organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o862-o863

2-Methyl-3-(5-methyl-2-thien­yl)-5-phenyl­perhydro­pyrrolo[3,4-d]isoxazole-4,6-dione

aPamukkale University, Denizli Higher Vocational School, Chemistry Program, TR-20159 Kınıklı, Denizli, Turkey, bDepartment of Chemistry, Faculty of Arts and Science, Kırıkkale University, Kırıkkale, Turkey, cDepartment of Chemistry, Faculty of Arts and Science, Gazi University, Ankara, Turkey, and dDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 26 February 2009; accepted 12 March 2009; online 25 March 2009)

In the mol­ecule of the title compound, C17H16N2O3S, the phenyl ring is oriented with respect to the thio­phene and succinimide rings at dihedral angles of 88.08 (3) and 57.81 (3)°, respectively; the dihedral angle between the thio­phene and succinimide rings is 35.69 (3)°. The isoxazole ring adopts an envelope conformation with the N atom at the flap position. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the b axis. Weak C—H⋯π inter­actions may further stabilize the structure.

Related literature

For nitrones as versatile synthetic intermediates in organic synthesis, see: Black et al. (1975[Black, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205-221.]); Banerji & Sahu (1986[Banerji, A. & Sahu, A. J. (1986). Sci. Ind. Res. 45, 355-369.]); Torsell (1988[Torsell, K. B. G. (1988). Nitrile Oxides, Nitrone and Nitronates in Organic Synthesis, pp. 75-93. New York: VCH.]); Banerji & Basu (1992[Banerji, A. & Basu, S. (1992). Tetrahedron, 48, 3335-3344.]). For nitrones as a convenient class of compounds for the syntheses of ultimate carcinogens, see: Mallesha, Ravikumar, Mantelingu et al. (2001[Mallesha, H., Ravikumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459-1461.]); Mallesha, Ravikumar & Rangappa (2001[Mallesha, H., Ravikumar, K. R. & Rangappa, K. S. (2001). Synthesis, 16, 2415-2418.]). For the 1,3-dipolar cycloaddition reaction of nitrones with alkenes in the preparation of isoxazolidines, see: Tufariello (1984[Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 277-312. New York: John Wiley and Sons.]). For isoxazolidines in the synthesis of β-lactams, see: Padwa et al. (1981[Padwa, A., Koehler, K. F. & Rodringuez, A. (1981). J. Am. Chem. Soc. 103, 4974-4975.], 1984[Padwa, A., Koehler, K. F. & Rodringuez, A. (1984). J. Org. Chem. 49, 282-288.]). For the use of β-lactams to treat bacterial infections, see: Ochiai et al. (1967[Ochiai, M., Obayashi, M. & Morita, K. (1967). Tetrahedron, 23, 2641-2648.]); as natural products, see: Baldwin & Aube (1987[Baldwin, S. W. & Aube, J. (1987). Tetrahedron Lett. 28, 179-182.]); as versatile synthetic intermediates, see: Padwa (1984[Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, pp. 83-87. New York: John Wiley and Sons.]). For the preparation of C-(5-Methyl-2-thienyl)-N-methylnitrone used in the synthesis, see: Heaney et al. (2001[Heaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373-378.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O3S

  • Mr = 328.38

  • Monoclinic, P 21 /c

  • a = 12.6558 (5) Å

  • b = 8.5738 (3) Å

  • c = 19.3824 (8) Å

  • β = 128.654 (3)°

  • V = 1642.42 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.73 × 0.52 × 0.26 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.685, Tmax = 0.946

  • 19464 measured reflections

  • 3401 independent reflections

  • 2872 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 3401 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H18⋯O2i 0.94 (2) 2.41 (2) 3.103 (2) 130
C2—H2⋯Cg1ii 0.93 2.99 3.83 (2) 152 (1)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z. Cg1 is the centroid of the S1/C13–C16 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition reaction of nitrones to olefins is of synthetic interest. In the present work, isoxazolidines have been synthesized in high yield via intermolecular cycloaddition of N-arylnitrone with monosubstituted olefins and are employed for biological evaluation. Nitrones are versatile synthetic intermediates in organic synthesis (Black et al., 1975; Banerji & Sahu, 1986; Torsell, 1988; Banerji & Basu, 1992). Recently, they reported that nitrones are a convenient class of compounds for the syntheses of ultimate carcinogens (Mallesha, Ravikumar, Mantelingu et al., 2001); Mallesha, Ravikumar & Rangappa, 2001), which are biologically interesting molecules. The 1,3-dipolar cycloaddition reaction of nitrones with alkenes is an important method for preparing isoxazolidines in a regioselective and stereoselective manner (Tufariello, 1984). These isoxazolidines are used in the syntheses of β-lactams (Padwa et al., 1981; Padwa et al., 1984) which are of value in the treatment of bacterial infections (Ochiai et al., 1967), occur as natural products (Baldwin & Aube, 1987), serve as versatile synthetic intermediates (Padwa, 1984), and are biologically interesting compounds (Ochiai et al., 1967). In view of the interest shown in these compounds, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/C7-C10) and D (S1/C13-C16) are, of course, planar, and they are oriented at dihedral angles of A/B = 57.81 (3), A/D = 88.08 (3) and B/D = 35.69 (3) °. Ring C (O3/N2/C8/C9/C11) adopts envelope conformation with N2 atom displaced by 0.736 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2) into infinite chains along the b-axis, in which they may be effective in the stabilization of the structure. The weak C—H···π interaction (Table 1) may further stabilize the structure.

Related literature top

For general background, see: Black et al. (1975); Banerji & Sahu (1986); Torsell (1988); Banerji & Basu (1992); Mallesha, Ravikumar, Mantelingu et al. (2001); Mallesha, Ravikumar & Rangappa (2001); Tufariello (1984); Padwa et al. (1981, 1984); Ochiai et al. (1967); Baldwin & Aube (1987); Padwa (1984). For bond-length data, see: Allen et al. (1987).

For related literature, see: Heaney et al. (2001).

Experimental top

C-(5-Methyl-2-thienyl)-N-methylnitrone was prepared from 5-methylthiophene-2 -carbaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in CH2Cl2 (Scheme 2) according to the literature method (Heaney et al., 2001). For the preparation of the title compound, C-(5-methyl-2-thienyl)-N -methylnitrone (471 mg, 3 mmol) and N-phenylmaleimide (570 mg, 3.3 mmol) were dissolved in benzene (50 ml). The reaction mixture was refluxed for 12 h, and monitored by TLC (Scheme 2). After evaporation of the solvent, the reaction mixture was separated by column chromatography, using mixtures of petroleum ether and ethyl acetate (1:2) as the eluant. The trans-isomer, was recrystallized from CHCl3/n-hexane (1:3) in 2 d (m.p. 425-428 K).

Refinement top

Atoms H18, H19 and H20 were located in difference synthesis and refined isotropically [C-H = 0.941 (16)-0.974 (17) Å and Uiso(H) = 0.049 (4)-0.061 (5) Å2]. Remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound [symmetry code: (i) 1-x, y+1/2, z]. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The formation of the title compound.
2-Methyl-3-(5-methyl-2-thienyl)-5-phenylperhydropyrrolo[3,4-d]isoxazole- 4,6-dione top
Crystal data top
C17H16N2O3SF(000) = 688
Mr = 328.38Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19464 reflections
a = 12.6558 (5) Åθ = 1.6–28.0°
b = 8.5738 (3) ŵ = 0.21 mm1
c = 19.3824 (8) ÅT = 296 K
β = 128.654 (3)°Prism, colorless
V = 1642.42 (13) Å30.73 × 0.52 × 0.26 mm
Z = 4
Data collection top
STOE IPDS 2
diffractometer
3401 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2872 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.028
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
ω–scan rotation methodh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.685, Tmax = 0.946l = 2424
19464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2689P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H16N2O3SV = 1642.42 (13) Å3
Mr = 328.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6558 (5) ŵ = 0.21 mm1
b = 8.5738 (3) ÅT = 296 K
c = 19.3824 (8) Å0.73 × 0.52 × 0.26 mm
β = 128.654 (3)°
Data collection top
STOE IPDS 2
diffractometer
3401 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2872 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.946Rint = 0.028
19464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
3401 reflectionsΔρmin = 0.27 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31342 (4)0.24446 (5)0.79541 (3)0.06492 (15)
O10.18469 (12)0.56188 (13)0.50732 (7)0.0639 (3)
O20.42647 (11)0.86900 (14)0.75274 (7)0.0629 (3)
O30.28425 (11)0.60569 (12)0.76942 (7)0.0549 (3)
N10.30675 (12)0.74300 (13)0.61858 (8)0.0479 (3)
N20.14465 (13)0.58932 (14)0.68562 (9)0.0527 (3)
C10.29019 (15)0.87293 (17)0.56598 (9)0.0509 (3)
C20.2287 (2)1.0061 (2)0.56436 (13)0.0712 (5)
H20.19851.01260.59740.085*
C30.2120 (3)1.1305 (2)0.51308 (15)0.0896 (7)
H30.17071.22130.51190.108*
C40.2556 (3)1.1214 (3)0.46425 (15)0.0889 (6)
H40.24361.20550.42970.107*
C50.3173 (2)0.9880 (3)0.46614 (13)0.0814 (6)
H50.34730.98210.43300.098*
C60.33513 (17)0.8621 (2)0.51722 (11)0.0628 (4)
H60.37680.77150.51860.075*
C70.25037 (14)0.59615 (17)0.58428 (9)0.0473 (3)
C80.28380 (14)0.49173 (17)0.65825 (9)0.0460 (3)
H180.3330 (16)0.4050 (19)0.6624 (10)0.053 (4)*
C90.36272 (14)0.59533 (18)0.74030 (9)0.0490 (3)
H200.4521 (18)0.5567 (19)0.7893 (11)0.061 (5)*
C100.37259 (13)0.75292 (18)0.70902 (9)0.0487 (3)
C110.15792 (14)0.44699 (17)0.64828 (9)0.0472 (3)
H190.0810 (16)0.4439 (17)0.5872 (10)0.049 (4)*
C120.05862 (19)0.5727 (2)0.71120 (13)0.0675 (5)
H12A0.06150.66710.73900.101*
H12B0.09050.48730.75180.101*
H12C0.03280.55270.65960.101*
C130.17079 (14)0.29515 (17)0.69109 (9)0.0490 (3)
C140.07838 (16)0.17956 (19)0.65756 (11)0.0585 (4)
H140.00600.18430.60200.070*
C150.12214 (19)0.0503 (2)0.71510 (13)0.0654 (4)
H150.06950.03830.70050.079*
C160.2461 (2)0.06732 (18)0.79239 (11)0.0611 (4)
C170.3246 (3)0.0399 (2)0.87043 (13)0.0863 (6)
H17A0.33420.00690.91910.104*
H17B0.41250.05800.88680.104*
H17C0.27740.13720.85540.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0661 (3)0.0518 (2)0.0513 (2)0.00077 (18)0.0242 (2)0.00449 (17)
O10.0760 (7)0.0603 (7)0.0466 (6)0.0122 (5)0.0340 (6)0.0086 (5)
O20.0621 (6)0.0689 (7)0.0590 (6)0.0249 (5)0.0385 (5)0.0200 (5)
O30.0620 (6)0.0565 (6)0.0547 (6)0.0088 (5)0.0406 (5)0.0077 (5)
N10.0488 (6)0.0494 (6)0.0469 (6)0.0058 (5)0.0306 (5)0.0050 (5)
N20.0511 (7)0.0495 (7)0.0634 (7)0.0039 (5)0.0386 (6)0.0026 (6)
C10.0514 (8)0.0511 (8)0.0498 (8)0.0087 (6)0.0314 (7)0.0057 (6)
C20.0973 (13)0.0549 (9)0.0763 (11)0.0028 (9)0.0615 (11)0.0019 (8)
C30.1285 (19)0.0525 (10)0.0891 (14)0.0070 (11)0.0685 (14)0.0019 (10)
C40.1185 (18)0.0681 (12)0.0788 (13)0.0123 (12)0.0610 (13)0.0090 (10)
C50.0878 (13)0.0980 (15)0.0694 (11)0.0068 (12)0.0544 (11)0.0105 (11)
C60.0620 (9)0.0733 (11)0.0584 (9)0.0005 (8)0.0401 (8)0.0018 (8)
C70.0444 (7)0.0486 (7)0.0483 (7)0.0017 (6)0.0286 (6)0.0046 (6)
C80.0421 (7)0.0459 (7)0.0460 (7)0.0033 (6)0.0257 (6)0.0006 (6)
C90.0412 (7)0.0571 (8)0.0433 (7)0.0011 (6)0.0237 (6)0.0017 (6)
C100.0391 (6)0.0587 (8)0.0482 (7)0.0080 (6)0.0273 (6)0.0084 (6)
C110.0422 (7)0.0481 (7)0.0449 (7)0.0011 (6)0.0242 (6)0.0014 (6)
C120.0724 (11)0.0608 (10)0.0930 (13)0.0054 (8)0.0633 (11)0.0042 (9)
C130.0488 (7)0.0464 (7)0.0502 (8)0.0001 (6)0.0301 (6)0.0006 (6)
C140.0538 (8)0.0563 (9)0.0629 (9)0.0062 (7)0.0352 (7)0.0017 (7)
C150.0780 (11)0.0516 (9)0.0828 (12)0.0090 (8)0.0581 (10)0.0012 (8)
C160.0862 (12)0.0480 (8)0.0642 (10)0.0071 (8)0.0542 (10)0.0048 (7)
C170.1304 (19)0.0610 (11)0.0754 (12)0.0163 (11)0.0682 (13)0.0158 (9)
Geometric parameters (Å, º) top
C1—C21.371 (2)C10—O21.2049 (18)
C1—C61.377 (2)C10—N11.3963 (18)
C1—N11.4345 (18)C11—N21.4809 (19)
C2—C31.381 (3)C11—C131.497 (2)
C2—H20.9300C11—H190.954 (15)
C3—C41.363 (3)C12—N21.458 (2)
C3—H30.9300C12—H12A0.9600
C4—C51.372 (3)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.385 (3)C13—C141.350 (2)
C5—H50.9300C13—S11.7252 (15)
C6—H60.9300C14—C151.417 (2)
C7—O11.2056 (17)C14—H140.9300
C7—N11.3942 (18)C15—C161.338 (3)
C7—C81.509 (2)C15—H150.9300
C8—C91.5269 (19)C16—C171.497 (2)
C8—C111.529 (2)C16—S11.7243 (17)
C8—H180.941 (16)C17—H17A0.9600
C9—O31.4188 (18)C17—H17B0.9600
C9—C101.518 (2)C17—H17C0.9600
C9—H200.974 (17)N2—O31.4813 (16)
C2—C1—C6120.81 (16)N2—C11—C899.14 (11)
C2—C1—N1119.46 (14)C13—C11—C8113.83 (12)
C6—C1—N1119.72 (14)N2—C11—H19106.8 (9)
C1—C2—C3119.26 (18)C13—C11—H19109.7 (9)
C1—C2—H2120.4C8—C11—H19109.8 (9)
C3—C2—H2120.4N2—C12—H12A109.5
C4—C3—C2120.6 (2)N2—C12—H12B109.5
C4—C3—H3119.7H12A—C12—H12B109.5
C2—C3—H3119.7N2—C12—H12C109.5
C3—C4—C5119.98 (19)H12A—C12—H12C109.5
C3—C4—H4120.0H12B—C12—H12C109.5
C5—C4—H4120.0C14—C13—C11127.58 (14)
C4—C5—C6120.29 (19)C14—C13—S1109.68 (12)
C4—C5—H5119.9C11—C13—S1122.73 (11)
C6—C5—H5119.9C13—C14—C15113.59 (15)
C1—C6—C5119.05 (17)C13—C14—H14123.2
C1—C6—H6120.5C15—C14—H14123.2
C5—C6—H6120.5C16—C15—C14113.85 (15)
O1—C7—N1124.20 (14)C16—C15—H15123.1
O1—C7—C8126.75 (13)C14—C15—H15123.1
N1—C7—C8109.05 (11)C15—C16—C17129.64 (18)
C7—C8—C9104.90 (12)C15—C16—S1110.06 (12)
C7—C8—C11112.15 (11)C17—C16—S1120.29 (16)
C9—C8—C11103.27 (11)C16—C17—H17A109.5
C7—C8—H18109.1 (10)C16—C17—H17B109.5
C9—C8—H18113.8 (10)H17A—C17—H17B109.5
C11—C8—H18113.2 (10)C16—C17—H17C109.5
O3—C9—C10110.85 (12)H17A—C17—H17C109.5
O3—C9—C8106.60 (11)H17B—C17—H17C109.5
C10—C9—C8105.39 (11)C7—N1—C10112.34 (12)
O3—C9—H20108.0 (10)C7—N1—C1123.94 (12)
C10—C9—H20110.9 (10)C10—N1—C1123.56 (12)
C8—C9—H20115.0 (10)C12—N2—C11114.98 (12)
O2—C10—N1124.40 (14)C12—N2—O3105.60 (12)
O2—C10—C9127.31 (13)C11—N2—O3101.08 (10)
N1—C10—C9108.29 (12)C9—O3—N2102.11 (10)
N2—C11—C13116.88 (12)C16—S1—C1392.81 (8)
C6—C1—C2—C30.0 (3)S1—C13—C14—C150.39 (18)
N1—C1—C2—C3179.52 (17)C13—C14—C15—C160.8 (2)
C1—C2—C3—C40.2 (3)C14—C15—C16—C17177.85 (17)
C2—C3—C4—C50.3 (4)C14—C15—C16—S10.8 (2)
C3—C4—C5—C60.3 (3)O1—C7—N1—C10177.30 (14)
C2—C1—C6—C50.0 (3)C8—C7—N1—C102.03 (16)
N1—C1—C6—C5179.42 (15)O1—C7—N1—C11.9 (2)
C4—C5—C6—C10.1 (3)C8—C7—N1—C1177.45 (12)
O1—C7—C8—C9177.41 (15)O2—C10—N1—C7178.38 (14)
N1—C7—C8—C91.90 (15)C9—C10—N1—C71.26 (15)
O1—C7—C8—C1166.0 (2)O2—C10—N1—C12.9 (2)
N1—C7—C8—C11113.29 (13)C9—C10—N1—C1176.71 (12)
C7—C8—C9—O3116.74 (12)C2—C1—N1—C7119.20 (17)
C11—C8—C9—O30.88 (14)C6—C1—N1—C760.3 (2)
C7—C8—C9—C101.12 (14)C2—C1—N1—C1055.7 (2)
C11—C8—C9—C10118.74 (12)C6—C1—N1—C10124.80 (16)
O3—C9—C10—O264.68 (19)C13—C11—N2—C1240.09 (18)
C8—C9—C10—O2179.63 (14)C8—C11—N2—C12162.79 (13)
O3—C9—C10—N1114.96 (12)C13—C11—N2—O373.09 (14)
C8—C9—C10—N10.00 (15)C8—C11—N2—O349.61 (12)
C7—C8—C11—N281.54 (13)C10—C9—O3—N284.42 (12)
C9—C8—C11—N230.87 (13)C8—C9—O3—N229.78 (13)
C7—C8—C11—C13153.59 (12)C12—N2—O3—C9170.81 (12)
C9—C8—C11—C1393.99 (14)C11—N2—O3—C950.71 (12)
N2—C11—C13—C14109.49 (18)C15—C16—S1—C130.48 (14)
C8—C11—C13—C14135.77 (16)C17—C16—S1—C13178.30 (15)
N2—C11—C13—S170.16 (16)C14—C13—S1—C160.04 (13)
C8—C11—C13—S144.58 (17)C11—C13—S1—C16179.67 (13)
C11—C13—C14—C15179.92 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H18···O2i0.94 (2)2.41 (2)3.103 (2)130.0
C2—H2···Cg1ii0.932.993.83 (2)152 (1)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H16N2O3S
Mr328.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6558 (5), 8.5738 (3), 19.3824 (8)
β (°) 128.654 (3)
V3)1642.42 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.73 × 0.52 × 0.26
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.685, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
19464, 3401, 2872
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections3401
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H18···O2i0.94 (2)2.41 (2)3.103 (2)130.0
C2—H2···Cg1ii0.932.993.83 (2)152.0 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS 2 diffractometer (purchased under grant No. F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaldwin, S. W. & Aube, J. (1987). Tetrahedron Lett. 28, 179–182.  CrossRef CAS Web of Science Google Scholar
First citationBanerji, A. & Basu, S. (1992). Tetrahedron, 48, 3335–3344.  CrossRef CAS Web of Science Google Scholar
First citationBanerji, A. & Sahu, A. J. (1986). Sci. Ind. Res. 45, 355–369.  CAS Google Scholar
First citationBlack, D. C., Crozier, R. F. & Davis, V. C. (1975). Synthesis, pp. 205–221.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373–378.  CSD CrossRef Google Scholar
First citationMallesha, H., Ravikumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459–1461.  CrossRef Google Scholar
First citationMallesha, H., Ravikumar, K. R. & Rangappa, K. S. (2001). Synthesis, 16, 2415–2418.  CrossRef Google Scholar
First citationOchiai, M., Obayashi, M. & Morita, K. (1967). Tetrahedron, 23, 2641–2648.  CrossRef CAS Web of Science Google Scholar
First citationPadwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, pp. 83–87. New York: John Wiley and Sons.  Google Scholar
First citationPadwa, A., Koehler, K. F. & Rodringuez, A. (1981). J. Am. Chem. Soc. 103, 4974–4975.  CrossRef CAS Web of Science Google Scholar
First citationPadwa, A., Koehler, K. F. & Rodringuez, A. (1984). J. Org. Chem. 49, 282–288.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTorsell, K. B. G. (1988). Nitrile Oxides, Nitrone and Nitronates in Organic Synthesis, pp. 75–93. New York: VCH.  Google Scholar
First citationTufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 277–312. New York: John Wiley and Sons.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o862-o863
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds