organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o806-o807

Di­methyl cis-2-methyl-3-p-tolyl­isoxazolidine-4,5-di­carboxyl­ate

aPamukkale University, Denizli Higher Vocational School, Chemistry Program, Tr-20159 Kınıklı, Denizli, Turkey, bDepartment of Chemistry, Faculty of Arts and Science, Gazi University, Ankara, Turkey, and cDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit, Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 26 February 2009; accepted 13 March 2009; online 19 March 2009)

In the mol­ecule of the title compound, C15H19NO5, the isoxazole ring adopts an envelope conformation. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules, in which they may be effective in the stabilization of the structure.

Related literature

For general background, see: Tufariello (1984[Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 83-87. New York: John Wiley and Sons.]); Villamena & Zweier (2004[Villamena, F. A. & Zweier, J. L. (2004). Antioxid. Redox Signal. 6, 619-629.]); Halliwell (2001a[Halliwell, B. (2001a). Oxidative Stress Dis. 7, 1-16.],b[Halliwell, B. (2001b). Drugs Aging, 18, 685-716.]); Zweier & Talukder (2006[Zweier, J. L. & Talukder, M. A. H. (2006). Cardiovasc. Res. 70, 181-190.]); Janzen (1971[Janzen, E. G. (1971). Acc. Chem. Res. 4, 31-40.], 1980[Janzen, E. G. (1980). Free Radic. Biol. Med. 4, 115-154.]); Janzen & Haire (1990[Janzen, E. G. & Haire, D. L. (1990). Adv. Free Radic. Chem. 1, 253-295.]); Villamena et al. (2007[Villamena, F. A., Xia, S., Merle, J. K., Lauricella, R., Tuccio, B., Hadad, C. M. & Zweier, J. L. (2007). J. Am. Chem. Soc. 129, 8177-8191.]); Floyd & Hensley (2000[Floyd, R. A. & Hensley, K. (2000). Ann. NY Acad. Sci. 899, 222-237.]); Inanami & Kuwabara (1995[Inanami, O. & Kuwabara, M. (1995). Free Radic. Res. 23, 33-39.]); Becker et al. (2002[Becker, D. A., Ley, J. J., Echegoyen, L. & Alvarado, R. (2002). J. Am. Chem. Soc. 124, 4678.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the preparation of N-Methyl-C-(-4-methylphenyl) nitrone, used in the synthesis, see: Heaney et al. (2001[Heaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373-378.]). For 1,3-dipolar cycloaddition of nitrones and alkenes, see: Confalone & Huie (1988[Confalone, P. N. & Huie, E. M. (1988). Org. React. 36, 1-173.]); Torssell (1988[Torssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, edited by H. Feuer, pp. 75-93. New York: VCH.]); Frederickson (1997[Frederickson, M. (1997). Tetrahedron, 53, 403-425.]); Gothelf & Jorgensen (1998[Gothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863-909.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO5

  • Mr = 293.31

  • Orthorhombic, C c c 2

  • a = 15.3832 (7) Å

  • b = 19.7959 (8) Å

  • c = 9.9612 (3) Å

  • V = 3033.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.78 × 0.45 × 0.27 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.973, Tmax = 0.989

  • 11187 measured reflections

  • 1672 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.07

  • 1672 reflections

  • 192 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.60 3.300 (2) 133
C6—H6⋯O2ii 0.93 2.44 3.312 (3) 157
C9—H9⋯N1ii 0.98 2.55 3.497 (2) 162
C10—H10⋯O5ii 0.98 2.66 3.481 (2) 142
C15—H15a⋯O4iii 0.96 2.64 3.403 (3) 137
Symmetry codes: (i) [-x+1, y, z-{\script{1\over 2}}]; (ii) [-x+1, y, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitrones are members of a class of compounds which are commonly used as precursors in the syntheses of natural products (Tufariello, 1984), as spin-trapping reagents in the identification of transient radicals (Villamena & Zweier, 2004), and as therapeutic agents (Floyd & Hensley, 2000; Inanami & Kuwabara, 1995) such as in the case of disodium-[(tert-butylimino) -methyl]benzene-1,3-disulfonate N-oxide (NXY-059) which is in clinical trials in the USA for the treatment of neurodegenerative disease (Becker et al., 2002). In recent years, it has become clear that reactive oxygen species (ROS) (e.g., radicals: O2.-, HO., HO2., RO2., RO., CO3.-, and CO2.-; and non-radicals such as H2O2, HOCl, O3, 1O2, and ROOH) are critical mediators in cardiovascular dysfunction, neurodegenerative diseases, oncogenesis, lung damage and aging, to name a few (Halliwell, 2001a; 2001b; Zweier & Talukder, 2006). Electron paramagnetic resonance (EPR) spectroscopy has been an indispensable tool for the detection of these ROS via spin trapping [Villamena & Zweier, 2004; Janzen, 1971; Janzen,1980; Janzen & Haire, 1990; Villamena et al., 2007). The nitrone-based spin traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-diethoxyphosphoryl-5- methyl-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-pyrroline N-oxide (EMPO), are the most commonly used spin-trapping reagents and have contributed significantly to the understanding of important free radical- mediated processes in chemical, biochemical, and biological systems in spite of their many limitations. The 1,3-dipolar cycloaddition of nitrones and alkenes is a powerful synthetic device that allows up to three new stereogenic centers to be assembled in a stereospecific manner in a single step (Confalone & Huie, 1988; Torssell, 1988; Frederickson, 1997; Gothelf & Jorgensen, 1998). The syntheses of isoxazolidine derivatives is an important subject in organic chemistry because they are found in the structure of most natural compounds and drugs. In recent years, isoxazolidine derivatives have been synthesized in high yield via intermolecular cycloaddition of N-methylnitrone with disubstituted olefins and are employed for biological evaluation. In view of the importance of the isoxazolidines, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar, while ring B (O1/N1/C8-C10) adopts envelope conformation with N1 atom displaced by 0.676 (3) Å from the plane of the other ring atoms.

In the crystal structure, weak intermolecular C-H···O and C-H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Tufariello (1984); Villamena & Zweier (2004); Floyd & Hensley (2000); Inanami & Kuwabara (1995); Becker et al. (2002); Halliwell (2001a,b); Zweier & Talukder (2006); Janzen (1971); Janzen (1980); Janzen & Haire (1990); Villamena et al. (2007); Confalone & Huie (1988); Torssell (1988); Frederickson (1997); Gothelf & Jorgensen (1998). For related literature, see: Allen et al. (1987); Heaney et al. (2001).

Experimental top

N-Methyl-C-(-4-methylphenyl) nitrone, was prepared from 4-methyl benzaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in CH2Cl2 according to the literature method (Heaney et al., 2001). For the preparation of the title compound, N-methyl-C-(-4-methylphenyl) nitrone (453 mg, 3 mmol) and dimethylmaleate (475 mg, 3,3 mmol) were dissolved in benzene (50 ml). The reaction mixture was refluxed for 9 h, and monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using the mixture of hexane/ethyl acetate (1:1) as the eluant. The cis-isomer, was recrystallized from CHCl3/hexane (1:3) in 2 d (m.p. 371-372 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. The absolute structure could not be determined reliably, and 1474 Friedel pairs were averaged before the last cycle of refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Dimethyl cis-2-methyl-3-p-tolylisoxazolidine-4,5-dicarboxylate top
Crystal data top
C15H19NO5F(000) = 1248
Mr = 293.31Dx = 1.285 Mg m3
Orthorhombic, Ccc2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2 -2cCell parameters from 11187 reflections
a = 15.3832 (7) Åθ = 1.7–28.0°
b = 19.7959 (8) ŵ = 0.10 mm1
c = 9.9612 (3) ÅT = 296 K
V = 3033.4 (2) Å3Prism, colorless
Z = 80.78 × 0.45 × 0.27 mm
Data collection top
Stoe IPDS-2
diffractometer
1672 independent reflections
Radiation source: sealed X-ray tube1554 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.026
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.7°
ω scan rotation methodh = 1819
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.973, Tmax = 0.989l = 1212
11187 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1649P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1672 reflectionsΔρmax = 0.11 e Å3
192 parametersΔρmin = 0.10 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (3)
Crystal data top
C15H19NO5V = 3033.4 (2) Å3
Mr = 293.31Z = 8
Orthorhombic, Ccc2Mo Kα radiation
a = 15.3832 (7) ŵ = 0.10 mm1
b = 19.7959 (8) ÅT = 296 K
c = 9.9612 (3) Å0.78 × 0.45 × 0.27 mm
Data collection top
Stoe IPDS-2
diffractometer
1672 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1554 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.026
11187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.11 e Å3
1672 reflectionsΔρmin = 0.10 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43759 (8)0.40270 (6)0.68227 (16)0.0583 (4)
O20.61162 (9)0.28606 (7)0.63405 (15)0.0577 (3)
O30.60989 (9)0.22965 (7)0.82785 (15)0.0585 (3)
O40.66458 (9)0.42093 (7)0.75011 (16)0.0626 (4)
O50.58517 (8)0.43642 (7)0.56403 (14)0.0578 (3)
N10.41179 (9)0.33370 (7)0.64475 (16)0.0485 (3)
C10.41288 (11)0.22248 (9)0.75835 (19)0.0465 (4)
C20.43264 (13)0.18797 (10)0.6418 (2)0.0555 (4)
H20.45300.21140.56720.067*
C30.42216 (14)0.11819 (11)0.6357 (3)0.0647 (5)
H30.43520.09580.55610.078*
C40.39317 (13)0.08153 (10)0.7437 (3)0.0650 (6)
C50.37474 (15)0.11654 (12)0.8606 (3)0.0680 (6)
H50.35610.09280.93580.082*
C60.38338 (14)0.18582 (11)0.8680 (2)0.0598 (5)
H60.36930.20810.94720.072*
C70.37937 (18)0.00580 (14)0.7372 (5)0.0968 (10)
H7A0.32070.00460.76260.145*
H7B0.41890.01620.79750.145*
H7C0.38970.00970.64720.145*
C80.42456 (11)0.29783 (9)0.77189 (18)0.0460 (4)
H80.38250.31490.83760.055*
C90.51660 (11)0.32237 (8)0.81227 (17)0.0459 (4)
H90.52350.32150.91010.055*
C100.51412 (11)0.39570 (8)0.76058 (19)0.0494 (4)
H100.50710.42490.83930.059*
C110.32106 (12)0.33992 (12)0.6060 (3)0.0650 (5)
H11A0.31710.36380.52230.097*
H11B0.29000.36440.67400.097*
H11C0.29620.29570.59600.097*
C120.58471 (11)0.27910 (8)0.74591 (19)0.0461 (4)
C130.66586 (15)0.17845 (11)0.7714 (3)0.0746 (6)
H13A0.67990.14580.83920.112*
H13B0.71830.19910.73920.112*
H13C0.63660.15650.69840.112*
C140.59637 (11)0.41814 (8)0.6902 (2)0.0475 (4)
C150.66179 (16)0.46013 (14)0.4967 (3)0.0802 (7)
H15A0.64750.47230.40600.120*
H15B0.70490.42500.49600.120*
H15C0.68430.49890.54290.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0479 (6)0.0423 (6)0.0848 (10)0.0013 (5)0.0049 (6)0.0057 (7)
O20.0693 (8)0.0515 (7)0.0524 (7)0.0065 (6)0.0100 (7)0.0007 (6)
O30.0641 (8)0.0521 (7)0.0592 (8)0.0095 (6)0.0029 (7)0.0078 (6)
O40.0535 (7)0.0669 (8)0.0674 (8)0.0085 (6)0.0091 (6)0.0009 (7)
O50.0556 (7)0.0574 (8)0.0606 (8)0.0062 (6)0.0025 (6)0.0096 (6)
N10.0461 (7)0.0452 (7)0.0541 (9)0.0016 (5)0.0002 (6)0.0047 (7)
C10.0465 (8)0.0466 (8)0.0465 (9)0.0038 (6)0.0023 (7)0.0022 (8)
C20.0653 (11)0.0513 (9)0.0500 (9)0.0020 (8)0.0027 (9)0.0002 (9)
C30.0672 (11)0.0546 (11)0.0724 (13)0.0016 (9)0.0039 (11)0.0135 (11)
C40.0526 (10)0.0491 (10)0.0935 (16)0.0068 (7)0.0156 (10)0.0032 (11)
C50.0703 (13)0.0613 (12)0.0725 (13)0.0159 (10)0.0026 (11)0.0182 (11)
C60.0674 (12)0.0619 (11)0.0500 (9)0.0133 (9)0.0033 (9)0.0035 (9)
C70.0854 (15)0.0517 (11)0.153 (3)0.0127 (11)0.0152 (19)0.0036 (16)
C80.0474 (8)0.0463 (9)0.0442 (8)0.0017 (6)0.0061 (7)0.0014 (7)
C90.0532 (9)0.0448 (8)0.0398 (8)0.0009 (7)0.0006 (7)0.0031 (7)
C100.0517 (9)0.0423 (8)0.0541 (9)0.0011 (6)0.0027 (8)0.0073 (8)
C110.0483 (9)0.0661 (12)0.0806 (14)0.0008 (8)0.0074 (10)0.0108 (10)
C120.0479 (8)0.0416 (8)0.0489 (9)0.0023 (6)0.0026 (8)0.0011 (8)
C130.0717 (13)0.0527 (11)0.0995 (18)0.0172 (9)0.0032 (13)0.0027 (12)
C140.0491 (9)0.0384 (7)0.0549 (9)0.0022 (6)0.0027 (8)0.0046 (8)
C150.0757 (14)0.0924 (16)0.0726 (15)0.0240 (12)0.0079 (12)0.0166 (14)
Geometric parameters (Å, º) top
C1—C21.381 (3)C10—O11.419 (2)
C1—C61.387 (3)C10—C141.513 (3)
C1—C81.508 (2)C10—H100.9800
C2—C31.392 (3)C11—N11.453 (2)
C2—H20.9300C11—H11A0.9600
C3—C41.373 (4)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.384 (4)C12—O21.197 (2)
C4—C71.515 (3)C12—O31.332 (2)
C5—C61.380 (3)C13—O31.444 (3)
C5—H50.9300C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C7—H7A0.9600C13—H13C0.9600
C7—H7B0.9600C14—O41.209 (2)
C7—H7C0.9600C14—O51.319 (2)
C8—N11.465 (2)C15—O51.435 (3)
C8—C91.550 (2)C15—H15A0.9600
C8—H80.9800C15—H15B0.9600
C9—C121.506 (2)C15—H15C0.9600
C9—C101.541 (2)N1—O11.4707 (19)
C9—H90.9800
C2—C1—C6118.35 (17)O1—C10—C14114.22 (15)
C2—C1—C8122.56 (16)O1—C10—C9107.23 (13)
C6—C1—C8119.07 (17)C14—C10—C9114.25 (13)
C1—C2—C3120.1 (2)O1—C10—H10106.9
C1—C2—H2119.9C14—C10—H10106.9
C3—C2—H2119.9C9—C10—H10106.9
C4—C3—C2121.9 (2)N1—C11—H11A109.5
C4—C3—H3119.1N1—C11—H11B109.5
C2—C3—H3119.1H11A—C11—H11B109.5
C3—C4—C5117.47 (18)N1—C11—H11C109.5
C3—C4—C7122.3 (3)H11A—C11—H11C109.5
C5—C4—C7120.2 (3)H11B—C11—H11C109.5
C6—C5—C4121.5 (2)O2—C12—O3123.68 (17)
C6—C5—H5119.2O2—C12—C9125.72 (17)
C4—C5—H5119.2O3—C12—C9110.57 (16)
C5—C6—C1120.6 (2)O3—C13—H13A109.5
C5—C6—H6119.7O3—C13—H13B109.5
C1—C6—H6119.7H13A—C13—H13B109.5
C4—C7—H7A109.5O3—C13—H13C109.5
C4—C7—H7B109.5H13A—C13—H13C109.5
H7A—C7—H7B109.5H13B—C13—H13C109.5
C4—C7—H7C109.5O4—C14—O5124.86 (18)
H7A—C7—H7C109.5O4—C14—C10120.68 (18)
H7B—C7—H7C109.5O5—C14—C10114.39 (15)
N1—C8—C1112.71 (14)O5—C15—H15A109.5
N1—C8—C9101.23 (13)O5—C15—H15B109.5
C1—C8—C9116.23 (14)H15A—C15—H15B109.5
N1—C8—H8108.8O5—C15—H15C109.5
C1—C8—H8108.8H15A—C15—H15C109.5
C9—C8—H8108.8H15B—C15—H15C109.5
C12—C9—C10113.98 (14)C11—N1—C8113.54 (15)
C12—C9—C8110.07 (13)C11—N1—O1104.36 (14)
C10—C9—C8100.72 (13)C8—N1—O1101.21 (13)
C12—C9—H9110.6C10—O1—N1105.84 (11)
C10—C9—H9110.6C12—O3—C13116.79 (18)
C8—C9—H9110.6C14—O5—C15115.34 (17)
C6—C1—C2—C30.5 (3)C8—C9—C10—C14137.37 (16)
C8—C1—C2—C3178.76 (17)C10—C9—C12—O229.1 (3)
C1—C2—C3—C40.7 (3)C8—C9—C12—O283.2 (2)
C2—C3—C4—C50.2 (3)C10—C9—C12—O3152.90 (14)
C2—C3—C4—C7178.4 (2)C8—C9—C12—O394.81 (17)
C3—C4—C5—C61.3 (3)O1—C10—C14—O4172.80 (15)
C7—C4—C5—C6177.4 (2)C9—C10—C14—O463.2 (2)
C4—C5—C6—C11.4 (3)O1—C10—C14—O54.3 (2)
C2—C1—C6—C50.5 (3)C9—C10—C14—O5119.63 (16)
C8—C1—C6—C5177.80 (18)C1—C8—N1—C1175.72 (19)
C2—C1—C8—N131.2 (2)C9—C8—N1—C11159.42 (16)
C6—C1—C8—N1150.60 (17)C1—C8—N1—O1173.05 (13)
C2—C1—C8—C985.0 (2)C9—C8—N1—O148.19 (14)
C6—C1—C8—C993.2 (2)C14—C10—O1—N1107.82 (15)
N1—C8—C9—C1285.19 (15)C9—C10—O1—N119.84 (17)
C1—C8—C9—C1237.3 (2)C11—N1—O1—C10161.41 (16)
N1—C8—C9—C1035.45 (15)C8—N1—O1—C1043.31 (16)
C1—C8—C9—C10157.90 (15)O2—C12—O3—C136.6 (3)
C12—C9—C10—O1108.09 (17)C9—C12—O3—C13171.52 (16)
C8—C9—C10—O19.72 (16)O4—C14—O5—C150.9 (3)
C12—C9—C10—C1419.6 (2)C10—C14—O5—C15177.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.603.300 (2)133
C6—H6···O2ii0.932.443.312 (3)157
C9—H9···N1ii0.982.553.497 (2)162
C10—H10···O5ii0.982.663.481 (2)142
C15—H15a···O4iii0.962.643.403 (3)137
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC15H19NO5
Mr293.31
Crystal system, space groupOrthorhombic, Ccc2
Temperature (K)296
a, b, c (Å)15.3832 (7), 19.7959 (8), 9.9612 (3)
V3)3033.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.78 × 0.45 × 0.27
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.973, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11187, 1672, 1554
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.07
No. of reflections1672
No. of parameters192
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.603.300 (2)133
C6—H6···O2ii0.932.443.312 (3)157
C9—H9···N1ii0.982.553.497 (2)162
C10—H10···O5ii0.982.663.481 (2)142
C15—H15a···O4iii0.962.643.403 (3)137
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant No. F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBecker, D. A., Ley, J. J., Echegoyen, L. & Alvarado, R. (2002). J. Am. Chem. Soc. 124, 4678.  Web of Science CrossRef PubMed Google Scholar
First citationConfalone, P. N. & Huie, E. M. (1988). Org. React. 36, 1–173.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFloyd, R. A. & Hensley, K. (2000). Ann. NY Acad. Sci. 899, 222–237.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrederickson, M. (1997). Tetrahedron, 53, 403–425.  CrossRef CAS Web of Science Google Scholar
First citationGothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863–909.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHalliwell, B. (2001a). Oxidative Stress Dis. 7, 1–16.  CAS Google Scholar
First citationHalliwell, B. (2001b). Drugs Aging, 18, 685–716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373–378.  CSD CrossRef Google Scholar
First citationInanami, O. & Kuwabara, M. (1995). Free Radic. Res. 23, 33–39.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJanzen, E. G. (1971). Acc. Chem. Res. 4, 31–40.  CrossRef CAS Web of Science Google Scholar
First citationJanzen, E. G. (1980). Free Radic. Biol. Med. 4, 115–154.  CrossRef CAS Google Scholar
First citationJanzen, E. G. & Haire, D. L. (1990). Adv. Free Radic. Chem. 1, 253–295.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTorssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, edited by H. Feuer, pp. 75–93. New York: VCH.  Google Scholar
First citationTufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, pp. 83–87. New York: John Wiley and Sons.  Google Scholar
First citationVillamena, F. A., Xia, S., Merle, J. K., Lauricella, R., Tuccio, B., Hadad, C. M. & Zweier, J. L. (2007). J. Am. Chem. Soc. 129, 8177–8191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVillamena, F. A. & Zweier, J. L. (2004). Antioxid. Redox Signal. 6, 619–629.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZweier, J. L. & Talukder, M. A. H. (2006). Cardiovasc. Res. 70, 181–190.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o806-o807
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds