organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(3-chloro­prop­­oxy)-5-meth­­oxy-2-nitro­benzoate

aCollege of Light Industry and Food Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, and College of Light Industry and Food Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 9 March 2009; accepted 12 March 2009; online 19 March 2009)

The asymmetric unit of the title compound, C12H14ClNO6, contains two crystallographically independent mol­ecules, in which the benzene rings are oriented at a dihedral angle of 9.12 (3)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background, see: Knesl et al. (2006[Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClNO6

  • Mr = 303.69

  • Monoclinic, P 21 /c

  • a = 23.150 (5) Å

  • b = 15.013 (3) Å

  • c = 8.0700 (16) Å

  • β = 93.42 (3)°

  • V = 2799.7 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.916, Tmax = 0.943

  • 5208 measured reflections

  • 5096 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.038

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.162

  • S = 1.03

  • 5096 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O4i 0.97 2.58 3.336 (7) 135
C13—H13B⋯O9ii 0.96 2.41 3.211 (6) 141
C21—H21A⋯O5iii 0.96 2.48 3.243 (5) 136
C24—H24A⋯O9iv 0.97 2.59 3.276 (6) 128
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C3-C8) and A' (C15-C20) are, of course, planar and they are oriented at a dihedral angle of A/A' = 9.12 (3)°.

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Knesl et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a solution of methyl 4-(3-chloro- propoxy)-3-methoxybenzoate (19 mmol) in acetic acid (20 ml) was added dropwise to nitric acid (98%, 4.5 ml) at 273-278 K. The mixture was stirred for 1 h at room temperature, and then for 2 h at 323 K. After the reaction was completed, the reaction mixture was poured into ice/water (130 ml), and then extracted with trichloromethane (20 ml). The combined organic phases were collected, washed with saturated sodium bicarbonate (20 ml), brine (20 ml), dried (Na2SO4) and decolorized (charcoal). Trichloromethane was then removed under reduced pressure to give a yellow oil, which was crystallized from ethyl acetate/petroleum ether to afford the product as light yellow crystals (m.p. 337 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted.
Methyl 4-(3-chloropropoxy)-5-methoxy-2-nitrobenzoate top
Crystal data top
C12H14ClNO6F(000) = 1264
Mr = 303.69Dx = 1.441 Mg m3
Monoclinic, P21/cMelting point: 337 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 23.150 (5) ÅCell parameters from 25 reflections
b = 15.013 (3) Åθ = 10–13°
c = 8.0700 (16) ŵ = 0.30 mm1
β = 93.42 (3)°T = 294 K
V = 2799.7 (10) Å3Needle, yellow
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 027
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.916, Tmax = 0.943l = 99
5208 measured reflections3 standard reflections every 120 min
5096 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0567P)2 + 1.915P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5096 reflectionsΔρmax = 0.40 e Å3
362 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (6)
Crystal data top
C12H14ClNO6V = 2799.7 (10) Å3
Mr = 303.69Z = 8
Monoclinic, P21/cMo Kα radiation
a = 23.150 (5) ŵ = 0.30 mm1
b = 15.013 (3) ÅT = 294 K
c = 8.0700 (16) Å0.30 × 0.20 × 0.20 mm
β = 93.42 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2874 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.916, Tmax = 0.9433 standard reflections every 120 min
5208 measured reflections intensity decay: 1%
5096 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
5096 reflectionsΔρmin = 0.30 e Å3
362 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26534 (6)0.48992 (8)0.29390 (17)0.0758 (4)
Cl20.30461 (6)0.79461 (8)0.6560 (2)0.0888 (5)
O10.10537 (13)0.2705 (2)0.1972 (5)0.0846 (11)
O20.05735 (14)0.1596 (2)0.3282 (4)0.0714 (9)
O30.06317 (19)0.3963 (3)0.4296 (5)0.1081 (15)
O40.05061 (16)0.5014 (2)0.2559 (6)0.0970 (13)
O50.13459 (12)0.23218 (18)0.0445 (4)0.0559 (8)
O60.14060 (12)0.40304 (18)0.0445 (4)0.0593 (8)
O70.40610 (12)0.06586 (17)0.5910 (4)0.0558 (8)
O80.48185 (14)0.1024 (2)0.7607 (4)0.0740 (10)
O90.53876 (12)0.3392 (2)0.6019 (4)0.0637 (9)
O100.51561 (13)0.2122 (2)0.4944 (4)0.0694 (9)
O110.28231 (11)0.33078 (17)0.7787 (4)0.0528 (7)
O120.34201 (12)0.46634 (17)0.7009 (4)0.0538 (8)
N10.04080 (17)0.4270 (3)0.3109 (6)0.0687 (11)
N20.50447 (14)0.2793 (2)0.5715 (4)0.0466 (8)
C10.1592 (2)0.2271 (5)0.2275 (9)0.124 (3)
H1A0.19070.26070.17610.185*
H1B0.16350.22370.34490.185*
H1C0.15930.16810.18160.185*
C20.05727 (18)0.2299 (3)0.2610 (6)0.0554 (11)
C30.00469 (17)0.2813 (3)0.2209 (5)0.0477 (10)
C40.00118 (18)0.3722 (3)0.2282 (5)0.0495 (10)
C50.04788 (18)0.4163 (3)0.1691 (5)0.0542 (11)
H5A0.04980.47810.17240.065*
C60.09190 (17)0.3675 (3)0.1046 (5)0.0474 (10)
C70.08873 (17)0.2742 (3)0.1040 (5)0.0463 (10)
C80.04040 (17)0.2321 (3)0.1598 (5)0.0476 (10)
H8A0.03800.17020.15640.057*
C90.1376 (2)0.1372 (3)0.0606 (6)0.0626 (12)
H9A0.17210.11590.01330.094*
H9B0.10430.11090.00330.094*
H9C0.13840.12130.17590.094*
C100.1491 (2)0.4975 (3)0.0631 (7)0.0645 (13)
H10A0.14940.51400.17940.077*
H10B0.11820.52970.00310.077*
C110.2060 (2)0.5190 (3)0.0057 (6)0.0638 (13)
H11A0.21280.58250.00570.077*
H11B0.20370.50530.12340.077*
C120.25688 (19)0.4705 (3)0.0750 (6)0.0612 (12)
H12A0.29180.48930.02410.073*
H12B0.25210.40710.05530.073*
C130.4229 (2)0.0264 (3)0.6021 (7)0.0748 (15)
H13A0.39620.06170.53440.112*
H13B0.42260.04580.71540.112*
H13C0.46110.03320.56380.112*
C140.43940 (17)0.1222 (3)0.6788 (5)0.0433 (10)
C150.41457 (15)0.2145 (2)0.6687 (4)0.0367 (9)
C160.35887 (16)0.2280 (2)0.7183 (5)0.0409 (9)
H16A0.33650.17900.74420.049*
C170.33587 (16)0.3122 (2)0.7300 (5)0.0397 (9)
C180.36847 (16)0.3871 (2)0.6871 (5)0.0415 (9)
C190.42370 (16)0.3744 (2)0.6376 (5)0.0418 (9)
H19A0.44600.42310.60980.050*
C200.44601 (15)0.2890 (2)0.6293 (4)0.0378 (9)
C210.24745 (17)0.2586 (3)0.8302 (5)0.0521 (11)
H21A0.21080.28110.86130.078*
H21B0.26670.22920.92350.078*
H21C0.24140.21710.74040.078*
C220.3705 (2)0.5435 (3)0.6460 (6)0.0567 (11)
H22A0.37810.53840.52950.068*
H22B0.40700.55230.70960.068*
C230.3290 (2)0.6207 (3)0.6738 (7)0.0680 (14)
H23A0.29310.61080.60800.082*
H23B0.32010.62220.78970.082*
C240.3531 (2)0.7046 (3)0.6292 (8)0.0895 (18)
H24A0.36290.70240.51410.107*
H24B0.38850.71490.69690.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0858 (9)0.0698 (8)0.0709 (8)0.0107 (7)0.0018 (7)0.0109 (7)
Cl20.0811 (9)0.0518 (7)0.1376 (13)0.0225 (6)0.0417 (9)0.0179 (8)
O10.049 (2)0.095 (3)0.111 (3)0.0011 (18)0.0157 (19)0.046 (2)
O20.071 (2)0.066 (2)0.079 (2)0.0029 (17)0.0184 (18)0.0170 (19)
O30.124 (3)0.119 (3)0.087 (3)0.048 (3)0.053 (3)0.017 (3)
O40.088 (3)0.059 (2)0.148 (4)0.018 (2)0.037 (2)0.006 (2)
O50.0529 (18)0.0488 (17)0.068 (2)0.0020 (14)0.0179 (15)0.0026 (15)
O60.0515 (18)0.0475 (17)0.080 (2)0.0126 (14)0.0128 (16)0.0039 (15)
O70.0585 (18)0.0382 (15)0.069 (2)0.0053 (14)0.0072 (15)0.0044 (15)
O80.064 (2)0.064 (2)0.089 (2)0.0219 (17)0.0301 (19)0.0083 (18)
O90.0436 (17)0.071 (2)0.078 (2)0.0114 (16)0.0142 (15)0.0192 (17)
O100.062 (2)0.060 (2)0.089 (2)0.0059 (16)0.0290 (18)0.0250 (18)
O110.0425 (16)0.0458 (16)0.072 (2)0.0063 (13)0.0190 (14)0.0015 (15)
O120.0547 (18)0.0370 (15)0.072 (2)0.0082 (13)0.0231 (15)0.0010 (14)
N10.062 (3)0.070 (3)0.075 (3)0.008 (2)0.011 (2)0.000 (2)
N20.041 (2)0.051 (2)0.049 (2)0.0044 (17)0.0083 (16)0.0039 (18)
C10.048 (3)0.155 (6)0.171 (7)0.014 (4)0.023 (4)0.067 (5)
C20.048 (3)0.068 (3)0.052 (3)0.001 (2)0.014 (2)0.001 (2)
C30.044 (2)0.056 (3)0.043 (2)0.004 (2)0.0049 (19)0.001 (2)
C40.046 (2)0.055 (3)0.048 (3)0.005 (2)0.005 (2)0.008 (2)
C50.052 (3)0.045 (2)0.065 (3)0.001 (2)0.003 (2)0.003 (2)
C60.043 (2)0.051 (3)0.048 (3)0.005 (2)0.000 (2)0.001 (2)
C70.048 (3)0.046 (2)0.044 (2)0.002 (2)0.000 (2)0.006 (2)
C80.050 (3)0.044 (2)0.049 (3)0.005 (2)0.006 (2)0.001 (2)
C90.063 (3)0.049 (3)0.078 (3)0.001 (2)0.017 (2)0.006 (2)
C100.060 (3)0.042 (2)0.092 (4)0.007 (2)0.002 (3)0.003 (2)
C110.073 (3)0.047 (3)0.071 (3)0.014 (2)0.004 (3)0.005 (2)
C120.058 (3)0.059 (3)0.067 (3)0.009 (2)0.013 (2)0.007 (2)
C130.082 (4)0.036 (2)0.106 (4)0.005 (2)0.001 (3)0.000 (3)
C140.044 (2)0.046 (2)0.041 (2)0.004 (2)0.0054 (19)0.0019 (19)
C150.038 (2)0.039 (2)0.033 (2)0.0017 (17)0.0013 (17)0.0016 (17)
C160.041 (2)0.036 (2)0.046 (2)0.0013 (17)0.0048 (18)0.0002 (18)
C170.036 (2)0.044 (2)0.040 (2)0.0053 (18)0.0084 (17)0.0025 (18)
C180.046 (2)0.039 (2)0.041 (2)0.0089 (19)0.0060 (18)0.0043 (18)
C190.049 (2)0.039 (2)0.039 (2)0.0025 (18)0.0081 (18)0.0030 (18)
C200.035 (2)0.044 (2)0.035 (2)0.0052 (17)0.0059 (16)0.0034 (17)
C210.046 (2)0.058 (3)0.053 (3)0.004 (2)0.013 (2)0.004 (2)
C220.068 (3)0.040 (2)0.063 (3)0.007 (2)0.016 (2)0.001 (2)
C230.074 (3)0.046 (3)0.087 (4)0.006 (2)0.030 (3)0.001 (3)
C240.080 (4)0.061 (3)0.131 (5)0.013 (3)0.036 (4)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C121.789 (5)C9—H9A0.9600
Cl2—C241.778 (5)C9—H9B0.9600
O1—C21.345 (5)C9—H9C0.9600
O1—C11.439 (5)C10—C111.496 (6)
O2—C21.187 (5)C10—H10A0.9700
O3—N11.208 (5)C10—H10B0.9700
O4—N11.218 (5)C11—C121.500 (6)
O5—C71.348 (5)C11—H11A0.9700
O5—C91.433 (5)C11—H11B0.9700
O6—C61.363 (4)C12—H12A0.9700
O6—C101.438 (5)C12—H12B0.9700
O7—C141.322 (5)C13—H13A0.9600
O7—C131.440 (5)C13—H13B0.9600
O8—C141.189 (4)C13—H13C0.9600
O9—N21.215 (4)C14—C151.501 (5)
O10—N21.220 (4)C15—C201.382 (5)
O11—C171.352 (4)C15—C161.388 (5)
O11—C211.427 (4)C16—C171.377 (5)
O12—C181.346 (4)C16—H16A0.9300
O12—C221.417 (5)C17—C181.409 (5)
N1—C41.464 (5)C18—C191.375 (5)
N2—C201.465 (5)C19—C201.385 (5)
C1—H1A0.9600C19—H19A0.9300
C1—H1B0.9600C21—H21A0.9600
C1—H1C0.9600C21—H21B0.9600
C2—C31.493 (6)C21—H21C0.9600
C3—C41.372 (5)C22—C231.530 (5)
C3—C81.393 (5)C22—H22A0.9700
C4—C51.377 (6)C22—H22B0.9700
C5—C61.381 (5)C23—C241.432 (6)
C5—H5A0.9300C23—H23A0.9700
C6—C71.402 (5)C23—H23B0.9700
C7—C81.384 (5)C24—H24A0.9700
C8—H8A0.9300C24—H24B0.9700
C2—O1—C1115.8 (4)C11—C12—Cl1112.7 (3)
C7—O5—C9118.0 (3)C11—C12—H12A109.0
C6—O6—C10117.4 (3)Cl1—C12—H12A109.0
C14—O7—C13115.8 (3)C11—C12—H12B109.0
C17—O11—C21118.2 (3)Cl1—C12—H12B109.0
C18—O12—C22118.3 (3)H12A—C12—H12B107.8
O3—N1—O4124.0 (4)O7—C13—H13A109.5
O3—N1—C4118.3 (4)O7—C13—H13B109.5
O4—N1—C4117.6 (4)H13A—C13—H13B109.5
O9—N2—O10124.0 (3)O7—C13—H13C109.5
O9—N2—C20117.9 (3)H13A—C13—H13C109.5
O10—N2—C20118.2 (3)H13B—C13—H13C109.5
O1—C1—H1A109.5O8—C14—O7125.0 (4)
O1—C1—H1B109.5O8—C14—C15124.2 (4)
H1A—C1—H1B109.5O7—C14—C15110.7 (3)
O1—C1—H1C109.5C20—C15—C16117.3 (3)
H1A—C1—H1C109.5C20—C15—C14123.7 (3)
H1B—C1—H1C109.5C16—C15—C14118.6 (3)
O2—C2—O1123.7 (4)C17—C16—C15121.6 (3)
O2—C2—C3125.6 (4)C17—C16—H16A119.2
O1—C2—C3110.5 (4)C15—C16—H16A119.2
C4—C3—C8118.0 (4)O11—C17—C16125.1 (3)
C4—C3—C2125.8 (4)O11—C17—C18114.9 (3)
C8—C3—C2116.1 (4)C16—C17—C18120.0 (3)
C3—C4—C5122.7 (4)O12—C18—C19125.6 (4)
C3—C4—N1120.8 (4)O12—C18—C17115.6 (3)
C5—C4—N1116.4 (4)C19—C18—C17118.8 (3)
C4—C5—C6119.2 (4)C18—C19—C20119.8 (3)
C4—C5—H5A120.4C18—C19—H19A120.1
C6—C5—H5A120.4C20—C19—H19A120.1
O6—C6—C5124.9 (4)C15—C20—C19122.3 (3)
O6—C6—C7115.7 (4)C15—C20—N2120.1 (3)
C5—C6—C7119.4 (4)C19—C20—N2117.5 (3)
O5—C7—C8124.8 (4)O11—C21—H21A109.5
O5—C7—C6115.3 (3)O11—C21—H21B109.5
C8—C7—C6119.9 (4)H21A—C21—H21B109.5
C7—C8—C3120.6 (4)O11—C21—H21C109.5
C7—C8—H8A119.7H21A—C21—H21C109.5
C3—C8—H8A119.7H21B—C21—H21C109.5
O5—C9—H9A109.5O12—C22—C23105.3 (3)
O5—C9—H9B109.5O12—C22—H22A110.7
H9A—C9—H9B109.5C23—C22—H22A110.7
O5—C9—H9C109.5O12—C22—H22B110.7
H9A—C9—H9C109.5C23—C22—H22B110.7
H9B—C9—H9C109.5H22A—C22—H22B108.8
O6—C10—C11107.0 (4)C24—C23—C22111.8 (4)
O6—C10—H10A110.3C24—C23—H23A109.2
C11—C10—H10A110.3C22—C23—H23A109.2
O6—C10—H10B110.3C24—C23—H23B109.2
C11—C10—H10B110.3C22—C23—H23B109.2
H10A—C10—H10B108.6H23A—C23—H23B107.9
C10—C11—C12114.8 (4)C23—C24—Cl2112.4 (4)
C10—C11—H11A108.6C23—C24—H24A109.1
C12—C11—H11A108.6Cl2—C24—H24A109.1
C10—C11—H11B108.6C23—C24—H24B109.1
C12—C11—H11B108.6Cl2—C24—H24B109.1
H11A—C11—H11B107.5H24A—C24—H24B107.9
C1—O1—C2—O25.3 (7)C13—O7—C14—O81.8 (6)
C1—O1—C2—C3179.9 (5)C13—O7—C14—C15175.1 (3)
O2—C2—C3—C4143.1 (5)O8—C14—C15—C2053.4 (6)
O1—C2—C3—C442.5 (6)O7—C14—C15—C20129.7 (4)
O2—C2—C3—C841.7 (6)O8—C14—C15—C16119.6 (5)
O1—C2—C3—C8132.8 (4)O7—C14—C15—C1657.4 (5)
C8—C3—C4—C53.9 (6)C20—C15—C16—C170.8 (5)
C2—C3—C4—C5171.3 (4)C14—C15—C16—C17172.6 (4)
C8—C3—C4—N1171.9 (4)C21—O11—C17—C163.3 (6)
C2—C3—C4—N112.9 (7)C21—O11—C17—C18177.7 (3)
O3—N1—C4—C333.0 (7)C15—C16—C17—O11179.4 (3)
O4—N1—C4—C3147.6 (4)C15—C16—C17—C181.6 (6)
O3—N1—C4—C5143.1 (5)C22—O12—C18—C196.2 (6)
O4—N1—C4—C536.3 (6)C22—O12—C18—C17174.6 (4)
C3—C4—C5—C62.3 (7)O11—C17—C18—O120.2 (5)
N1—C4—C5—C6173.7 (4)C16—C17—C18—O12179.3 (3)
C10—O6—C6—C55.8 (6)O11—C17—C18—C19179.4 (3)
C10—O6—C6—C7172.0 (4)C16—C17—C18—C191.5 (6)
C4—C5—C6—O6179.1 (4)O12—C18—C19—C20179.7 (4)
C4—C5—C6—C71.4 (6)C17—C18—C19—C200.6 (6)
C9—O5—C7—C89.0 (6)C16—C15—C20—C190.2 (5)
C9—O5—C7—C6172.0 (4)C14—C15—C20—C19173.2 (4)
O6—C6—C7—O50.3 (5)C16—C15—C20—N2178.3 (3)
C5—C6—C7—O5177.6 (4)C14—C15—C20—N28.7 (6)
O6—C6—C7—C8178.8 (3)C18—C19—C20—C150.3 (6)
C5—C6—C7—C83.3 (6)C18—C19—C20—N2178.4 (3)
O5—C7—C8—C3179.3 (4)O9—N2—C20—C15150.4 (4)
C6—C7—C8—C31.7 (6)O10—N2—C20—C1530.4 (5)
C4—C3—C8—C71.8 (6)O9—N2—C20—C1931.4 (5)
C2—C3—C8—C7173.8 (4)O10—N2—C20—C19147.8 (4)
C6—O6—C10—C11177.8 (4)C18—O12—C22—C23178.5 (4)
O6—C10—C11—C1258.2 (5)O12—C22—C23—C24177.8 (5)
C10—C11—C12—Cl157.8 (5)C22—C23—C24—Cl2178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O4i0.972.583.336 (7)135
C13—H13B···O9ii0.962.413.211 (6)141
C21—H21A···O5iii0.962.483.243 (5)136
C24—H24A···O9iv0.972.593.276 (6)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14ClNO6
Mr303.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)23.150 (5), 15.013 (3), 8.0700 (16)
β (°) 93.42 (3)
V3)2799.7 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.916, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
5208, 5096, 2874
Rint0.038
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.162, 1.03
No. of reflections5096
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O4i0.972.583.336 (7)135
C13—H13B···O9ii0.962.413.211 (6)141
C21—H21A···O5iii0.962.483.243 (5)136
C24—H24A···O9iv0.972.593.276 (6)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKnesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds