organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-chloro-2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate

aCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 27 February 2009; accepted 3 March 2009; online 6 March 2009)

In the mol­ecule of the title compound, C11H10ClNO3S, the benzene and thia­zole rings are oriented at a dihedral angle of 1.25 (3)°. Intra­molecular C—H⋯O and C—H⋯Cl inter­actions result in the formation of two five-membered rings which both adopt envelope conformations.

Related literature

For a related structure, see: Shao et al. (2001[Shao, T., Long, Y. D. & Huang, T. B. (2001). Chin. J. Anal. Chem. 29, 74-76.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClNO3S

  • Mr = 271.71

  • Monoclinic, P 21 /c

  • a = 5.4830 (11) Å

  • b = 19.410 (4) Å

  • c = 11.060 (2) Å

  • β = 95.16 (3)°

  • V = 1172.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.907, Tmax = 0.952

  • 2363 measured reflections

  • 2132 independent reflections

  • 1460 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.172

  • S = 1.00

  • 2132 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3 0.97 2.36 2.768 (5) 105
C4—H4B⋯Cl 0.97 2.63 3.105 (4) 110

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is widely used in preventing cole from pest and is also useful to kill broad-leaved weed. It is likely to be decomposed in the soil. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C6-C11) and B (S/N/C5/C6/C11) are, of course, planar, and they are oriented at a dihedral angle 1.25 (3)°. So, they are also coplanar. The intramolecular C-H···O and C-H···Cl interactions (Table 1) result in the formations of two five-membered rings C (O3/N/C4/C5/H4A) and D (Cl/N/C4/C10/C11/H4B), adopting envelope conformations with H4A and H4B atoms displaced by -0.284 (3) and -0.661 (3) Å from the planes of the other ring atoms, respectively.

Related literature top

For a related structure, see: Shao et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 4-chlorobenzothiazol-2(3H)-one (10.7 g, 57.5 mmol), ethyl choroacetate (4.3 g, 50 mmol), and the catalyst of potassium iodide (0.63 g, 3 mmol) were added to butyl acetate solution (200 ml) of potassium carbonate (2.72 g, 20 ml) as acid-binding at 353 K. It was stirred for 8 h, and then cooled to room temperature. Water (150 ml) was added to dissolve the product, and inorganic salts were generated. The separated aqueous phase was extracted three times by butyl acetate, and then combined with organic phase product, treated with vacuum distillation at 353 K. Some anhydrous ethanol (about 40 ml) was added to the residual products, the combination was heated into homogeneous phase. Thereafter, precipitated products were cooled (Shao et al., 2001). Crystals suitable for X-ray analysis were obtained by evaporating the solvent slowly at room temperature for about 15 d.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
Ethyl 2-(4-chloro-2-oxo-2,3-dihydro-1,3-benzothiazol-3-yl)acetate top
Crystal data top
C11H10ClNO3SF(000) = 560
Mr = 271.71Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.4830 (11) Åθ = 10–12°
b = 19.410 (4) ŵ = 0.50 mm1
c = 11.060 (2) ÅT = 294 K
β = 95.16 (3)°Block, colorless
V = 1172.3 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1460 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 023
Tmin = 0.907, Tmax = 0.952l = 1313
2363 measured reflections3 standard reflections every 120 min
2132 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.14P]
where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H10ClNO3SV = 1172.3 (4) Å3
Mr = 271.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4830 (11) ŵ = 0.50 mm1
b = 19.410 (4) ÅT = 294 K
c = 11.060 (2) Å0.20 × 0.10 × 0.10 mm
β = 95.16 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1460 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.907, Tmax = 0.9523 standard reflections every 120 min
2363 measured reflections intensity decay: 1%
2132 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
2132 reflectionsΔρmin = 0.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.37482 (19)0.59357 (6)0.35838 (10)0.0538 (4)
S0.41735 (19)0.71164 (6)0.58220 (10)0.0472 (3)
O10.1295 (5)0.67435 (15)0.0880 (3)0.0510 (8)
O20.1424 (5)0.61068 (17)0.2030 (3)0.0568 (8)
O30.3832 (6)0.78020 (17)0.3753 (3)0.0574 (8)
N0.0918 (5)0.69736 (17)0.4015 (3)0.0394 (8)
C10.2905 (10)0.5683 (3)0.0001 (5)0.0751 (16)
H1A0.28540.53770.06810.113*
H1B0.45430.58530.00300.113*
H1C0.24130.54380.07350.113*
C20.1232 (10)0.6264 (2)0.0132 (4)0.0595 (12)
H2A0.04220.60910.01630.071*
H2B0.16990.65020.08880.071*
C30.0067 (7)0.6585 (2)0.1892 (4)0.0410 (9)
C40.0388 (7)0.7124 (2)0.2852 (3)0.0443 (10)
H4A0.01190.75720.25770.053*
H4B0.21280.71460.29450.053*
C50.2972 (7)0.7356 (2)0.4359 (4)0.0434 (10)
C60.1986 (7)0.6473 (2)0.5897 (3)0.0400 (9)
C70.1815 (9)0.6014 (2)0.6847 (4)0.0522 (11)
H7A0.29500.60210.75250.063*
C80.0084 (9)0.5547 (2)0.6758 (4)0.0542 (11)
H8A0.02450.52360.73860.065*
C90.1741 (9)0.5536 (2)0.5752 (4)0.0541 (11)
H9A0.30220.52210.57080.065*
C100.1530 (7)0.5992 (2)0.4797 (4)0.0419 (9)
C110.0334 (7)0.64719 (19)0.4852 (3)0.0384 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0421 (6)0.0549 (7)0.0633 (7)0.0090 (5)0.0018 (5)0.0008 (5)
S0.0446 (6)0.0507 (7)0.0456 (6)0.0038 (5)0.0001 (5)0.0043 (5)
O10.0571 (18)0.0488 (18)0.0446 (16)0.0022 (14)0.0087 (14)0.0003 (14)
O20.0544 (18)0.059 (2)0.0563 (19)0.0132 (16)0.0005 (15)0.0047 (15)
O30.0624 (19)0.056 (2)0.0527 (18)0.0162 (16)0.0011 (15)0.0084 (15)
N0.0380 (17)0.0366 (18)0.0427 (18)0.0012 (14)0.0014 (14)0.0015 (15)
C10.081 (4)0.069 (4)0.076 (4)0.017 (3)0.005 (3)0.010 (3)
C20.075 (3)0.059 (3)0.044 (2)0.009 (3)0.000 (2)0.007 (2)
C30.034 (2)0.043 (2)0.046 (2)0.0049 (18)0.0014 (17)0.0029 (19)
C40.045 (2)0.042 (2)0.045 (2)0.0046 (19)0.0004 (18)0.0060 (19)
C50.042 (2)0.045 (2)0.043 (2)0.0010 (19)0.0037 (18)0.0022 (19)
C60.041 (2)0.038 (2)0.042 (2)0.0050 (18)0.0049 (17)0.0026 (17)
C70.067 (3)0.046 (3)0.043 (2)0.005 (2)0.007 (2)0.005 (2)
C80.066 (3)0.041 (3)0.056 (3)0.001 (2)0.011 (2)0.009 (2)
C90.065 (3)0.040 (2)0.059 (3)0.009 (2)0.018 (2)0.001 (2)
C100.0351 (19)0.040 (2)0.050 (2)0.0047 (18)0.0011 (17)0.0030 (19)
C110.041 (2)0.032 (2)0.043 (2)0.0057 (17)0.0079 (17)0.0037 (17)
Geometric parameters (Å, º) top
S—C61.738 (4)C2—H2A0.9700
S—C51.755 (4)C2—H2B0.9700
Cl—C101.731 (4)C3—C41.527 (6)
O1—C31.325 (5)C4—H4A0.9700
O1—C21.459 (5)C4—H4B0.9700
O2—C31.191 (5)C6—C71.388 (6)
O3—C51.215 (5)C6—C111.403 (5)
N—C51.373 (5)C7—C81.377 (6)
N—C111.400 (5)C7—H7A0.9300
N—C41.445 (5)C8—C91.372 (7)
C1—C21.469 (7)C8—H8A0.9300
C1—H1A0.9600C9—C101.390 (6)
C1—H1B0.9600C9—H9A0.9300
C1—H1C0.9600C10—C111.381 (5)
C6—S—C591.77 (19)C3—C4—H4B109.1
C3—O1—C2116.7 (3)H4A—C4—H4B107.9
C5—N—C11115.1 (3)O3—C5—N125.6 (4)
C5—N—C4117.7 (3)O3—C5—S124.4 (3)
C11—N—C4127.2 (3)N—C5—S110.0 (3)
C2—C1—H1A109.5C7—C6—C11122.7 (4)
C2—C1—H1B109.5C7—C6—S126.3 (3)
H1A—C1—H1B109.5C11—C6—S111.0 (3)
C2—C1—H1C109.5C8—C7—C6118.1 (4)
H1A—C1—H1C109.5C8—C7—H7A121.0
H1B—C1—H1C109.5C6—C7—H7A121.0
O1—C2—C1110.9 (4)C9—C8—C7120.6 (4)
O1—C2—H2A109.5C9—C8—H8A119.7
C1—C2—H2A109.5C7—C8—H8A119.7
O1—C2—H2B109.5C8—C9—C10120.8 (4)
C1—C2—H2B109.5C8—C9—H9A119.6
H2A—C2—H2B108.1C10—C9—H9A119.6
O2—C3—O1126.0 (4)C11—C10—C9120.5 (4)
O2—C3—C4125.7 (4)C11—C10—Cl122.8 (3)
O1—C3—C4108.3 (3)C9—C10—Cl116.6 (3)
N—C4—C3112.4 (3)C10—C11—N130.8 (4)
N—C4—H4A109.1C10—C11—C6117.3 (4)
C3—C4—H4A109.1N—C11—C6112.0 (3)
N—C4—H4B109.1
C3—O1—C2—C182.2 (5)C6—C7—C8—C90.5 (7)
C2—O1—C3—O24.0 (6)C7—C8—C9—C100.5 (7)
C2—O1—C3—C4176.4 (3)C8—C9—C10—C111.1 (7)
C5—N—C4—C3104.5 (4)C8—C9—C10—Cl179.3 (4)
C11—N—C4—C375.3 (5)C9—C10—C11—N179.7 (4)
O2—C3—C4—N3.7 (6)Cl—C10—C11—N2.2 (6)
O1—C3—C4—N176.7 (3)C9—C10—C11—C60.5 (6)
C11—N—C5—O3177.8 (4)Cl—C10—C11—C6178.7 (3)
C4—N—C5—O32.0 (6)C5—N—C11—C10178.2 (4)
C11—N—C5—S3.0 (4)C4—N—C11—C101.6 (7)
C4—N—C5—S177.2 (3)C5—N—C11—C60.9 (5)
C6—S—C5—O3177.5 (4)C4—N—C11—C6179.3 (3)
C6—S—C5—N3.3 (3)C7—C6—C11—C100.5 (6)
C5—S—C6—C7177.6 (4)S—C6—C11—C10179.1 (3)
C5—S—C6—C112.8 (3)C7—C6—C11—N178.8 (4)
C11—C6—C7—C81.0 (6)S—C6—C11—N1.6 (4)
S—C6—C7—C8178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.972.362.768 (5)105
C4—H4B···Cl0.972.633.105 (4)110

Experimental details

Crystal data
Chemical formulaC11H10ClNO3S
Mr271.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)5.4830 (11), 19.410 (4), 11.060 (2)
β (°) 95.16 (3)
V3)1172.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.907, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
2363, 2132, 1460
Rint0.044
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.172, 1.00
No. of reflections2132
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O30.972.362.768 (5)105.00
C4—H4B···Cl0.972.633.105 (4)110.00
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShao, T., Long, Y. D. & Huang, T. B. (2001). Chin. J. Anal. Chem. 29, 74–76.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds