5
N2—Co1—Cl190.05 (14)O5—C8—H8C109.5
N1—Co1—Cl187.44 (13)H8A—C8—H8C109.5
O7—Co1—Cl1171.56 (10)H8B—C8—H8C109.5
H1C—O1—H1D108.1C10—C9—C16119.6 (5)
H1C—O1—H8E39.0C10—C9—C14121.2 (6)
H1D—O1—H8E105.8C16—C9—C14118.9 (5)
H1C—O1—H8D113.4O4—C10—C9125.4 (5)
H1D—O1—H8D33.5O4—C10—C11118.2 (5)
H8E—O1—H8D89.9C9—C10—C11116.4 (5)
H1C—O8—H1D65.3O6—C11—C12125.9 (6)
H1C—O8—H8E16.5O6—C11—C10112.8 (5)
H1D—O8—H8E81.6C12—C11—C10121.2 (6)
H1C—O8—H8D91.9C13—C12—C11121.3 (6)
H1D—O8—H8D26.9C13—C12—H12119.4
H8E—O8—H8D108.1C11—C12—H12119.4
H2C—O2—H2D108.4C12—C13—C14119.5 (6)
H2C—O2—H2B111.0C12—C13—H13120.2
H2D—O2—H2B110.1C14—C13—H13120.2
C2—O3—Co1129.7 (3)C13—C14—C9120.3 (7)
C10—O4—Co1129.6 (3)C13—C14—H14119.8
C3—O5—C8115.2 (5)C9—C14—H14119.8
C11—O6—C15117.5 (5)O6—C15—H15A109.5
Co1—O7—H7C115.1O6—C15—H15B109.5
Co1—O7—H7D108.4H15A—C15—H15B109.5
H7C—O7—H7D108.2O6—C15—H15C109.5
C7—N1—C18122.9 (4)H15A—C15—H15C109.5
C7—N1—Co1126.7 (3)H15B—C15—H15C109.5
C18—N1—Co1110.4 (4)N2—C16—C9126.8 (5)
C16—N2—C17122.5 (5)N2—C16—H16116.6
C16—N2—Co1126.9 (4)C9—C16—H16116.6
C17—N2—Co1110.6 (4)N2—C17—C18108.7 (5)
C7—C1—C2122.6 (5)N2—C17—H17A110.0
C7—C1—C6118.7 (5)C18—C17—H17A110.0
C2—C1—C6118.7 (5)N2—C17—H17B110.0
O3—C2—C3118.8 (4)C18—C17—H17B110.0
O3—C2—C1123.6 (5)H17A—C17—H17B108.3
C3—C2—C1117.6 (5)N1—C18—C17109.6 (5)
O5—C3—C2112.2 (4)N1—C18—H18A109.7
O5—C3—C4126.4 (5)C17—C18—H18A109.7
C2—C3—C4121.4 (5)N1—C18—H18B109.7
C5—C4—C3121.0 (6)C17—C18—H18B109.7
C5—C4—H4119.5H18A—C18—H18B108.2
C3—C4—H4119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7D···O3i0.862.442.883 (5)113
O7—H7D···O5i0.862.223.078 (5)178
O7—H7C···O6i0.842.583.033 (6)115
O7—H7C···O4i0.841.952.798 (5)178
O2—H2D···O2ii0.862.012.861 (9)178
O2—H2C···O8ii0.842.132.868 (19)147
O2—H2C···O1ii0.841.722.56 (3)175
O8—H8E···O2iii0.852.042.868 (19)163
O8—H8D···Cl10.842.343.147 (12)163
O1—H1D···Cl10.852.343.11 (3)150
Symmetry codes: (i) x+5/3, y+1/3, z+4/3; (ii) xy+1/3, x1/3, z+2/3; (iii) y+1/3, x+y+2/3, z+2/3.

Experimental details

Crystal data
Chemical formula[Co(C18H18N2O4)Cl(H2O)]·H2O
Mr456.76
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)26.490 (2), 15.6234 (17)
V3)9494.5 (14)
Z18
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.15 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.868, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
13737, 4116, 2834
Rint0.062
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.259, 1.03
No. of reflections4116
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.55, 1.03

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7D···O3i0.862.442.883 (5)112.6
O7—H7D···O5i0.862.223.078 (5)177.8
O7—H7C···O6i0.842.583.033 (6)115.0
O7—H7C···O4i0.841.952.798 (5)177.8
O2—H2D···O2ii0.862.012.861 (9)178.0
O2—H2C···O8ii0.842.132.868 (19)146.9
O2—H2C···O1ii0.841.722.56 (3)174.9
O8—H8E···O2iii0.852.042.868 (19)162.8
O8—H8D···Cl10.842.343.147 (12)163.4
O1—H1D···Cl10.852.343.11 (3)149.7
Symmetry codes: (i) x+5/3, y+1/3, z+4/3; (ii) xy+1/3, x1/3, z+2/3; (iii) y+1/3, x+y+2/3, z+2/3.
 

References

First citationAurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationLi, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141–3143.  CAS Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B.-C., Huie, B. T. & Schaefer, W. P. (1979). Acta Cryst. B35, 1232–1234.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40–o41.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds