organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[di­amino­(eth­oxy­carbonyl­amino)­methyl­ium] sulfate

aUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan, bDepartment of Chemistry, FC College University, Lahore, Pakistan, cUniversity of Sargodha, Department of Chemistry, Sagrodha, Pakistan, and dHacettepe University, Department of Physics Engineering, Beytepe 06532, Ankara, Turkey
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 March 2009; accepted 12 March 2009; online 19 March 2009)

In the mol­ecule of the title compound, 2C4H10N3O2+·SO4, the cations are planar (r.m.s. deviations = 0.0144 and 0.0236 Å) and oriented at a dihedral angle of 62.30 (4)°. Intra­molecular N—H⋯O hydrogen bonds result in the formation of two planar six-membered rings. The cations are linked to the sulfate ion through inter­molecular C—H⋯O and N—H⋯O hydrogen bonds, forming an R22(8) ring motif. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Brauer & Kottsieper (2003[Brauer, D. J. & Kottsieper, K. W. (2003). Acta Cryst. C59, o244-o246.]); Curtis & Pasternak (1955[Curtis, R. M. & Pasternak, R. A. (1955). Acta Cryst. 8, 675-681.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H10N3O2+·SO42−

  • Mr = 360.36

  • Monoclinic, P 21 /c

  • a = 9.3021 (12) Å

  • b = 11.0081 (11) Å

  • c = 17.1063 (13) Å

  • β = 100.980 (3)°

  • V = 1719.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.946, Tmax = 0.967

  • 3481 measured reflections

  • 3481 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections frequency: 120 min intensity decay: 1.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.108

  • S = 1.03

  • 3481 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.95 (3) 1.89 (3) 2.837 (3) 175 (3)
N1—H1B⋯O2ii 0.84 (3) 1.96 (3) 2.805 (3) 177 (3)
N2—H2A⋯O5 0.82 (3) 2.10 (3) 2.712 (3) 131 (3)
N2—H2A⋯O7iii 0.82 (3) 2.27 (3) 2.975 (3) 144 (3)
N2—H2B⋯O1ii 0.90 (3) 1.95 (3) 2.854 (3) 174 (3)
N4—H4D⋯O3i 0.91 (3) 2.00 (3) 2.841 (3) 153 (2)
N4—H4E⋯O2 0.91 (3) 1.90 (3) 2.813 (3) 176 (3)
N3—H5⋯O4i 0.86 1.94 2.769 (3) 163
N5—H5A⋯O7 0.81 (3) 2.14 (3) 2.730 (3) 130 (3)
N5—H5A⋯O5iv 0.81 (3) 2.32 (3) 3.031 (3) 147 (3)
N5—H5B⋯O4 0.93 (3) 1.97 (3) 2.898 (3) 177 (3)
N6—H6⋯O3i 0.86 1.95 2.752 (3) 155
C3—H3A⋯O3 0.97 2.58 3.368 (4) 138
C7—H7B⋯O2v 0.97 2.55 3.483 (3) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies, we report herein the crystal structure of the title compound, (I).

The crystal structures of 1-carbamoylguanidinium methylphosphonate monohydrate, (II) (Brauer & Kottsieper, 2003) and methylguanidinium nitrate, (III) (Curtis & Pasternak, 1955) have been reported. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles of the diamino(ethoxycarbonylamino)methylium (DEAM) moieties are within normal ranges. DEAM moieties (N1–N3/O5/O6/C1–C4) and (N4–N6/O7/O8/C5–C8) are planar with maximum deviations of 0.043 (2) and -0.322 (3) Å for N2 and N4 atoms, respectively, in which they are oriented at a dihedral angle of 62.30 (4)°. The intramolecular N—H···O hydrogen bonds result in the formations of two planar six-membered rings: A (O5/N2/N3/C1/C2/H2A) and B (O7/N5/N6/C5/C6/H5A). The dihedral angle between them is A/B = 60.38 (3)°. The DEAM moieties are linked to the SO4 ion through the intramolecular C—H···O and N—H···O hydrogen bonds (Table 1), forming a R22(8) ring motif (Bernstein et al., 1995).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Brauer & Kottsieper (2003); Curtis & Pasternak (1955). For bond-length data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, 1-cyanoguanidine (2.1 g, 0.025 mol) was dissolved in water (50 ml), and then a few drops of H2SO4 were added. The resulting mixture was refluxed for 2–3 h, and cooled to room temperature. The excess of ethanol was added, and then refluxed for 2–3 h. It was filtered through alumina. The filtrate was concentrated under reduced pressure and kept for crystallization. Recrystallization was carried out from ethanol/hexane (9:1) mixture in 5 d.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Bis[diamino(ethoxycarbonylamino)methylium] sulfate top
Crystal data top
2C4H10N3O2+·SO42F(000) = 760
Mr = 360.36Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.3021 (12) Åθ = 10.0–18.2°
b = 11.0081 (11) ŵ = 0.24 mm1
c = 17.1063 (13) ÅT = 296 K
β = 100.980 (3)°Prism, colourless
V = 1719.6 (3) Å30.24 × 0.18 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2124 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 26.3°, θmin = 2.2°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.946, Tmax = 0.967l = 2120
3481 measured reflections3 standard reflections every 120 min
3481 independent reflections intensity decay: 1.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1093P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3481 reflectionsΔρmax = 0.21 e Å3
233 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (9)
Crystal data top
2C4H10N3O2+·SO42V = 1719.6 (3) Å3
Mr = 360.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3021 (12) ŵ = 0.24 mm1
b = 11.0081 (11) ÅT = 296 K
c = 17.1063 (13) Å0.24 × 0.18 × 0.15 mm
β = 100.980 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2124 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.946, Tmax = 0.9673 standard reflections every 120 min
3481 measured reflections intensity decay: 1.7%
3481 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
3481 reflectionsΔρmin = 0.25 e Å3
233 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74538 (6)0.22561 (5)0.25630 (4)0.0324 (2)
O10.87642 (18)0.15672 (16)0.29258 (11)0.0494 (6)
O20.78056 (17)0.35534 (15)0.25361 (10)0.0398 (6)
O30.6301 (2)0.20989 (17)0.30259 (11)0.0536 (7)
O40.6925 (2)0.18149 (16)0.17468 (10)0.0492 (7)
O50.43306 (19)0.28294 (17)0.43071 (11)0.0499 (6)
O60.53979 (17)0.45797 (16)0.40549 (11)0.0471 (6)
O70.2706 (2)0.42933 (17)0.03291 (11)0.0560 (7)
O80.17269 (19)0.60725 (16)0.00697 (10)0.0460 (6)
N10.0671 (3)0.4461 (2)0.29228 (14)0.0499 (8)
N20.1472 (3)0.2719 (2)0.35872 (15)0.0529 (9)
N30.3058 (2)0.43420 (19)0.35471 (12)0.0422 (7)
N40.5287 (3)0.4909 (2)0.19080 (14)0.0500 (8)
N50.4929 (3)0.3569 (2)0.08613 (14)0.0480 (8)
N60.3530 (2)0.53306 (19)0.08234 (12)0.0426 (7)
C10.1711 (3)0.3811 (2)0.33493 (15)0.0382 (8)
C20.4290 (3)0.3811 (2)0.40006 (15)0.0381 (8)
C30.6785 (3)0.4149 (3)0.45146 (17)0.0532 (10)
C40.7871 (3)0.5128 (3)0.4471 (2)0.0807 (15)
C50.4611 (3)0.4578 (2)0.11953 (15)0.0376 (8)
C60.2642 (3)0.5151 (3)0.00936 (15)0.0387 (8)
C70.0712 (3)0.6005 (3)0.08355 (15)0.0502 (10)
C80.0188 (4)0.7126 (3)0.0906 (2)0.0738 (12)
H1A0.090 (3)0.518 (3)0.2665 (16)0.0599*
H1B0.020 (3)0.421 (3)0.2797 (17)0.0599*
H2A0.215 (3)0.234 (3)0.3859 (18)0.0634*
H2B0.059 (3)0.237 (3)0.3410 (17)0.0634*
H3A0.707890.340040.429050.0638*
H3B0.670110.400130.506300.0638*
H4A0.880700.489430.477440.0965*
H4B0.755420.586600.468460.0965*
H4C0.795180.525450.392580.0965*
H4D0.499 (3)0.563 (3)0.2083 (16)0.0600*
H4E0.608 (3)0.445 (3)0.2123 (16)0.0600*
H50.314940.506700.337570.0505*
H5A0.446 (3)0.337 (3)0.0435 (17)0.0576*
H5B0.560 (3)0.303 (3)0.1145 (16)0.0576*
H60.338990.598660.107150.0511*
H7A0.009270.529210.085400.0602*
H7B0.124810.595600.126840.0602*
H8A0.093530.708170.137710.0883*
H8B0.042500.781830.093970.0883*
H8C0.063540.720350.044710.0883*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (3)0.0241 (3)0.0383 (4)0.0023 (3)0.0001 (3)0.0012 (3)
O10.0432 (11)0.0334 (10)0.0616 (12)0.0064 (9)0.0152 (9)0.0021 (9)
O20.0347 (9)0.0263 (9)0.0566 (11)0.0042 (7)0.0041 (8)0.0042 (8)
O30.0547 (12)0.0461 (12)0.0647 (12)0.0088 (10)0.0234 (10)0.0106 (10)
O40.0594 (12)0.0378 (11)0.0425 (11)0.0086 (9)0.0106 (9)0.0060 (8)
O50.0432 (10)0.0396 (11)0.0625 (12)0.0056 (9)0.0011 (9)0.0182 (10)
O60.0315 (9)0.0409 (11)0.0639 (12)0.0073 (8)0.0032 (8)0.0060 (9)
O70.0609 (12)0.0462 (12)0.0535 (12)0.0160 (10)0.0080 (9)0.0187 (10)
O80.0512 (11)0.0440 (11)0.0394 (10)0.0178 (9)0.0002 (8)0.0017 (9)
N10.0359 (12)0.0444 (15)0.0620 (16)0.0101 (12)0.0097 (12)0.0166 (12)
N20.0430 (14)0.0397 (15)0.0673 (16)0.0156 (12)0.0113 (12)0.0165 (12)
N30.0344 (11)0.0336 (13)0.0537 (13)0.0085 (10)0.0036 (10)0.0124 (10)
N40.0540 (15)0.0426 (15)0.0466 (14)0.0216 (12)0.0074 (11)0.0097 (12)
N50.0548 (15)0.0379 (14)0.0451 (14)0.0159 (12)0.0062 (11)0.0088 (12)
N60.0498 (13)0.0340 (12)0.0408 (12)0.0139 (11)0.0006 (10)0.0078 (10)
C10.0365 (14)0.0356 (16)0.0394 (14)0.0084 (12)0.0004 (11)0.0031 (12)
C20.0367 (14)0.0365 (16)0.0394 (14)0.0071 (12)0.0033 (11)0.0010 (12)
C30.0355 (15)0.0536 (19)0.0644 (19)0.0006 (14)0.0058 (13)0.0074 (15)
C40.0395 (17)0.093 (3)0.105 (3)0.0204 (18)0.0024 (17)0.012 (2)
C50.0391 (14)0.0342 (15)0.0388 (15)0.0066 (12)0.0055 (12)0.0001 (12)
C60.0396 (14)0.0345 (15)0.0417 (15)0.0051 (12)0.0069 (12)0.0004 (13)
C70.0500 (16)0.0579 (19)0.0384 (15)0.0098 (15)0.0022 (12)0.0020 (14)
C80.070 (2)0.075 (2)0.070 (2)0.032 (2)0.0028 (17)0.0115 (19)
Geometric parameters (Å, º) top
S1—O31.460 (2)N5—C51.308 (3)
S1—O41.4716 (18)N6—C51.363 (3)
S1—O11.4690 (19)N6—C61.374 (3)
S1—O21.4678 (17)N4—H4E0.91 (3)
O5—C21.199 (3)N4—H4D0.91 (3)
O6—C31.457 (3)N5—H5B0.93 (3)
O6—C21.323 (3)N5—H5A0.81 (3)
O7—C61.198 (4)N6—H60.8600
O8—C61.320 (4)C3—C41.489 (4)
O8—C71.464 (3)C3—H3A0.9700
N1—C11.308 (4)C3—H3B0.9700
N2—C11.302 (3)C4—H4C0.9600
N3—C21.385 (3)C4—H4B0.9600
N3—C11.366 (3)C4—H4A0.9600
N1—H1A0.95 (3)C7—C81.483 (5)
N1—H1B0.84 (3)C7—H7A0.9700
N2—H2A0.82 (3)C7—H7B0.9700
N2—H2B0.90 (3)C8—H8B0.9600
N3—H50.8600C8—H8C0.9600
N4—C51.312 (3)C8—H8A0.9600
S1···H2Bi3.00 (3)N4···O22.813 (3)
S1···H4E2.77 (3)N5···O42.898 (3)
S1···H5B2.83 (3)N5···O72.730 (3)
S1···H1Aii2.82 (3)N5···C6v3.341 (4)
S1···H4Dii3.04 (3)N5···O5iv3.031 (3)
S1···H5ii2.8900N6···O3vii2.752 (3)
S1···H6ii2.9500C2···O33.320 (3)
S1···H1Bi3.04 (3)C3···O33.368 (4)
O1···N2i2.854 (3)C5···O3vii3.260 (3)
O1···N1ii2.837 (3)C5···O7v3.373 (3)
O2···N1i2.805 (3)C6···N5v3.341 (4)
O2···N42.813 (3)C2···H4Bviii3.1000
O3···C23.320 (3)C2···H2A2.54 (3)
O3···N4ii2.841 (3)C6···H5A2.58 (3)
O3···C5ii3.260 (3)H1A···S1vii2.82 (3)
O3···C33.368 (4)H1A···O1vii1.89 (3)
O3···O53.216 (3)H1A···H52.2100
O3···N6ii2.752 (3)H1A···O4vii2.75 (3)
O4···N52.898 (3)H1B···S1vi3.04 (3)
O4···N3ii2.769 (3)H1B···H2B2.33 (5)
O5···O7iii2.914 (3)H1B···O2vi1.96 (3)
O5···O33.216 (3)H2A···O7iii2.27 (3)
O5···N22.712 (3)H2A···C22.54 (3)
O5···N5iii3.031 (3)H2A···O52.10 (3)
O7···O5iv2.914 (3)H2B···O1vi1.95 (3)
O7···N52.730 (3)H2B···H1B2.33 (5)
O7···N2iv2.975 (3)H2B···S1vi3.00 (3)
O7···C5v3.373 (3)H3A···O52.6400
O1···H2Bi1.95 (3)H3A···O32.5800
O1···H1Aii1.89 (3)H3B···O52.6700
O2···H1Bi1.96 (3)H4A···H4Aix2.2200
O2···H5B2.89 (3)H4B···C2viii3.1000
O2···H4E1.90 (3)H4D···S1vii3.04 (3)
O2···H7Bv2.5500H4D···H62.0900
O3···H3A2.5800H4D···O3vii2.00 (3)
O3···H4Dii2.00 (3)H4E···S12.77 (3)
O3···H6ii1.9500H4E···H5B2.27 (4)
O4···H5B1.97 (3)H4E···O21.90 (3)
O4···H1Aii2.75 (3)H5···H1A2.2100
O4···H5ii1.9400H5···S1vii2.8900
O5···H3A2.6400H5···O4vii1.9400
O5···H3B2.6700H5A···C62.58 (3)
O5···H5Aiii2.32 (3)H5A···O5iv2.32 (3)
O5···H2A2.10 (3)H5A···O72.14 (3)
O7···H7B2.6300H5B···O22.89 (3)
O7···H7A2.6600H5B···O41.97 (3)
O7···H5A2.14 (3)H5B···S12.83 (3)
O7···H2Aiv2.27 (3)H5B···H4E2.27 (4)
N1···O2vi2.805 (3)H6···S1vii2.9500
N1···O1vii2.837 (3)H6···O3vii1.9500
N2···O1vi2.854 (3)H6···H4D2.0900
N2···O52.712 (3)H7A···O72.6600
N2···O7iii2.975 (3)H7B···O72.6300
N3···O4vii2.769 (3)H7B···O2v2.5500
N4···O3vii2.841 (3)
O3—S1—O4109.16 (11)O5—C2—N3125.4 (2)
O1—S1—O3110.23 (11)O6—C3—C4106.1 (2)
O1—S1—O4109.33 (11)H3A—C3—H3B109.00
O1—S1—O2110.09 (10)O6—C3—H3B111.00
O2—S1—O4109.12 (10)O6—C3—H3A111.00
O2—S1—O3108.88 (10)C4—C3—H3A111.00
C2—O6—C3115.3 (2)C4—C3—H3B111.00
C6—O8—C7115.5 (2)C3—C4—H4C109.00
C1—N3—C2125.5 (2)H4A—C4—H4B109.00
C1—N1—H1A120.5 (17)H4A—C4—H4C109.00
C1—N1—H1B122 (2)C3—C4—H4A109.00
H1A—N1—H1B116 (3)C3—C4—H4B109.00
C1—N2—H2A119 (2)H4B—C4—H4C109.00
C1—N2—H2B119 (2)N4—C5—N5122.2 (2)
H2A—N2—H2B122 (3)N4—C5—N6116.4 (2)
C2—N3—H5117.00N5—C5—N6121.3 (2)
C1—N3—H5117.00O7—C6—N6124.9 (3)
C5—N6—C6126.8 (2)O7—C6—O8125.6 (2)
C5—N4—H4E115.4 (18)O8—C6—N6109.5 (2)
H4D—N4—H4E129 (3)O8—C7—C8106.8 (2)
C5—N4—H4D115.2 (17)C8—C7—H7A110.00
C5—N5—H5B120.0 (18)C8—C7—H7B110.00
C5—N5—H5A120 (2)O8—C7—H7A110.00
H5A—N5—H5B120 (3)O8—C7—H7B110.00
C6—N6—H6117.00H7A—C7—H7B109.00
C5—N6—H6117.00H8B—C8—H8C109.00
N2—C1—N3121.4 (2)C7—C8—H8A109.00
N1—C1—N3116.8 (2)C7—C8—H8B109.00
N1—C1—N2121.8 (3)C7—C8—H8C109.00
O6—C2—N3108.65 (19)H8A—C8—H8B109.00
O5—C2—O6125.9 (2)H8A—C8—H8C109.00
C3—O6—C2—O51.9 (4)C2—N3—C1—N20.4 (4)
C3—O6—C2—N3179.8 (2)C1—N3—C2—O53.0 (4)
C2—O6—C3—C4178.0 (2)C1—N3—C2—O6178.6 (2)
C6—O8—C7—C8179.0 (2)C6—N6—C5—N4177.4 (3)
C7—O8—C6—O70.5 (4)C6—N6—C5—N51.2 (4)
C7—O8—C6—N6179.8 (2)C5—N6—C6—O70.7 (4)
C2—N3—C1—N1179.2 (2)C5—N6—C6—O8180.0 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1vii0.95 (3)1.89 (3)2.837 (3)175 (3)
N1—H1B···O2vi0.84 (3)1.96 (3)2.805 (3)177 (3)
N2—H2A···O50.82 (3)2.10 (3)2.712 (3)131 (3)
N2—H2A···O7iii0.82 (3)2.27 (3)2.975 (3)144 (3)
N2—H2B···O1vi0.90 (3)1.95 (3)2.854 (3)174 (3)
N4—H4D···O3vii0.91 (3)2.00 (3)2.841 (3)153 (2)
N4—H4E···O20.91 (3)1.90 (3)2.813 (3)176 (3)
N3—H5···O4vii0.861.942.769 (3)163
N5—H5A···O70.81 (3)2.14 (3)2.730 (3)130 (3)
N5—H5A···O5iv0.81 (3)2.32 (3)3.031 (3)147 (3)
N5—H5B···O40.93 (3)1.97 (3)2.898 (3)177 (3)
N6—H6···O3vii0.861.952.752 (3)155
C3—H3A···O30.972.583.368 (4)138
C7—H7B···O2v0.972.553.483 (3)162
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C4H10N3O2+·SO42
Mr360.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.3021 (12), 11.0081 (11), 17.1063 (13)
β (°) 100.980 (3)
V3)1719.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.946, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
3481, 3481, 2124
Rint0.025
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.03
No. of reflections3481
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.95 (3)1.89 (3)2.837 (3)175 (3)
N1—H1B···O2ii0.84 (3)1.96 (3)2.805 (3)177 (3)
N2—H2A···O50.82 (3)2.10 (3)2.712 (3)131 (3)
N2—H2A···O7iii0.82 (3)2.27 (3)2.975 (3)144 (3)
N2—H2B···O1ii0.90 (3)1.95 (3)2.854 (3)174 (3)
N4—H4D···O3i0.91 (3)2.00 (3)2.841 (3)153 (2)
N4—H4E···O20.91 (3)1.90 (3)2.813 (3)176 (3)
N3—H5···O4i0.861.942.769 (3)163
N5—H5A···O70.81 (3)2.14 (3)2.730 (3)130 (3)
N5—H5A···O5iv0.81 (3)2.32 (3)3.031 (3)147 (3)
N5—H5B···O40.93 (3)1.97 (3)2.898 (3)177 (3)
N6—H6···O3i0.861.952.752 (3)155
C3—H3A···O30.972.583.368 (4)138
C7—H7B···O2v0.972.553.483 (3)162
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the preparative efforts of the late Muhammad Asghar, student of Dr Christy Munir at Quaid-i-Azam University, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrauer, D. J. & Kottsieper, K. W. (2003). Acta Cryst. C59, o244–o246.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCurtis, R. M. & Pasternak, R. A. (1955). Acta Cryst. 8, 675–681.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds