organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S,5S)-2-(2-Thien­yl)-1,3-dioxolane-4,5-dicarboxamide

aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technoolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 18 February 2009; accepted 7 March 2009; online 14 March 2009)

In the title compound, C9H10N2O4S, which is an important inter­mediate for the preparation of anti­tumor platinum drugs, the dioxolane ring adopts an envelope conformation with the C atom bonded to the thienyl ring at the flap position. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds result in the formation of two five-membered rings having envelope conformations. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background, see: Kim et al. (1994[Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471-1485.]); Pandey et al. (1997[Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O4S

  • Mr = 242.25

  • Monoclinic, P 21

  • a = 8.9250 (18) Å

  • b = 4.796 (1) Å

  • c = 12.109 (2) Å

  • β = 90.60 (3)°

  • V = 518.29 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.912, Tmax = 0.969

  • 2135 measured reflections

  • 2007 independent reflections

  • 1820 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.124

  • S = 1.01

  • 2007 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 876 Friedel pairs

  • Flack parameter: 0.04 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.06 2.909 (4) 167
N1—H1B⋯O1 0.86 2.30 2.673 (4) 106
N2—H2A⋯O3ii 0.86 2.29 3.059 (3) 149
N2—H2B⋯O4iii 0.86 2.28 3.077 (3) 154
C6—H6A⋯O4iii 0.98 2.27 3.049 (3) 136
C7—H7A⋯O4 0.98 2.45 2.866 (3) 105
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al., 1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we have synthesized the title compound and reported herein its crystal structure.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (S/C1-C4) is, of course, planar, while ring B (O1/O2/C5-C7) adopts an envelope conformation with C5 atom displaced by 0.529 (3) Å from the plane of the other ring atoms. The intramolecular N-H···O and C-H···O hydrogen bonds (Table 1) result in the formations of two five-membered rings C (O1/N1/C7/C8/H1B) and D (O4/C6/C7/C9/H7A), having envelope conformations with atoms O1 and O4 displaced by -0.424 (3) Å and 0.461 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular N-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Kim et al. (1994); Pandey et al. (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a mixture of thiophene-2-carbaldehyde (272 mg, 2.43 mmol), (2S,3S)-diethyltartrate (500 mg, 2.43 mmol), anhydrous copper sulfate (776 mg, 2.86 mmol) and methanesulfonic acid (1 drop) in anhydrous toluene (8 ml) was stirred at room temperature for 12 h. Anhydrous potassium carbonate (40 mg) was added, and then stirred for a further 20 min. The resulting colorless precipitate was obtained by evaporation, and dried in the vacuo. This product (10 mmol) was dissolved in anhydrous ethanol (50 ml), then a current of dry ammonia, dried with calcium chloride, was passed over the reaction mixture at room temperature for about 4 h. The reaction mixture was evaporated to dryness. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution after three weeks.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(4S,5S)-2-(2-Thienyl)-1,3-dioxolane-4,5-dicarboxamide top
Crystal data top
C9H10N2O4SF(000) = 252
Mr = 242.25Dx = 1.552 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.9250 (18) Åθ = 9–13°
b = 4.796 (1) ŵ = 0.31 mm1
c = 12.109 (2) ÅT = 294 K
β = 90.60 (3)°Block, colorless
V = 518.29 (18) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1820 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 55
Tmin = 0.912, Tmax = 0.969l = 1414
2135 measured reflections3 standard reflections every 120 min
2007 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.25 e Å3
2007 reflectionsΔρmin = 0.34 e Å3
146 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.134 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 876 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (12)
Crystal data top
C9H10N2O4SV = 518.29 (18) Å3
Mr = 242.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9250 (18) ŵ = 0.31 mm1
b = 4.796 (1) ÅT = 294 K
c = 12.109 (2) Å0.30 × 0.20 × 0.10 mm
β = 90.60 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1820 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.912, Tmax = 0.9693 standard reflections every 120 min
2135 measured reflections intensity decay: 1%
2007 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.25 e Å3
S = 1.01Δρmin = 0.34 e Å3
2007 reflectionsAbsolute structure: Flack (1983), 876 Friedel pairs
146 parametersAbsolute structure parameter: 0.04 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.14355 (10)0.3977 (2)0.03359 (7)0.0579 (3)
O10.1962 (2)0.0273 (4)0.23675 (15)0.0388 (5)
O20.4057 (2)0.2850 (4)0.21945 (16)0.0409 (5)
O30.1404 (2)0.2632 (5)0.51056 (16)0.0475 (6)
O40.5298 (2)0.1909 (4)0.3765 (2)0.0496 (6)
N10.0403 (3)0.4070 (7)0.3492 (2)0.0504 (6)
H1A0.02140.51800.38110.060*
H1B0.04050.39440.27840.060*
N20.6553 (2)0.2124 (5)0.39050 (18)0.0383 (5)
H2A0.73830.13150.40790.046*
H2B0.65160.39120.38560.046*
C10.1625 (4)0.3760 (10)0.1056 (3)0.0639 (10)
H1C0.10630.48030.15580.077*
C20.2684 (4)0.1899 (10)0.1349 (3)0.0622 (10)
H2C0.29520.15520.20760.075*
C30.3340 (4)0.0537 (9)0.0427 (2)0.0548 (8)
H3A0.40710.08370.04800.066*
C40.2777 (3)0.1472 (6)0.0543 (2)0.0397 (7)
C50.3239 (3)0.0656 (6)0.1672 (2)0.0381 (6)
H5A0.38430.10490.16530.046*
C60.3965 (3)0.2327 (6)0.3351 (2)0.0323 (6)
H6A0.39400.40940.37570.039*
C70.2451 (3)0.0773 (6)0.3475 (2)0.0329 (6)
H7A0.26050.09990.38630.039*
C80.1346 (3)0.2558 (6)0.4091 (2)0.0347 (6)
C90.5335 (3)0.0618 (6)0.3713 (2)0.0319 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0688 (6)0.0563 (5)0.0484 (4)0.0176 (4)0.0005 (4)0.0024 (4)
O10.0370 (10)0.0429 (11)0.0365 (10)0.0130 (8)0.0048 (8)0.0072 (8)
O20.0340 (9)0.0457 (11)0.0428 (10)0.0131 (8)0.0024 (7)0.0140 (9)
O30.0439 (11)0.0656 (15)0.0331 (10)0.0154 (10)0.0051 (8)0.0026 (10)
O40.0446 (11)0.0252 (11)0.0788 (16)0.0001 (8)0.0073 (10)0.0023 (9)
N10.0458 (13)0.0636 (17)0.0418 (12)0.0139 (14)0.0058 (10)0.0047 (15)
N20.0315 (11)0.0310 (12)0.0523 (14)0.0012 (9)0.0047 (9)0.0023 (10)
C10.082 (2)0.066 (2)0.0434 (17)0.002 (2)0.0114 (16)0.0095 (18)
C20.065 (2)0.083 (3)0.0388 (17)0.011 (2)0.0067 (14)0.0020 (17)
C30.0546 (18)0.068 (2)0.0412 (16)0.0068 (17)0.0039 (13)0.0059 (16)
C40.0343 (13)0.0417 (16)0.0432 (15)0.0043 (11)0.0030 (11)0.0010 (13)
C50.0369 (13)0.0371 (15)0.0405 (14)0.0013 (12)0.0075 (11)0.0011 (12)
C60.0313 (12)0.0255 (12)0.0402 (14)0.0037 (10)0.0006 (10)0.0013 (10)
C70.0343 (13)0.0280 (13)0.0364 (13)0.0069 (11)0.0005 (10)0.0015 (11)
C80.0271 (12)0.0412 (16)0.0360 (14)0.0115 (11)0.0017 (10)0.0035 (11)
C90.0314 (12)0.0339 (15)0.0304 (12)0.0005 (10)0.0005 (10)0.0003 (10)
Geometric parameters (Å, º) top
S—C11.698 (3)C1—C21.350 (6)
S—C41.713 (3)C1—H1C0.9300
O1—C51.436 (3)C2—C31.415 (5)
O1—C71.426 (3)C2—H2C0.9300
O2—C51.425 (3)C3—C41.359 (4)
O2—C61.426 (3)C3—H3A0.9300
O3—C81.230 (3)C4—C51.477 (4)
O4—C91.214 (4)C5—H5A0.9800
N1—C81.322 (4)C6—C71.552 (3)
N1—H1A0.8600C6—C91.532 (4)
N1—H1B0.8600C6—H6A0.9800
N2—C91.324 (3)C7—C81.509 (4)
N2—H2A0.8600C7—H7A0.9800
N2—H2B0.8600
C1—S—C491.47 (18)O2—C5—O1103.9 (2)
C7—O1—C5107.04 (19)O2—C5—C4110.6 (2)
C5—O2—C6105.76 (18)O2—C5—H5A110.3
C8—N1—H1A120.0C4—C5—H5A110.3
C8—N1—H1B120.0O2—C6—C7103.76 (19)
H1A—N1—H1B120.0O2—C6—C9108.7 (2)
C9—N2—H2A120.0O2—C6—H6A110.0
C9—N2—H2B120.0C7—C6—H6A110.0
H2A—N2—H2B120.0C9—C6—C7114.1 (2)
S—C1—H1C123.9C9—C6—H6A110.0
C2—C1—S112.3 (3)O1—C7—C6104.4 (2)
C2—C1—H1C123.9O1—C7—C8111.4 (2)
C1—C2—C3112.5 (3)O1—C7—H7A110.2
C1—C2—H2C123.7C6—C7—H7A110.2
C3—C2—H2C123.7C8—C7—C6110.5 (2)
C2—C3—H3A124.0C8—C7—H7A110.2
C4—C3—C2112.1 (3)O3—C8—N1123.5 (3)
C4—C3—H3A124.0O3—C8—C7119.3 (2)
C3—C4—S111.7 (2)N1—C8—C7117.1 (2)
C3—C4—C5127.7 (3)O4—C9—N2123.9 (3)
C5—C4—S120.6 (2)O4—C9—C6121.8 (2)
O1—C5—C4111.2 (2)N2—C9—C6114.2 (2)
O1—C5—H5A110.3
C4—S—C1—C21.2 (3)S—C4—C5—O269.8 (3)
C1—S—C4—C30.2 (3)C3—C4—C5—O1137.8 (3)
C1—S—C4—C5177.7 (2)C3—C4—C5—O2107.3 (4)
C7—O1—C5—O234.8 (2)O2—C6—C7—O17.5 (3)
C7—O1—C5—C4153.8 (2)O2—C6—C7—C8112.4 (2)
C5—O1—C7—C8135.7 (2)C9—C6—C7—O1110.7 (2)
C5—O1—C7—C616.5 (3)C9—C6—C7—C8129.4 (2)
C6—O2—C5—O139.8 (2)O1—C7—C8—O3162.6 (2)
C6—O2—C5—C4159.2 (2)O1—C7—C8—N120.4 (3)
C5—O2—C6—C728.8 (3)C6—C7—C8—O381.8 (3)
C5—O2—C6—C993.0 (2)C6—C7—C8—N195.1 (3)
S—C1—C2—C31.7 (5)O2—C6—C9—O494.2 (3)
C1—C2—C3—C41.6 (5)O2—C6—C9—N282.7 (3)
C2—C3—C4—S0.7 (4)C7—C6—C9—O421.0 (4)
C2—C3—C4—C5176.6 (3)C7—C6—C9—N2162.1 (2)
S—C4—C5—O145.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.062.909 (4)167
N1—H1B···O10.862.302.673 (4)106
N2—H2A···O3ii0.862.293.059 (3)149
N2—H2B···O4iii0.862.283.077 (3)154
C6—H6A···O4iii0.982.273.049 (3)136
C7—H7A···O40.982.452.866 (3)105
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H10N2O4S
Mr242.25
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)8.9250 (18), 4.796 (1), 12.109 (2)
β (°) 90.60 (3)
V3)518.29 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.912, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
2135, 2007, 1820
Rint0.015
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.124, 1.01
No. of reflections2007
No. of parameters146
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34
Absolute structureFlack (1983), 876 Friedel pairs
Absolute structure parameter0.04 (12)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.062.909 (4)167.00
N1—H1B···O10.862.302.673 (4)106.00
N2—H2A···O3ii0.862.293.059 (3)149.00
N2—H2B···O4iii0.862.283.077 (3)154.00
C6—H6A···O4iii0.982.273.049 (3)136.00
C7—H7A···O40.982.452.866 (3)105.00
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds