organic compounds
2-Methyl-3-(5-methyl-2-thienyl)-5-phenylperhydropyrrolo[3,4-d]isoxazole-4,6-dione
aPamukkale University, Denizli Higher Vocational School, Chemistry Program, TR-20159 Kınıklı, Denizli, Turkey, bDepartment of Chemistry, Faculty of Arts and Science, Kırıkkale University, Kırıkkale, Turkey, cDepartment of Chemistry, Faculty of Arts and Science, Gazi University, Ankara, Turkey, and dDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr
In the molecule of the title compound, C17H16N2O3S, the phenyl ring is oriented with respect to the thiophene and succinimide rings at dihedral angles of 88.08 (3) and 57.81 (3)°, respectively; the dihedral angle between the thiophene and succinimide rings is 35.69 (3)°. The isoxazole ring adopts an with the N atom at the flap position. In the intermolecular C—H⋯O hydrogen bonds link the molecules into infinite chains along the b axis. Weak C—H⋯π interactions may further stabilize the structure.
Related literature
For et al. (1975); Banerji & Sahu (1986); Torsell (1988); Banerji & Basu (1992). For as a convenient class of compounds for the syntheses of ultimate carcinogens, see: Mallesha, Ravikumar, Mantelingu et al. (2001); Mallesha, Ravikumar & Rangappa (2001). For the 1,3-dipolar reaction of with in the preparation of isoxazolidines, see: Tufariello (1984). For isoxazolidines in the synthesis of β-lactams, see: Padwa et al. (1981, 1984). For the use of β-lactams to treat bacterial infections, see: Ochiai et al. (1967); as natural products, see: Baldwin & Aube (1987); as versatile synthetic intermediates, see: Padwa (1984). For the preparation of C-(5-Methyl-2-thienyl)-N-methylnitrone used in the synthesis, see: Heaney et al. (2001). For bond-length data, see: Allen et al. (1987).
as versatile synthetic intermediates in organic synthesis, see: BlackExperimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809009209/hk2634sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809009209/hk2634Isup2.hkl
C-(5-Methyl-2-thienyl)-N-methylnitrone was prepared from 5-methylthiophene-2 -carbaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in CH2Cl2 (Scheme 2) according to the literature method (Heaney et al., 2001). For the preparation of the title compound, C-(5-methyl-2-thienyl)-N -methylnitrone (471 mg, 3 mmol) and N-phenylmaleimide (570 mg, 3.3 mmol) were dissolved in benzene (50 ml). The reaction mixture was refluxed for 12 h, and monitored by TLC (Scheme 2). After evaporation of the solvent, the reaction mixture was separated by
using mixtures of petroleum ether and ethyl acetate (1:2) as the eluant. The trans-isomer, was recrystallized from CHCl3/n-hexane (1:3) in 2 d (m.p. 425-428 K).Atoms H18, H19 and H20 were located in difference synthesis and refined isotropically [C-H = 0.941 (16)-0.974 (17) Å and Uiso(H) = 0.049 (4)-0.061 (5) Å2]. Remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H16N2O3S | F(000) = 688 |
Mr = 328.38 | Dx = 1.328 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 19464 reflections |
a = 12.6558 (5) Å | θ = 1.6–28.0° |
b = 8.5738 (3) Å | µ = 0.21 mm−1 |
c = 19.3824 (8) Å | T = 296 K |
β = 128.654 (3)° | Prism, colorless |
V = 1642.42 (13) Å3 | 0.73 × 0.52 × 0.26 mm |
Z = 4 |
STOE IPDS 2 diffractometer | 3401 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2872 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.028 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 2.1° |
ω–scan rotation method | h = −15→15 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −10→10 |
Tmin = 0.685, Tmax = 0.946 | l = −24→24 |
19464 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2689P] where P = (Fo2 + 2Fc2)/3 |
3401 reflections | (Δ/σ)max = 0.001 |
222 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C17H16N2O3S | V = 1642.42 (13) Å3 |
Mr = 328.38 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.6558 (5) Å | µ = 0.21 mm−1 |
b = 8.5738 (3) Å | T = 296 K |
c = 19.3824 (8) Å | 0.73 × 0.52 × 0.26 mm |
β = 128.654 (3)° |
STOE IPDS 2 diffractometer | 3401 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2872 reflections with I > 2σ(I) |
Tmin = 0.685, Tmax = 0.946 | Rint = 0.028 |
19464 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.19 e Å−3 |
3401 reflections | Δρmin = −0.27 e Å−3 |
222 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.31342 (4) | 0.24446 (5) | 0.79541 (3) | 0.06492 (15) | |
O1 | 0.18469 (12) | 0.56188 (13) | 0.50732 (7) | 0.0639 (3) | |
O2 | 0.42647 (11) | 0.86900 (14) | 0.75274 (7) | 0.0629 (3) | |
O3 | 0.28425 (11) | 0.60569 (12) | 0.76942 (7) | 0.0549 (3) | |
N1 | 0.30675 (12) | 0.74300 (13) | 0.61858 (8) | 0.0479 (3) | |
N2 | 0.14465 (13) | 0.58932 (14) | 0.68562 (9) | 0.0527 (3) | |
C1 | 0.29019 (15) | 0.87293 (17) | 0.56598 (9) | 0.0509 (3) | |
C2 | 0.2287 (2) | 1.0061 (2) | 0.56436 (13) | 0.0712 (5) | |
H2 | 0.1985 | 1.0126 | 0.5974 | 0.085* | |
C3 | 0.2120 (3) | 1.1305 (2) | 0.51308 (15) | 0.0896 (7) | |
H3 | 0.1707 | 1.2213 | 0.5119 | 0.108* | |
C4 | 0.2556 (3) | 1.1214 (3) | 0.46425 (15) | 0.0889 (6) | |
H4 | 0.2436 | 1.2055 | 0.4297 | 0.107* | |
C5 | 0.3173 (2) | 0.9880 (3) | 0.46614 (13) | 0.0814 (6) | |
H5 | 0.3473 | 0.9821 | 0.4330 | 0.098* | |
C6 | 0.33513 (17) | 0.8621 (2) | 0.51722 (11) | 0.0628 (4) | |
H6 | 0.3768 | 0.7715 | 0.5186 | 0.075* | |
C7 | 0.25037 (14) | 0.59615 (17) | 0.58428 (9) | 0.0473 (3) | |
C8 | 0.28380 (14) | 0.49173 (17) | 0.65825 (9) | 0.0460 (3) | |
H18 | 0.3330 (16) | 0.4050 (19) | 0.6624 (10) | 0.053 (4)* | |
C9 | 0.36272 (14) | 0.59533 (18) | 0.74030 (9) | 0.0490 (3) | |
H20 | 0.4521 (18) | 0.5567 (19) | 0.7893 (11) | 0.061 (5)* | |
C10 | 0.37259 (13) | 0.75292 (18) | 0.70902 (9) | 0.0487 (3) | |
C11 | 0.15792 (14) | 0.44699 (17) | 0.64828 (9) | 0.0472 (3) | |
H19 | 0.0810 (16) | 0.4439 (17) | 0.5872 (10) | 0.049 (4)* | |
C12 | 0.05862 (19) | 0.5727 (2) | 0.71120 (13) | 0.0675 (5) | |
H12A | 0.0615 | 0.6671 | 0.7390 | 0.101* | |
H12B | 0.0905 | 0.4873 | 0.7518 | 0.101* | |
H12C | −0.0328 | 0.5527 | 0.6596 | 0.101* | |
C13 | 0.17079 (14) | 0.29515 (17) | 0.69109 (9) | 0.0490 (3) | |
C14 | 0.07838 (16) | 0.17956 (19) | 0.65756 (11) | 0.0585 (4) | |
H14 | −0.0060 | 0.1843 | 0.6020 | 0.070* | |
C15 | 0.12214 (19) | 0.0503 (2) | 0.71510 (13) | 0.0654 (4) | |
H15 | 0.0695 | −0.0383 | 0.7005 | 0.079* | |
C16 | 0.2461 (2) | 0.06732 (18) | 0.79239 (11) | 0.0611 (4) | |
C17 | 0.3246 (3) | −0.0399 (2) | 0.87043 (13) | 0.0863 (6) | |
H17A | 0.3342 | 0.0069 | 0.9191 | 0.104* | |
H17B | 0.4125 | −0.0580 | 0.8868 | 0.104* | |
H17C | 0.2774 | −0.1372 | 0.8554 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0661 (3) | 0.0518 (2) | 0.0513 (2) | −0.00077 (18) | 0.0242 (2) | 0.00449 (17) |
O1 | 0.0760 (7) | 0.0603 (7) | 0.0466 (6) | −0.0122 (5) | 0.0340 (6) | −0.0086 (5) |
O2 | 0.0621 (6) | 0.0689 (7) | 0.0590 (6) | −0.0249 (5) | 0.0385 (5) | −0.0200 (5) |
O3 | 0.0620 (6) | 0.0565 (6) | 0.0547 (6) | −0.0088 (5) | 0.0406 (5) | −0.0077 (5) |
N1 | 0.0488 (6) | 0.0494 (6) | 0.0469 (6) | −0.0058 (5) | 0.0306 (5) | −0.0050 (5) |
N2 | 0.0511 (7) | 0.0495 (7) | 0.0634 (7) | 0.0039 (5) | 0.0386 (6) | 0.0026 (6) |
C1 | 0.0514 (8) | 0.0511 (8) | 0.0498 (8) | −0.0087 (6) | 0.0314 (7) | −0.0057 (6) |
C2 | 0.0973 (13) | 0.0549 (9) | 0.0763 (11) | 0.0028 (9) | 0.0615 (11) | −0.0019 (8) |
C3 | 0.1285 (19) | 0.0525 (10) | 0.0891 (14) | 0.0070 (11) | 0.0685 (14) | 0.0019 (10) |
C4 | 0.1185 (18) | 0.0681 (12) | 0.0788 (13) | −0.0123 (12) | 0.0610 (13) | 0.0090 (10) |
C5 | 0.0878 (13) | 0.0980 (15) | 0.0694 (11) | −0.0068 (12) | 0.0544 (11) | 0.0105 (11) |
C6 | 0.0620 (9) | 0.0733 (11) | 0.0584 (9) | 0.0005 (8) | 0.0401 (8) | 0.0018 (8) |
C7 | 0.0444 (7) | 0.0486 (7) | 0.0483 (7) | −0.0017 (6) | 0.0286 (6) | −0.0046 (6) |
C8 | 0.0421 (7) | 0.0459 (7) | 0.0460 (7) | 0.0033 (6) | 0.0257 (6) | −0.0006 (6) |
C9 | 0.0412 (7) | 0.0571 (8) | 0.0433 (7) | 0.0011 (6) | 0.0237 (6) | −0.0017 (6) |
C10 | 0.0391 (6) | 0.0587 (8) | 0.0482 (7) | −0.0080 (6) | 0.0273 (6) | −0.0084 (6) |
C11 | 0.0422 (7) | 0.0481 (7) | 0.0449 (7) | 0.0011 (6) | 0.0242 (6) | 0.0014 (6) |
C12 | 0.0724 (11) | 0.0608 (10) | 0.0930 (13) | 0.0054 (8) | 0.0633 (11) | 0.0042 (9) |
C13 | 0.0488 (7) | 0.0464 (7) | 0.0502 (8) | 0.0001 (6) | 0.0301 (6) | −0.0006 (6) |
C14 | 0.0538 (8) | 0.0563 (9) | 0.0629 (9) | −0.0062 (7) | 0.0352 (7) | −0.0017 (7) |
C15 | 0.0780 (11) | 0.0516 (9) | 0.0828 (12) | −0.0090 (8) | 0.0581 (10) | −0.0012 (8) |
C16 | 0.0862 (12) | 0.0480 (8) | 0.0642 (10) | 0.0071 (8) | 0.0542 (10) | 0.0048 (7) |
C17 | 0.1304 (19) | 0.0610 (11) | 0.0754 (12) | 0.0163 (11) | 0.0682 (13) | 0.0158 (9) |
C1—C2 | 1.371 (2) | C10—O2 | 1.2049 (18) |
C1—C6 | 1.377 (2) | C10—N1 | 1.3963 (18) |
C1—N1 | 1.4345 (18) | C11—N2 | 1.4809 (19) |
C2—C3 | 1.381 (3) | C11—C13 | 1.497 (2) |
C2—H2 | 0.9300 | C11—H19 | 0.954 (15) |
C3—C4 | 1.363 (3) | C12—N2 | 1.458 (2) |
C3—H3 | 0.9300 | C12—H12A | 0.9600 |
C4—C5 | 1.372 (3) | C12—H12B | 0.9600 |
C4—H4 | 0.9300 | C12—H12C | 0.9600 |
C5—C6 | 1.385 (3) | C13—C14 | 1.350 (2) |
C5—H5 | 0.9300 | C13—S1 | 1.7252 (15) |
C6—H6 | 0.9300 | C14—C15 | 1.417 (2) |
C7—O1 | 1.2056 (17) | C14—H14 | 0.9300 |
C7—N1 | 1.3942 (18) | C15—C16 | 1.338 (3) |
C7—C8 | 1.509 (2) | C15—H15 | 0.9300 |
C8—C9 | 1.5269 (19) | C16—C17 | 1.497 (2) |
C8—C11 | 1.529 (2) | C16—S1 | 1.7243 (17) |
C8—H18 | 0.941 (16) | C17—H17A | 0.9600 |
C9—O3 | 1.4188 (18) | C17—H17B | 0.9600 |
C9—C10 | 1.518 (2) | C17—H17C | 0.9600 |
C9—H20 | 0.974 (17) | N2—O3 | 1.4813 (16) |
C2—C1—C6 | 120.81 (16) | N2—C11—C8 | 99.14 (11) |
C2—C1—N1 | 119.46 (14) | C13—C11—C8 | 113.83 (12) |
C6—C1—N1 | 119.72 (14) | N2—C11—H19 | 106.8 (9) |
C1—C2—C3 | 119.26 (18) | C13—C11—H19 | 109.7 (9) |
C1—C2—H2 | 120.4 | C8—C11—H19 | 109.8 (9) |
C3—C2—H2 | 120.4 | N2—C12—H12A | 109.5 |
C4—C3—C2 | 120.6 (2) | N2—C12—H12B | 109.5 |
C4—C3—H3 | 119.7 | H12A—C12—H12B | 109.5 |
C2—C3—H3 | 119.7 | N2—C12—H12C | 109.5 |
C3—C4—C5 | 119.98 (19) | H12A—C12—H12C | 109.5 |
C3—C4—H4 | 120.0 | H12B—C12—H12C | 109.5 |
C5—C4—H4 | 120.0 | C14—C13—C11 | 127.58 (14) |
C4—C5—C6 | 120.29 (19) | C14—C13—S1 | 109.68 (12) |
C4—C5—H5 | 119.9 | C11—C13—S1 | 122.73 (11) |
C6—C5—H5 | 119.9 | C13—C14—C15 | 113.59 (15) |
C1—C6—C5 | 119.05 (17) | C13—C14—H14 | 123.2 |
C1—C6—H6 | 120.5 | C15—C14—H14 | 123.2 |
C5—C6—H6 | 120.5 | C16—C15—C14 | 113.85 (15) |
O1—C7—N1 | 124.20 (14) | C16—C15—H15 | 123.1 |
O1—C7—C8 | 126.75 (13) | C14—C15—H15 | 123.1 |
N1—C7—C8 | 109.05 (11) | C15—C16—C17 | 129.64 (18) |
C7—C8—C9 | 104.90 (12) | C15—C16—S1 | 110.06 (12) |
C7—C8—C11 | 112.15 (11) | C17—C16—S1 | 120.29 (16) |
C9—C8—C11 | 103.27 (11) | C16—C17—H17A | 109.5 |
C7—C8—H18 | 109.1 (10) | C16—C17—H17B | 109.5 |
C9—C8—H18 | 113.8 (10) | H17A—C17—H17B | 109.5 |
C11—C8—H18 | 113.2 (10) | C16—C17—H17C | 109.5 |
O3—C9—C10 | 110.85 (12) | H17A—C17—H17C | 109.5 |
O3—C9—C8 | 106.60 (11) | H17B—C17—H17C | 109.5 |
C10—C9—C8 | 105.39 (11) | C7—N1—C10 | 112.34 (12) |
O3—C9—H20 | 108.0 (10) | C7—N1—C1 | 123.94 (12) |
C10—C9—H20 | 110.9 (10) | C10—N1—C1 | 123.56 (12) |
C8—C9—H20 | 115.0 (10) | C12—N2—C11 | 114.98 (12) |
O2—C10—N1 | 124.40 (14) | C12—N2—O3 | 105.60 (12) |
O2—C10—C9 | 127.31 (13) | C11—N2—O3 | 101.08 (10) |
N1—C10—C9 | 108.29 (12) | C9—O3—N2 | 102.11 (10) |
N2—C11—C13 | 116.88 (12) | C16—S1—C13 | 92.81 (8) |
C6—C1—C2—C3 | 0.0 (3) | S1—C13—C14—C15 | −0.39 (18) |
N1—C1—C2—C3 | −179.52 (17) | C13—C14—C15—C16 | 0.8 (2) |
C1—C2—C3—C4 | 0.2 (3) | C14—C15—C16—C17 | 177.85 (17) |
C2—C3—C4—C5 | −0.3 (4) | C14—C15—C16—S1 | −0.8 (2) |
C3—C4—C5—C6 | 0.3 (3) | O1—C7—N1—C10 | 177.30 (14) |
C2—C1—C6—C5 | 0.0 (3) | C8—C7—N1—C10 | −2.03 (16) |
N1—C1—C6—C5 | 179.42 (15) | O1—C7—N1—C1 | 1.9 (2) |
C4—C5—C6—C1 | −0.1 (3) | C8—C7—N1—C1 | −177.45 (12) |
O1—C7—C8—C9 | −177.41 (15) | O2—C10—N1—C7 | −178.38 (14) |
N1—C7—C8—C9 | 1.90 (15) | C9—C10—N1—C7 | 1.26 (15) |
O1—C7—C8—C11 | −66.0 (2) | O2—C10—N1—C1 | −2.9 (2) |
N1—C7—C8—C11 | 113.29 (13) | C9—C10—N1—C1 | 176.71 (12) |
C7—C8—C9—O3 | 116.74 (12) | C2—C1—N1—C7 | 119.20 (17) |
C11—C8—C9—O3 | −0.88 (14) | C6—C1—N1—C7 | −60.3 (2) |
C7—C8—C9—C10 | −1.12 (14) | C2—C1—N1—C10 | −55.7 (2) |
C11—C8—C9—C10 | −118.74 (12) | C6—C1—N1—C10 | 124.80 (16) |
O3—C9—C10—O2 | 64.68 (19) | C13—C11—N2—C12 | −40.09 (18) |
C8—C9—C10—O2 | 179.63 (14) | C8—C11—N2—C12 | −162.79 (13) |
O3—C9—C10—N1 | −114.96 (12) | C13—C11—N2—O3 | 73.09 (14) |
C8—C9—C10—N1 | 0.00 (15) | C8—C11—N2—O3 | −49.61 (12) |
C7—C8—C11—N2 | −81.54 (13) | C10—C9—O3—N2 | 84.42 (12) |
C9—C8—C11—N2 | 30.87 (13) | C8—C9—O3—N2 | −29.78 (13) |
C7—C8—C11—C13 | 153.59 (12) | C12—N2—O3—C9 | 170.81 (12) |
C9—C8—C11—C13 | −93.99 (14) | C11—N2—O3—C9 | 50.71 (12) |
N2—C11—C13—C14 | 109.49 (18) | C15—C16—S1—C13 | 0.48 (14) |
C8—C11—C13—C14 | −135.77 (16) | C17—C16—S1—C13 | −178.30 (15) |
N2—C11—C13—S1 | −70.16 (16) | C14—C13—S1—C16 | −0.04 (13) |
C8—C11—C13—S1 | 44.58 (17) | C11—C13—S1—C16 | 179.67 (13) |
C11—C13—C14—C15 | 179.92 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H18···O2i | 0.94 (2) | 2.41 (2) | 3.103 (2) | 130.0 |
C2—H2···Cg1ii | 0.93 | 2.99 | 3.83 (2) | 152 (1) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C17H16N2O3S |
Mr | 328.38 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.6558 (5), 8.5738 (3), 19.3824 (8) |
β (°) | 128.654 (3) |
V (Å3) | 1642.42 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.73 × 0.52 × 0.26 |
Data collection | |
Diffractometer | STOE IPDS 2 diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.685, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19464, 3401, 2872 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.05 |
No. of reflections | 3401 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.27 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H18···O2i | 0.94 (2) | 2.41 (2) | 3.103 (2) | 130.0 |
C2—H2···Cg1ii | 0.93 | 2.99 | 3.83 (2) | 152.0 (2) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y−1, z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS 2 diffractometer (purchased under grant No. F.279 of the University Research Fund).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Baldwin, S. W. & Aube, J. (1987). Tetrahedron Lett. 28, 179–182. CrossRef CAS Web of Science Google Scholar
Banerji, A. & Basu, S. (1992). Tetrahedron, 48, 3335–3344. CrossRef CAS Web of Science Google Scholar
Banerji, A. & Sahu, A. J. (1986). Sci. Ind. Res. 45, 355–369. CAS Google Scholar
Black, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205–221. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Heaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373–378. CSD CrossRef Google Scholar
Mallesha, H., Ravikumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459–1461. CrossRef Google Scholar
Mallesha, H., Ravikumar, K. R. & Rangappa, K. S. (2001). Synthesis, 16, 2415–2418. CrossRef Google Scholar
Ochiai, M., Obayashi, M. & Morita, K. (1967). Tetrahedron, 23, 2641–2648. CrossRef CAS Web of Science Google Scholar
Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, pp. 83–87. New York: John Wiley and Sons. Google Scholar
Padwa, A., Koehler, K. F. & Rodringuez, A. (1981). J. Am. Chem. Soc. 103, 4974–4975. CrossRef CAS Web of Science Google Scholar
Padwa, A., Koehler, K. F. & Rodringuez, A. (1984). J. Org. Chem. 49, 282–288. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Torsell, K. B. G. (1988). Nitrile Oxides, Nitrone and Nitronates in Organic Synthesis, pp. 75–93. New York: VCH. Google Scholar
Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 277–312. New York: John Wiley and Sons. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3-Dipolar cycloaddition reaction of nitrones to olefins is of synthetic interest. In the present work, isoxazolidines have been synthesized in high yield via intermolecular cycloaddition of N-arylnitrone with monosubstituted olefins and are employed for biological evaluation. Nitrones are versatile synthetic intermediates in organic synthesis (Black et al., 1975; Banerji & Sahu, 1986; Torsell, 1988; Banerji & Basu, 1992). Recently, they reported that nitrones are a convenient class of compounds for the syntheses of ultimate carcinogens (Mallesha, Ravikumar, Mantelingu et al., 2001); Mallesha, Ravikumar & Rangappa, 2001), which are biologically interesting molecules. The 1,3-dipolar cycloaddition reaction of nitrones with alkenes is an important method for preparing isoxazolidines in a regioselective and stereoselective manner (Tufariello, 1984). These isoxazolidines are used in the syntheses of β-lactams (Padwa et al., 1981; Padwa et al., 1984) which are of value in the treatment of bacterial infections (Ochiai et al., 1967), occur as natural products (Baldwin & Aube, 1987), serve as versatile synthetic intermediates (Padwa, 1984), and are biologically interesting compounds (Ochiai et al., 1967). In view of the interest shown in these compounds, we report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/C7-C10) and D (S1/C13-C16) are, of course, planar, and they are oriented at dihedral angles of A/B = 57.81 (3), A/D = 88.08 (3) and B/D = 35.69 (3) °. Ring C (O3/N2/C8/C9/C11) adopts envelope conformation with N2 atom displaced by 0.736 (3) Å from the plane of the other ring atoms.
In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2) into infinite chains along the b-axis, in which they may be effective in the stabilization of the structure. The weak C—H···π interaction (Table 1) may further stabilize the structure.