organic compounds
(4S,5S)-2-(2-Thienyl)-1,3-dioxolane-4,5-dicarboxamide
aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technoolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn
In the title compound, C9H10N2O4S, which is an important intermediate for the preparation of antitumor platinum drugs, the dioxolane ring adopts an with the C atom bonded to the thienyl ring at the flap position. Intramolecular N—H⋯O and C—H⋯O hydrogen bonds result in the formation of two five-membered rings having envelope conformations. In the intermolecular N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Related literature
For general background, see: Kim et al. (1994); Pandey et al. (1997). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809008368/hk2628sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809008368/hk2628Isup2.hkl
For the preparation of the title compound, a mixture of thiophene-2-carbaldehyde (272 mg, 2.43 mmol), (2S,3S)-diethyltartrate (500 mg, 2.43 mmol), anhydrous copper sulfate (776 mg, 2.86 mmol) and methanesulfonic acid (1 drop) in anhydrous toluene (8 ml) was stirred at room temperature for 12 h. Anhydrous potassium carbonate (40 mg) was added, and then stirred for a further 20 min. The resulting colorless precipitate was obtained by evaporation, and dried in the vacuo. This product (10 mmol) was dissolved in anhydrous ethanol (50 ml), then a current of dry ammonia, dried with calcium chloride, was passed over the reaction mixture at room temperature for about 4 h. The reaction mixture was evaporated to dryness. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution after three weeks.
H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C9H10N2O4S | F(000) = 252 |
Mr = 242.25 | Dx = 1.552 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 25 reflections |
a = 8.9250 (18) Å | θ = 9–13° |
b = 4.796 (1) Å | µ = 0.31 mm−1 |
c = 12.109 (2) Å | T = 294 K |
β = 90.60 (3)° | Block, colorless |
V = 518.29 (18) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 1820 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
Graphite monochromator | θmax = 26.0°, θmin = 1.7° |
ω/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −5→5 |
Tmin = 0.912, Tmax = 0.969 | l = −14→14 |
2135 measured reflections | 3 standard reflections every 120 min |
2007 independent reflections | intensity decay: 1% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.124 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.25 e Å−3 |
2007 reflections | Δρmin = −0.34 e Å−3 |
146 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.134 (16) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 876 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.04 (12) |
C9H10N2O4S | V = 518.29 (18) Å3 |
Mr = 242.25 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.9250 (18) Å | µ = 0.31 mm−1 |
b = 4.796 (1) Å | T = 294 K |
c = 12.109 (2) Å | 0.30 × 0.20 × 0.10 mm |
β = 90.60 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1820 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.015 |
Tmin = 0.912, Tmax = 0.969 | 3 standard reflections every 120 min |
2135 measured reflections | intensity decay: 1% |
2007 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.124 | Δρmax = 0.25 e Å−3 |
S = 1.01 | Δρmin = −0.34 e Å−3 |
2007 reflections | Absolute structure: Flack (1983), 876 Friedel pairs |
146 parameters | Absolute structure parameter: 0.04 (12) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.14355 (10) | 0.3977 (2) | 0.03359 (7) | 0.0579 (3) | |
O1 | 0.1962 (2) | 0.0273 (4) | 0.23675 (15) | 0.0388 (5) | |
O2 | 0.4057 (2) | 0.2850 (4) | 0.21945 (16) | 0.0409 (5) | |
O3 | 0.1404 (2) | 0.2632 (5) | 0.51056 (16) | 0.0475 (6) | |
O4 | 0.5298 (2) | −0.1909 (4) | 0.3765 (2) | 0.0496 (6) | |
N1 | 0.0403 (3) | 0.4070 (7) | 0.3492 (2) | 0.0504 (6) | |
H1A | −0.0214 | 0.5180 | 0.3811 | 0.060* | |
H1B | 0.0405 | 0.3944 | 0.2784 | 0.060* | |
N2 | 0.6553 (2) | 0.2124 (5) | 0.39050 (18) | 0.0383 (5) | |
H2A | 0.7383 | 0.1315 | 0.4079 | 0.046* | |
H2B | 0.6516 | 0.3912 | 0.3856 | 0.046* | |
C1 | 0.1625 (4) | 0.3760 (10) | −0.1056 (3) | 0.0639 (10) | |
H1C | 0.1063 | 0.4803 | −0.1558 | 0.077* | |
C2 | 0.2684 (4) | 0.1899 (10) | −0.1349 (3) | 0.0622 (10) | |
H2C | 0.2952 | 0.1552 | −0.2076 | 0.075* | |
C3 | 0.3340 (4) | 0.0537 (9) | −0.0427 (2) | 0.0548 (8) | |
H3A | 0.4071 | −0.0837 | −0.0480 | 0.066* | |
C4 | 0.2777 (3) | 0.1472 (6) | 0.0543 (2) | 0.0397 (7) | |
C5 | 0.3239 (3) | 0.0656 (6) | 0.1672 (2) | 0.0381 (6) | |
H5A | 0.3843 | −0.1049 | 0.1653 | 0.046* | |
C6 | 0.3965 (3) | 0.2327 (6) | 0.3351 (2) | 0.0323 (6) | |
H6A | 0.3940 | 0.4094 | 0.3757 | 0.039* | |
C7 | 0.2451 (3) | 0.0773 (6) | 0.3475 (2) | 0.0329 (6) | |
H7A | 0.2605 | −0.0999 | 0.3863 | 0.039* | |
C8 | 0.1346 (3) | 0.2558 (6) | 0.4091 (2) | 0.0347 (6) | |
C9 | 0.5335 (3) | 0.0618 (6) | 0.3713 (2) | 0.0319 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0688 (6) | 0.0563 (5) | 0.0484 (4) | 0.0176 (4) | 0.0005 (4) | 0.0024 (4) |
O1 | 0.0370 (10) | 0.0429 (11) | 0.0365 (10) | −0.0130 (8) | 0.0048 (8) | −0.0072 (8) |
O2 | 0.0340 (9) | 0.0457 (11) | 0.0428 (10) | −0.0131 (8) | −0.0024 (7) | 0.0140 (9) |
O3 | 0.0439 (11) | 0.0656 (15) | 0.0331 (10) | −0.0154 (10) | 0.0051 (8) | −0.0026 (10) |
O4 | 0.0446 (11) | 0.0252 (11) | 0.0788 (16) | −0.0001 (8) | −0.0073 (10) | 0.0023 (9) |
N1 | 0.0458 (13) | 0.0636 (17) | 0.0418 (12) | 0.0139 (14) | 0.0058 (10) | −0.0047 (15) |
N2 | 0.0315 (11) | 0.0310 (12) | 0.0523 (14) | −0.0012 (9) | −0.0047 (9) | 0.0023 (10) |
C1 | 0.082 (2) | 0.066 (2) | 0.0434 (17) | −0.002 (2) | −0.0114 (16) | 0.0095 (18) |
C2 | 0.065 (2) | 0.083 (3) | 0.0388 (17) | −0.011 (2) | 0.0067 (14) | −0.0020 (17) |
C3 | 0.0546 (18) | 0.068 (2) | 0.0412 (16) | 0.0068 (17) | 0.0039 (13) | −0.0059 (16) |
C4 | 0.0343 (13) | 0.0417 (16) | 0.0432 (15) | −0.0043 (11) | 0.0030 (11) | 0.0010 (13) |
C5 | 0.0369 (13) | 0.0371 (15) | 0.0405 (14) | −0.0013 (12) | 0.0075 (11) | −0.0011 (12) |
C6 | 0.0313 (12) | 0.0255 (12) | 0.0402 (14) | −0.0037 (10) | 0.0006 (10) | 0.0013 (10) |
C7 | 0.0343 (13) | 0.0280 (13) | 0.0364 (13) | −0.0069 (11) | 0.0005 (10) | 0.0015 (11) |
C8 | 0.0271 (12) | 0.0412 (16) | 0.0360 (14) | −0.0115 (11) | 0.0017 (10) | −0.0035 (11) |
C9 | 0.0314 (12) | 0.0339 (15) | 0.0304 (12) | 0.0005 (10) | 0.0005 (10) | −0.0003 (10) |
S—C1 | 1.698 (3) | C1—C2 | 1.350 (6) |
S—C4 | 1.713 (3) | C1—H1C | 0.9300 |
O1—C5 | 1.436 (3) | C2—C3 | 1.415 (5) |
O1—C7 | 1.426 (3) | C2—H2C | 0.9300 |
O2—C5 | 1.425 (3) | C3—C4 | 1.359 (4) |
O2—C6 | 1.426 (3) | C3—H3A | 0.9300 |
O3—C8 | 1.230 (3) | C4—C5 | 1.477 (4) |
O4—C9 | 1.214 (4) | C5—H5A | 0.9800 |
N1—C8 | 1.322 (4) | C6—C7 | 1.552 (3) |
N1—H1A | 0.8600 | C6—C9 | 1.532 (4) |
N1—H1B | 0.8600 | C6—H6A | 0.9800 |
N2—C9 | 1.324 (3) | C7—C8 | 1.509 (4) |
N2—H2A | 0.8600 | C7—H7A | 0.9800 |
N2—H2B | 0.8600 | ||
C1—S—C4 | 91.47 (18) | O2—C5—O1 | 103.9 (2) |
C7—O1—C5 | 107.04 (19) | O2—C5—C4 | 110.6 (2) |
C5—O2—C6 | 105.76 (18) | O2—C5—H5A | 110.3 |
C8—N1—H1A | 120.0 | C4—C5—H5A | 110.3 |
C8—N1—H1B | 120.0 | O2—C6—C7 | 103.76 (19) |
H1A—N1—H1B | 120.0 | O2—C6—C9 | 108.7 (2) |
C9—N2—H2A | 120.0 | O2—C6—H6A | 110.0 |
C9—N2—H2B | 120.0 | C7—C6—H6A | 110.0 |
H2A—N2—H2B | 120.0 | C9—C6—C7 | 114.1 (2) |
S—C1—H1C | 123.9 | C9—C6—H6A | 110.0 |
C2—C1—S | 112.3 (3) | O1—C7—C6 | 104.4 (2) |
C2—C1—H1C | 123.9 | O1—C7—C8 | 111.4 (2) |
C1—C2—C3 | 112.5 (3) | O1—C7—H7A | 110.2 |
C1—C2—H2C | 123.7 | C6—C7—H7A | 110.2 |
C3—C2—H2C | 123.7 | C8—C7—C6 | 110.5 (2) |
C2—C3—H3A | 124.0 | C8—C7—H7A | 110.2 |
C4—C3—C2 | 112.1 (3) | O3—C8—N1 | 123.5 (3) |
C4—C3—H3A | 124.0 | O3—C8—C7 | 119.3 (2) |
C3—C4—S | 111.7 (2) | N1—C8—C7 | 117.1 (2) |
C3—C4—C5 | 127.7 (3) | O4—C9—N2 | 123.9 (3) |
C5—C4—S | 120.6 (2) | O4—C9—C6 | 121.8 (2) |
O1—C5—C4 | 111.2 (2) | N2—C9—C6 | 114.2 (2) |
O1—C5—H5A | 110.3 | ||
C4—S—C1—C2 | −1.2 (3) | S—C4—C5—O2 | −69.8 (3) |
C1—S—C4—C3 | 0.2 (3) | C3—C4—C5—O1 | −137.8 (3) |
C1—S—C4—C5 | 177.7 (2) | C3—C4—C5—O2 | 107.3 (4) |
C7—O1—C5—O2 | −34.8 (2) | O2—C6—C7—O1 | 7.5 (3) |
C7—O1—C5—C4 | −153.8 (2) | O2—C6—C7—C8 | −112.4 (2) |
C5—O1—C7—C8 | 135.7 (2) | C9—C6—C7—O1 | −110.7 (2) |
C5—O1—C7—C6 | 16.5 (3) | C9—C6—C7—C8 | 129.4 (2) |
C6—O2—C5—O1 | 39.8 (2) | O1—C7—C8—O3 | 162.6 (2) |
C6—O2—C5—C4 | 159.2 (2) | O1—C7—C8—N1 | −20.4 (3) |
C5—O2—C6—C7 | −28.8 (3) | C6—C7—C8—O3 | −81.8 (3) |
C5—O2—C6—C9 | 93.0 (2) | C6—C7—C8—N1 | 95.1 (3) |
S—C1—C2—C3 | 1.7 (5) | O2—C6—C9—O4 | −94.2 (3) |
C1—C2—C3—C4 | −1.6 (5) | O2—C6—C9—N2 | 82.7 (3) |
C2—C3—C4—S | 0.7 (4) | C7—C6—C9—O4 | 21.0 (4) |
C2—C3—C4—C5 | −176.6 (3) | C7—C6—C9—N2 | −162.1 (2) |
S—C4—C5—O1 | 45.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.86 | 2.06 | 2.909 (4) | 167 |
N1—H1B···O1 | 0.86 | 2.30 | 2.673 (4) | 106 |
N2—H2A···O3ii | 0.86 | 2.29 | 3.059 (3) | 149 |
N2—H2B···O4iii | 0.86 | 2.28 | 3.077 (3) | 154 |
C6—H6A···O4iii | 0.98 | 2.27 | 3.049 (3) | 136 |
C7—H7A···O4 | 0.98 | 2.45 | 2.866 (3) | 105 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C9H10N2O4S |
Mr | 242.25 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 8.9250 (18), 4.796 (1), 12.109 (2) |
β (°) | 90.60 (3) |
V (Å3) | 518.29 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.912, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2135, 2007, 1820 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.124, 1.01 |
No. of reflections | 2007 |
No. of parameters | 146 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.34 |
Absolute structure | Flack (1983), 876 Friedel pairs |
Absolute structure parameter | 0.04 (12) |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.86 | 2.06 | 2.909 (4) | 167.00 |
N1—H1B···O1 | 0.86 | 2.30 | 2.673 (4) | 106.00 |
N2—H2A···O3ii | 0.86 | 2.29 | 3.059 (3) | 149.00 |
N2—H2B···O4iii | 0.86 | 2.28 | 3.077 (3) | 154.00 |
C6—H6A···O4iii | 0.98 | 2.27 | 3.049 (3) | 136.00 |
C7—H7A···O4 | 0.98 | 2.45 | 2.866 (3) | 105.00 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) x, y+1, z. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485. CrossRef CAS PubMed Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al., 1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we have synthesized the title compound and reported herein its crystal structure.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (S/C1-C4) is, of course, planar, while ring B (O1/O2/C5-C7) adopts an envelope conformation with C5 atom displaced by 0.529 (3) Å from the plane of the other ring atoms. The intramolecular N-H···O and C-H···O hydrogen bonds (Table 1) result in the formations of two five-membered rings C (O1/N1/C7/C8/H1B) and D (O4/C6/C7/C9/H7A), having envelope conformations with atoms O1 and O4 displaced by -0.424 (3) Å and 0.461 (3) Å, respectively, from the planes of the other ring atoms.
In the crystal structure, intermolecular N-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.