organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­methyl-2,3-di­hydro­thieno[3,4-b][1,4]dioxine

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 24 February 2009; accepted 26 February 2009; online 6 March 2009)

In the mol­ecule of the title compound, C7H7ClO2S, the six-membered ring adopts a twisted conformation. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. There is also a weak C—H⋯π inter­action.

Related literature

For a related structure, see: Jose et al. (2005[Jose, L. S., Rafael, G., Egon, R. & Peter, B. (2005). Org. Lett. 7, 2345-2348.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7ClO2S

  • Mr = 190.64

  • Monoclinic, P 21 /n

  • a = 10.227 (2) Å

  • b = 5.7500 (12) Å

  • c = 14.376 (3) Å

  • β = 105.55 (3)°

  • V = 814.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.825, Tmax = 0.936

  • 1565 measured reflections

  • 1479 independent reflections

  • 1065 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.185

  • S = 1.01

  • 1479 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.98 2.45 3.317 (5) 146
C1—H1BCg1ii 0.97 2.75 3.708 (5) 168
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z. Cg1 is the centroid of the S/C4–C7 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

A great deal of interest has been devoted in recent years to the synthesis and investigation of functionalized 3,4-ethylenedioxythiophene (EDOT) systems because of their potential as active materials in applications such as light-emitting diodes (OLEDs), plastic lasers, field-effect transistors and photovoltaic devices (Jose et al., 2005). The title compound is an important intermediate in the synthesis of functionalized 3,4-ethylenedioxy- thiophene (EDOT) systems, and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring B (S/C4-C7) is, of course, planar. Ring A (O1/O2/C2-C5) is not planar, having total puckering amplitude, QT, of 0.659 (3) Å and twisted conformation [ϕ = -149.80 (3)° and θ = 154.28 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. There is also a weak C—H···π interaction (Table 1).

Related literature top

For a related structure, see: Jose et al. (2005). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975). Cg1 is the centroid of the S/C4–C7 ring.

Experimental top

For the preparation of the title compound, 3,4-dimethoxythiophene (1.14 g, 7.9 mmol), 3-chloro-1,2-propanediol (2.45 g, 22.2 mmol), p-toluene- sulfonic acid monohydrate (0.151 g, 0.81 mmol) and dry toluene (27 ml) were added into a three necked flask equipped with an argon purge. The mixture was refluxed for 12 h. Then, diol (2.45 g, 22.2 mmol) was added and refluxed for 3 h. It was allowed to cool to room temperature. After removal of the solvent, the remaining crude product was isolated by flash chromatography [silica gel, hexane/dichloromethane (8:2)] to isolate the title compound, as a colorless solid (yield; 58%) (Jose et al., 2005). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.1 g) in hexane (25 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Chloromethyl-2,3-dihydrothieno[3,4-b][1,4]dioxine top
Crystal data top
C7H7ClO2SF(000) = 392
Mr = 190.64Dx = 1.555 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.227 (2) Åθ = 10–13°
b = 5.7500 (12) ŵ = 0.67 mm1
c = 14.376 (3) ÅT = 294 K
β = 105.55 (3)°Block, colorless
V = 814.4 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1065 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.825, Tmax = 0.936l = 1716
1565 measured reflections3 standard reflections every 120 min
1479 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.92P]
where P = (Fo2 + 2Fc2)/3
1479 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H7ClO2SV = 814.4 (3) Å3
Mr = 190.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.227 (2) ŵ = 0.67 mm1
b = 5.7500 (12) ÅT = 294 K
c = 14.376 (3) Å0.30 × 0.20 × 0.10 mm
β = 105.55 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1065 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.067
Tmin = 0.825, Tmax = 0.9363 standard reflections every 120 min
1565 measured reflections intensity decay: 1%
1479 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
1479 reflectionsΔρmin = 0.29 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.37084 (12)0.1937 (2)0.51615 (9)0.0759 (5)
S0.12047 (12)0.1840 (2)0.27636 (9)0.0740 (5)
O10.1425 (3)0.6480 (5)0.29741 (19)0.0619 (8)
O20.1277 (2)0.2762 (4)0.43358 (19)0.0505 (7)
C10.2959 (4)0.4560 (8)0.4923 (3)0.0569 (10)
H1A0.36360.57860.48050.068*
H1B0.22380.49910.54860.068*
C20.2397 (4)0.4363 (7)0.4079 (3)0.0524 (9)
H2A0.30960.37290.35310.063*
C30.1903 (4)0.6650 (6)0.3787 (3)0.0539 (10)
H3A0.26410.77650.36630.065*
H3B0.11810.72360.43200.065*
C40.0539 (4)0.4634 (7)0.3034 (3)0.0515 (9)
C50.0507 (4)0.2828 (6)0.3683 (3)0.0477 (9)
C60.0309 (4)0.4363 (8)0.2481 (3)0.0632 (11)
H6A0.04000.54050.20080.076*
C70.0424 (4)0.1179 (7)0.3626 (3)0.0591 (10)
H7A0.06050.01430.40120.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0794 (8)0.0787 (9)0.0741 (8)0.0128 (6)0.0285 (6)0.0007 (6)
S0.0758 (8)0.0812 (9)0.0696 (8)0.0012 (6)0.0275 (6)0.0095 (6)
O10.0693 (18)0.0601 (18)0.0461 (16)0.0112 (14)0.0024 (13)0.0218 (13)
O20.0571 (15)0.0440 (14)0.0484 (15)0.0044 (12)0.0110 (12)0.0090 (12)
C10.061 (2)0.066 (3)0.0370 (19)0.005 (2)0.0014 (17)0.0062 (18)
C20.051 (2)0.053 (2)0.042 (2)0.0049 (17)0.0081 (16)0.0067 (17)
C30.068 (2)0.047 (2)0.040 (2)0.0146 (18)0.0034 (17)0.0132 (17)
C40.055 (2)0.057 (2)0.0329 (18)0.0073 (18)0.0059 (16)0.0042 (17)
C50.059 (2)0.044 (2)0.0355 (18)0.0114 (17)0.0042 (15)0.0069 (16)
C60.069 (3)0.073 (3)0.044 (2)0.004 (2)0.0078 (19)0.006 (2)
C70.064 (2)0.051 (2)0.059 (2)0.0111 (19)0.012 (2)0.001 (2)
Geometric parameters (Å, º) top
Cl—C11.766 (4)C2—C31.508 (5)
S—C71.688 (4)C2—H2A0.9800
S—C61.706 (5)C3—H3A0.9700
O1—C41.384 (5)C3—H3B0.9700
O1—C31.386 (5)C4—C61.333 (5)
O2—C51.377 (5)C4—C51.391 (5)
O2—C21.439 (5)C5—C71.362 (5)
C1—C21.480 (5)C6—H6A0.9300
C1—H1A0.9700C7—H7A0.9300
C1—H1B0.9700
C7—S—C692.1 (2)C2—C3—H3A108.9
C4—O1—C3112.0 (3)O1—C3—H3B108.9
C5—O2—C2111.6 (3)C2—C3—H3B108.9
C2—C1—Cl112.2 (3)H3A—C3—H3B107.8
C2—C1—H1A109.2C6—C4—O1124.9 (4)
Cl—C1—H1A109.2C6—C4—C5114.3 (4)
C2—C1—H1B109.2O1—C4—C5120.8 (3)
Cl—C1—H1B109.2C7—C5—O2124.0 (3)
H1A—C1—H1B107.9C7—C5—C4111.7 (4)
O2—C2—C1107.2 (3)O2—C5—C4124.3 (3)
O2—C2—C3109.0 (3)C4—C6—S110.5 (3)
C1—C2—C3113.2 (3)C4—C6—H6A124.7
O2—C2—H2A109.1S—C6—H6A124.7
C1—C2—H2A109.1C5—C7—S111.3 (3)
C3—C2—H2A109.1C5—C7—H7A124.3
O1—C3—C2113.2 (3)S—C7—H7A124.3
O1—C3—H3A108.9
C5—O2—C2—C1167.2 (3)C6—C4—C5—C71.5 (5)
C5—O2—C2—C344.3 (4)O1—C4—C5—C7179.5 (3)
Cl—C1—C2—O266.6 (3)C6—C4—C5—O2178.7 (3)
Cl—C1—C2—C3173.1 (3)O1—C4—C5—O23.2 (5)
C4—O1—C3—C248.0 (4)O1—C4—C6—S178.8 (3)
O2—C2—C3—O163.1 (4)C5—C4—C6—S0.8 (5)
C1—C2—C3—O1177.6 (3)C7—S—C6—C40.0 (3)
C3—O1—C4—C6163.6 (4)O2—C5—C7—S178.7 (3)
C3—O1—C4—C518.6 (5)C4—C5—C7—S1.4 (4)
C2—O2—C5—C7165.2 (4)C6—S—C7—C50.8 (3)
C2—O2—C5—C417.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.982.453.317 (5)146
C1—H1B···Cg1ii0.972.753.708 (5)169
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC7H7ClO2S
Mr190.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.227 (2), 5.7500 (12), 14.376 (3)
β (°) 105.55 (3)
V3)814.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.825, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
1565, 1479, 1065
Rint0.067
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.185, 1.01
No. of reflections1479
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.982.453.317 (5)146.00
C1—H1B···Cg1ii0.972.753.708 (5)168.45
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+1, y+2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJose, L. S., Rafael, G., Egon, R. & Peter, B. (2005). Org. Lett. 7, 2345–2348.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds