metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m413-m414

(3-Carb­­oxy-5-sulfonatobenzoato-κ2O1,O1′)bis­­[2-(2-pyrid­yl)-1H-benzimidazole-κ2N2,N3]zinc(II) monohydrate

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ljchen@ms.fjirsm.ac.cn

(Received 22 February 2009; accepted 12 March 2009; online 19 March 2009)

In the title compound, [Zn(C8H4O7S)(C12H9N3)2]·H2O, the ZnII atom has a distorted octa­hedral coordination geometry, defined by four N atoms from two 2-(2-pyrid­yl)-1H-benzimidazole ligands and two O atoms from a deprotonated carboxyl­ate group of the 3-carb­oxy-5-sulfonatobenzoate ligand. In the crystal structure, the complex mol­ecules are linked into a three-dimensional network by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, and ππ stacking inter­actions with centroid–centroid separations of 3.758 (2) and 3.597 (1) Å.

Related literature

For general background, see: Xia et al. (2005[Xia, C.-K., Lu, C.-Z., Zhang, Q.-Z., He, X., Zhang, J.-J. & Wu, D.-M. (2005). Cryst. Growth Des. 5, 1569-1574.]). For related structures, see: Kulynych & Shimizu (2002[Kulynych, A. D. & Shimizu, G. K. H. (2002). CrystEngComm, 4, 102-105.]); Liu & Xu (2005[Liu, Q.-Y. & Xu, L. (2005). Inorg. Chem. Commun. 8, 401-405.]); Sun et al. (2003[Sun, D.-F., Cao, R., Sun, Y.-Q., Bi, W.-H., Yuan, D.-Q., Shi, Q. & Li, X. (2003). Chem. Commun. pp. 1528-1529.]); Xia et al. (2006[Xia, C.-K., Lu, C.-Z., Yuan, D.-Q., Zhang, Q.-Z., Wu, X.-Y., Xiang, S.-C., Zhang, J.-J. & Wu, D.-M. (2006). CrystEngComm, 8, 281-291.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O7S)(C12H9N3)2]·H2O

  • Mr = 718.00

  • Triclinic, [P \overline 1]

  • a = 11.086 (4) Å

  • b = 12.695 (5) Å

  • c = 13.347 (4) Å

  • α = 63.187 (10)°

  • β = 68.376 (13)°

  • γ = 87.122 (17)°

  • V = 1543.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.14 × 0.11 × 0.08 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.843, Tmax = 0.929

  • 12166 measured reflections

  • 6935 independent reflections

  • 3857 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.179

  • S = 0.99

  • 6935 reflections

  • 434 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.080 (4)
Zn1—N3 2.257 (4)
Zn1—N4 2.067 (4)
Zn1—N6 2.210 (4)
Zn1—O1 2.216 (3)
Zn1—O2 2.193 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.15 2.884 (5) 143
N5—H5B⋯O3ii 0.86 2.05 2.833 (5) 151
O1W—H1WA⋯O7iii 0.82 1.87 2.678 (5) 167
O1W—H1WB⋯O6iv 0.82 2.05 2.825 (5) 157
O4—H4B⋯O1W 0.82 1.78 2.575 (4) 163
Symmetry codes: (i) -x, -y, -z+2; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+2; (iv) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Increasing interest has been focused on crystal engineering of supramolecular architectures organized by coordinating covalent bonds or supramolecular contacts such as hydrogen bonding and ππ interactions (Xia et al., 2005). 5-Sulfoisophthalic acid (H3sipa), which exhibits variation in possible binding modes of the two carboxylate groups and the soft sulfonate group, and a strong tendency to form large, tightly bound metal cluster, has been demonstrated as a useful bridge ligand for the construction of supramolecular structures (Kulynych & Shimizu et al., 2002; Liu & Xu et al., 2005; Sun et al., 2003). On the other hand, 2-(2-pyridyl)-1H-benzimidazole (2-pbim) ligand presents multiple N-donor sites with the possibility of reversible protonation and deprotonation, and has the capacity to act as a donor or acceptor in the formation of multi-dimensional hydrogen bonded networks (Xia et al., 2006). We report here the crystal structure of the title compound, which contains both Hsipa and 2-pbim ligands.

As shown in Fig. 1, the title complex consists of one ZnII atom, two neutral 2-pbim ligands, one deprotonated Hsipa2- ligand and one uncoordinated water molecule. The ZnII atom is six-coordinated by four N atoms from two 2-pbim ligands and two O atoms from one carboxylate group of the Hsipa2- ligand, forming a distorted octahedral geometry (Table 1). The chelate rings A (Zn1, N1, C7, C8, N3), B (Zn1, N4, C19, C20, N6) and C (Zn1, O1, C31, O2) are oriented at dihedral angles of A/B = 84.1 (1)°, A/C = 87.8 (1)° and B/C = 82.4 (1)°. The two 2-pbim ligands bonded to the same Zn atom are nearly perpendicular to each other.

In the crystal structure, the mononuclear Zn complex molecules are linked by intermolecular O—H···O and N—H···O hydrogen bonds involving the water molecule, the imino groups, the carboxyl groups and the sulfonate group, forming a three-dimensional network (Fig. 2 and Table 2). The structure is further stabilized by ππ stacking interactions between the benzene rings of neighboring benzimidazole moieties containing N4 and N5 atoms, and between the pyridyl ring containing N3 atom and benzimidazole moiety containing N1 and N2 atoms, with centroid-to-centroid distances of 3.758 (2) and 3.597 (1) Å, respectively.

Related literature top

For general background, see: Xia et al. (2005). For related structures, see: Kulynych & Shimizu (2002); Liu & Xu (2005); Sun et al. (2003); Xia, et al. (2006).

Experimental top

A mixture of Zn(NO3)2.6H2O (0.092 g, 0.3 mmol), NaH2sipa (0.053 g, 0.2 mmol), 2-pbim (0.039 g, 0.2 mmol) and H2O (10 ml) was placed in a 18 ml Teflon-lined Parr acid digestion bomb. The pH value of the reaction mixture was adjusted to ca 6.0 with 10% sodium hydroxide. The mixture was then heated for 3 d at 433 K under autogeneous pressure. Slow cooling of the reaction mixture to room temperature gave colorless prism crystals (yield: ca 78% based on Zn)

Refinement top

The water H atoms were located in a difference Fourier map and fixed in refinement with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). Other H atoms were placed geometrically and refined as riding, with C—H = 0.93, O—H = 0.82 and N—H = 0.86 Å and with Uiso(H) = 1.5Ueq(O) or Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal packing down the c axis, showing hydrogen bonds (dashed lines). H atoms, which do not participate in hydrogen bonds, have been omitted for clarity.
(3-Carboxy-5-sulfonatobenzoato-κ2O1,O1')bis[2-(2- pyridyl)-1H-benzimidazole-κ2N2,N3]zinc(II) monohydrate top
Crystal data top
[Zn(C8H4O7S)(C12H9N3)2]·H2OZ = 2
Mr = 718.00F(000) = 736
Triclinic, P1Dx = 1.545 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.086 (4) ÅCell parameters from 3438 reflections
b = 12.695 (5) Åθ = 2.4–27.5°
c = 13.347 (4) ŵ = 0.93 mm1
α = 63.187 (10)°T = 293 K
β = 68.376 (13)°Prism, colorless
γ = 87.122 (17)°0.14 × 0.11 × 0.08 mm
V = 1543.2 (10) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
6935 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 14.6306 pixels mm-1θmax = 27.4°, θmin = 2.4°
ω scansh = 1314
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1616
Tmin = 0.843, Tmax = 0.929l = 1417
12166 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0855P)2]
where P = (Fo2 + 2Fc2)/3
6935 reflections(Δ/σ)max < 0.001
434 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(C8H4O7S)(C12H9N3)2]·H2Oγ = 87.122 (17)°
Mr = 718.00V = 1543.2 (10) Å3
Triclinic, P1Z = 2
a = 11.086 (4) ÅMo Kα radiation
b = 12.695 (5) ŵ = 0.93 mm1
c = 13.347 (4) ÅT = 293 K
α = 63.187 (10)°0.14 × 0.11 × 0.08 mm
β = 68.376 (13)°
Data collection top
Rigaku Mercury CCD
diffractometer
6935 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3857 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.929Rint = 0.035
12166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.99Δρmax = 0.89 e Å3
6935 reflectionsΔρmin = 0.43 e Å3
434 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29944 (5)0.17840 (5)0.78119 (5)0.0450 (2)
S10.04872 (11)0.43789 (11)1.21208 (10)0.0462 (3)
N10.1432 (4)0.0898 (4)0.7857 (3)0.0502 (10)
N20.0072 (4)0.0749 (4)0.8695 (4)0.0621 (11)
H2B0.03320.14610.92010.075*
N30.2645 (4)0.0040 (4)0.9412 (4)0.0541 (10)
N40.4499 (3)0.1749 (3)0.6348 (3)0.0498 (10)
N50.5526 (4)0.2558 (3)0.4336 (3)0.0522 (10)
H5B0.57710.30640.35770.063*
N60.3118 (4)0.3556 (4)0.6299 (4)0.0507 (10)
C10.0720 (5)0.1113 (5)0.7172 (4)0.0524 (12)
C20.0720 (5)0.2091 (4)0.6132 (4)0.0537 (12)
H2A0.12730.27980.57800.064*
C30.0115 (6)0.1981 (6)0.5644 (6)0.0768 (17)
H3A0.01200.26310.49420.092*
C40.0948 (8)0.0964 (7)0.6132 (7)0.107 (2)
H4A0.14910.09380.57510.128*
C50.0999 (7)0.0010 (6)0.7164 (6)0.094 (2)
H5A0.15850.06930.75060.113*
C60.0172 (5)0.0040 (5)0.7683 (4)0.0533 (12)
C70.1051 (4)0.0216 (4)0.8756 (4)0.0337 (9)
C80.1661 (4)0.0747 (4)0.9639 (4)0.0467 (11)
C90.3292 (5)0.0428 (5)1.0183 (5)0.0565 (13)
H9A0.39840.00811.00310.068*
C100.2964 (6)0.1531 (5)1.1166 (5)0.0701 (16)
H10A0.34280.17731.16700.084*
C110.1900 (6)0.2302 (5)1.1404 (5)0.0663 (15)
H11A0.16430.30671.20570.080*
C120.1258 (4)0.1844 (4)1.0597 (4)0.0489 (11)
H12A0.05390.23081.07260.059*
C130.5302 (4)0.0978 (4)0.6075 (5)0.0496 (11)
C140.5504 (5)0.0146 (4)0.6844 (4)0.0529 (12)
H14A0.50750.04990.76870.063*
C150.6384 (5)0.0690 (4)0.6264 (5)0.0598 (14)
H15A0.65540.14350.67420.072*
C160.7031 (5)0.0199 (5)0.5016 (5)0.0694 (16)
H16A0.76060.06240.46840.083*
C170.6843 (5)0.0891 (5)0.4266 (5)0.0623 (14)
H17A0.72890.12290.34250.075*
C180.5970 (4)0.1477 (4)0.4791 (4)0.0408 (10)
C190.4634 (4)0.2702 (4)0.5279 (3)0.0365 (9)
C200.3960 (4)0.3701 (4)0.5214 (4)0.0494 (11)
C210.2430 (4)0.4475 (5)0.6353 (5)0.0545 (13)
H21A0.18450.43710.71100.065*
C220.2562 (5)0.5530 (5)0.5352 (5)0.0650 (15)
H22A0.20920.61380.54210.078*
C230.3456 (5)0.5667 (5)0.4189 (5)0.0713 (16)
H23A0.35800.63630.34750.086*
C240.4123 (5)0.4727 (4)0.4171 (4)0.0520 (12)
H24A0.47010.47920.34270.062*
C250.3076 (4)0.3139 (3)0.9990 (4)0.0342 (9)
C260.4187 (4)0.3155 (4)1.0245 (4)0.0365 (9)
H26A0.49350.28970.98660.044*
C270.4184 (4)0.3552 (3)1.1057 (3)0.0348 (9)
C280.3057 (4)0.3945 (4)1.1619 (3)0.0385 (10)
H28A0.30500.42191.21600.046*
C290.1968 (4)0.3927 (3)1.1374 (4)0.0374 (9)
C300.1967 (4)0.3535 (3)1.0558 (4)0.0373 (9)
H30A0.12230.35361.03910.045*
C310.3042 (4)0.2663 (4)0.9162 (4)0.0378 (9)
C320.5345 (4)0.3540 (4)1.1378 (4)0.0370 (9)
O10.1971 (3)0.2476 (3)0.9116 (3)0.0423 (7)
O1W0.8425 (3)0.3154 (3)1.1201 (3)0.0623 (9)
H1WA0.89130.36551.05160.093*
H1WB0.85530.33201.16860.093*
O20.4098 (3)0.2450 (3)0.8526 (3)0.0477 (8)
O30.5390 (3)0.3947 (3)1.2030 (3)0.0506 (8)
O40.6277 (3)0.3028 (3)1.0909 (3)0.0538 (9)
H4B0.68630.29991.11520.081*
O50.0764 (3)0.4722 (3)1.2907 (3)0.0648 (10)
O60.0514 (3)0.3350 (3)1.2746 (3)0.0621 (9)
O70.0208 (3)0.5357 (3)1.1155 (3)0.0687 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0400 (3)0.0546 (3)0.0383 (3)0.0070 (2)0.0047 (2)0.0269 (3)
S10.0416 (6)0.0549 (7)0.0433 (6)0.0136 (5)0.0115 (5)0.0285 (6)
N10.044 (2)0.060 (2)0.048 (2)0.0038 (19)0.0146 (19)0.028 (2)
N20.055 (2)0.059 (3)0.062 (3)0.009 (2)0.020 (2)0.020 (2)
N30.045 (2)0.064 (3)0.062 (3)0.011 (2)0.018 (2)0.039 (2)
N40.040 (2)0.061 (2)0.046 (2)0.0001 (19)0.0109 (18)0.027 (2)
N50.063 (2)0.047 (2)0.043 (2)0.0088 (19)0.0158 (19)0.0215 (19)
N60.045 (2)0.065 (3)0.052 (2)0.0038 (19)0.0195 (19)0.035 (2)
C10.047 (3)0.077 (3)0.041 (3)0.015 (3)0.018 (2)0.034 (3)
C20.056 (3)0.056 (3)0.043 (3)0.001 (2)0.023 (2)0.014 (2)
C30.075 (4)0.083 (4)0.066 (4)0.002 (3)0.038 (3)0.021 (3)
C40.118 (6)0.119 (6)0.085 (5)0.011 (5)0.061 (5)0.030 (5)
C50.104 (5)0.084 (5)0.099 (5)0.008 (4)0.064 (4)0.025 (4)
C60.056 (3)0.059 (3)0.043 (3)0.004 (2)0.027 (2)0.015 (2)
C70.031 (2)0.039 (2)0.033 (2)0.0007 (17)0.0100 (17)0.0193 (19)
C80.043 (3)0.050 (3)0.046 (3)0.014 (2)0.010 (2)0.028 (2)
C90.050 (3)0.063 (3)0.069 (3)0.016 (2)0.040 (3)0.027 (3)
C100.068 (4)0.071 (4)0.072 (4)0.027 (3)0.043 (3)0.023 (3)
C110.081 (4)0.051 (3)0.058 (3)0.022 (3)0.023 (3)0.023 (3)
C120.039 (2)0.059 (3)0.051 (3)0.009 (2)0.016 (2)0.029 (3)
C130.043 (3)0.053 (3)0.061 (3)0.002 (2)0.019 (2)0.033 (3)
C140.062 (3)0.041 (2)0.046 (3)0.005 (2)0.022 (2)0.011 (2)
C150.066 (3)0.048 (3)0.054 (3)0.009 (3)0.022 (3)0.016 (3)
C160.067 (3)0.065 (3)0.075 (4)0.019 (3)0.022 (3)0.036 (3)
C170.064 (3)0.062 (3)0.065 (3)0.016 (3)0.017 (3)0.040 (3)
C180.042 (2)0.044 (2)0.040 (2)0.007 (2)0.017 (2)0.022 (2)
C190.036 (2)0.045 (2)0.029 (2)0.0028 (18)0.0073 (17)0.0207 (19)
C200.048 (3)0.058 (3)0.051 (3)0.007 (2)0.020 (2)0.031 (3)
C210.045 (3)0.068 (3)0.052 (3)0.022 (2)0.015 (2)0.034 (3)
C220.049 (3)0.068 (3)0.069 (4)0.011 (3)0.019 (3)0.027 (3)
C230.072 (4)0.060 (3)0.072 (4)0.011 (3)0.032 (3)0.019 (3)
C240.050 (3)0.064 (3)0.051 (3)0.015 (2)0.023 (2)0.032 (3)
C250.034 (2)0.035 (2)0.035 (2)0.0031 (17)0.0150 (18)0.0161 (18)
C260.035 (2)0.041 (2)0.034 (2)0.0098 (18)0.0120 (18)0.0193 (19)
C270.038 (2)0.037 (2)0.030 (2)0.0065 (18)0.0163 (18)0.0146 (18)
C280.051 (3)0.041 (2)0.031 (2)0.013 (2)0.0198 (19)0.0198 (19)
C290.039 (2)0.037 (2)0.036 (2)0.0081 (18)0.0145 (19)0.0169 (19)
C300.033 (2)0.039 (2)0.042 (2)0.0064 (18)0.0157 (19)0.0194 (19)
C310.043 (2)0.036 (2)0.031 (2)0.0025 (19)0.0127 (19)0.0139 (18)
C320.039 (2)0.042 (2)0.030 (2)0.0044 (19)0.0171 (19)0.0148 (19)
O10.0378 (16)0.0528 (18)0.0429 (17)0.0016 (14)0.0164 (13)0.0265 (15)
O1W0.0470 (19)0.079 (2)0.065 (2)0.0038 (17)0.0263 (17)0.033 (2)
O20.0410 (17)0.066 (2)0.0487 (18)0.0060 (15)0.0128 (14)0.0399 (17)
O30.061 (2)0.063 (2)0.0505 (19)0.0203 (17)0.0378 (17)0.0336 (17)
O40.0399 (17)0.081 (2)0.069 (2)0.0196 (17)0.0302 (17)0.052 (2)
O50.059 (2)0.090 (3)0.069 (2)0.0218 (19)0.0220 (18)0.060 (2)
O60.0487 (19)0.070 (2)0.058 (2)0.0001 (17)0.0080 (16)0.0316 (19)
O70.064 (2)0.073 (2)0.055 (2)0.0364 (19)0.0182 (18)0.0244 (19)
Geometric parameters (Å, º) top
Zn1—N12.080 (4)C11—C121.401 (7)
Zn1—N32.257 (4)C11—H11A0.9300
Zn1—N42.067 (4)C12—H12A0.9300
Zn1—N62.210 (4)C13—C141.398 (6)
Zn1—O12.216 (3)C13—C181.421 (6)
Zn1—O22.193 (3)C14—C151.373 (6)
S1—O51.431 (4)C14—H14A0.9300
S1—O71.453 (3)C15—C161.381 (7)
S1—O61.453 (4)C15—H15A0.9300
S1—C291.798 (4)C16—C171.355 (7)
N1—C71.332 (5)C16—H16A0.9300
N1—C11.348 (6)C17—C181.371 (6)
N2—C71.353 (5)C17—H17A0.9300
N2—C61.387 (6)C19—C201.423 (6)
N2—H2B0.8600C20—C241.368 (7)
N3—C81.303 (6)C21—C221.364 (7)
N3—C91.366 (6)C21—H21A0.9300
N4—C191.351 (5)C22—C231.437 (8)
N4—C131.371 (6)C22—H22A0.9300
N5—C191.367 (5)C23—C241.376 (7)
N5—C181.377 (5)C23—H23A0.9300
N5—H5B0.8600C24—H24A0.9300
N6—C201.335 (6)C25—C301.390 (5)
N6—C211.377 (6)C25—C261.397 (6)
C1—C21.384 (6)C25—C311.490 (6)
C1—C61.449 (7)C26—C271.384 (6)
C2—C31.356 (7)C26—H26A0.9300
C2—H2A0.9300C27—C281.399 (5)
C3—C41.364 (9)C27—C321.497 (5)
C3—H3A0.9300C28—C291.367 (6)
C4—C51.357 (9)C28—H28A0.9300
C4—H4A0.9300C29—C301.386 (6)
C5—C61.355 (7)C30—H30A0.9300
C5—H5A0.9300C31—O11.251 (5)
C7—C81.458 (6)C31—O21.267 (5)
C8—C121.345 (6)C32—O31.211 (5)
C9—C101.362 (7)C32—O41.306 (5)
C9—H9A0.9300O1W—H1WA0.82
C10—C111.418 (8)O1W—H1WB0.82
C10—H10A0.9300O4—H4B0.82
N4—Zn1—N1100.37 (15)C10—C11—H11A122.0
N4—Zn1—O2100.82 (13)C8—C12—C11121.3 (5)
N1—Zn1—O2156.91 (13)C8—C12—H12A119.4
N4—Zn1—N677.61 (15)C11—C12—H12A119.4
N1—Zn1—N698.96 (15)N4—C13—C14130.1 (5)
O2—Zn1—N694.45 (13)N4—C13—C18109.4 (4)
N4—Zn1—O1155.82 (14)C14—C13—C18120.5 (4)
N1—Zn1—O1101.58 (13)C15—C14—C13115.1 (4)
O2—Zn1—O159.76 (10)C15—C14—H14A122.4
N6—Zn1—O189.04 (13)C13—C14—H14A122.4
N4—Zn1—N3106.43 (14)C14—C15—C16124.1 (5)
N1—Zn1—N376.34 (16)C14—C15—H15A117.9
O2—Zn1—N388.94 (14)C16—C15—H15A117.9
N6—Zn1—N3174.19 (13)C17—C16—C15121.0 (5)
O1—Zn1—N388.58 (13)C17—C16—H16A119.5
O5—S1—O7113.4 (2)C15—C16—H16A119.5
O5—S1—O6114.6 (2)C16—C17—C18117.6 (5)
O7—S1—O6110.6 (2)C16—C17—H17A121.2
O5—S1—C29106.1 (2)C18—C17—H17A121.2
O7—S1—C29105.90 (19)C17—C18—N5133.7 (4)
O6—S1—C29105.4 (2)C17—C18—C13121.7 (4)
C7—N1—C1108.7 (4)N5—C18—C13104.6 (4)
C7—N1—Zn1113.8 (3)N4—C19—N5109.7 (4)
C1—N1—Zn1137.3 (4)N4—C19—C20122.6 (4)
C7—N2—C6108.8 (4)N5—C19—C20127.7 (4)
C7—N2—H2B125.6N6—C20—C24121.2 (4)
C6—N2—H2B125.6N6—C20—C19113.3 (4)
C8—N3—C9118.6 (4)C24—C20—C19125.5 (4)
C8—N3—Zn1114.3 (3)C22—C21—N6123.3 (4)
C9—N3—Zn1127.0 (4)C22—C21—H21A118.3
C19—N4—C13107.0 (4)N6—C21—H21A118.3
C19—N4—Zn1112.3 (3)C21—C22—C23117.5 (5)
C13—N4—Zn1139.7 (3)C21—C22—H22A121.2
C19—N5—C18109.3 (4)C23—C22—H22A121.2
C19—N5—H5B125.3C24—C23—C22117.5 (5)
C18—N5—H5B125.3C24—C23—H23A121.3
C20—N6—C21118.5 (4)C22—C23—H23A121.3
C20—N6—Zn1113.3 (3)C20—C24—C23121.9 (5)
C21—N6—Zn1128.1 (3)C20—C24—H24A119.0
N1—C1—C2133.3 (5)C23—C24—H24A119.0
N1—C1—C6108.1 (4)C30—C25—C26119.0 (4)
C2—C1—C6118.6 (4)C30—C25—C31119.7 (4)
C3—C2—C1117.6 (5)C26—C25—C31121.3 (3)
C3—C2—H2A121.2C27—C26—C25120.6 (4)
C1—C2—H2A121.2C27—C26—H26A119.7
C2—C3—C4123.3 (6)C25—C26—H26A119.7
C2—C3—H3A118.4C26—C27—C28119.5 (4)
C4—C3—H3A118.4C26—C27—C32121.7 (3)
C5—C4—C3121.2 (6)C28—C27—C32118.8 (4)
C5—C4—H4A119.4C29—C28—C27120.0 (4)
C3—C4—H4A119.4C29—C28—H28A120.0
C6—C5—C4118.3 (6)C27—C28—H28A120.0
C6—C5—H5A120.9C28—C29—C30120.8 (4)
C4—C5—H5A120.9C28—C29—S1121.1 (3)
C5—C6—N2134.9 (5)C30—C29—S1118.2 (3)
C5—C6—C1121.1 (5)C29—C30—C25120.2 (4)
N2—C6—C1104.0 (4)C29—C30—H30A119.9
N1—C7—N2110.4 (4)C25—C30—H30A119.9
N1—C7—C8122.6 (4)O1—C31—O2121.4 (4)
N2—C7—C8127.0 (4)O1—C31—C25119.3 (4)
N3—C8—C12122.8 (5)O2—C31—C25119.3 (4)
N3—C8—C7112.8 (4)O1—C31—Zn161.3 (2)
C12—C8—C7124.4 (5)O2—C31—Zn160.2 (2)
C10—C9—N3122.7 (5)C25—C31—Zn1178.0 (3)
C10—C9—H9A118.7O3—C32—O4124.1 (4)
N3—C9—H9A118.7O3—C32—C27122.6 (4)
C9—C10—C11118.6 (5)O4—C32—C27113.3 (4)
C9—C10—H10A120.7C31—O1—Zn189.1 (2)
C11—C10—H10A120.7H1WA—O1W—H1WB106.3
C12—C11—C10116.1 (5)C31—O2—Zn189.7 (3)
C12—C11—H11A122.0C32—O4—H4B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.152.884 (5)143
N5—H5B···O3ii0.862.052.833 (5)151
O1W—H1WA···O7iii0.821.872.678 (5)167
O1W—H1WB···O6iv0.822.052.825 (5)157
O4—H4B···O1W0.821.782.575 (4)163
Symmetry codes: (i) x, y, z+2; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O7S)(C12H9N3)2]·H2O
Mr718.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.086 (4), 12.695 (5), 13.347 (4)
α, β, γ (°)63.187 (10), 68.376 (13), 87.122 (17)
V3)1543.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.14 × 0.11 × 0.08
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.843, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
12166, 6935, 3857
Rint0.035
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.179, 0.99
No. of reflections6935
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.43

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Zn1—N12.080 (4)Zn1—N62.210 (4)
Zn1—N32.257 (4)Zn1—O12.216 (3)
Zn1—N42.067 (4)Zn1—O22.193 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.152.884 (5)143
N5—H5B···O3ii0.862.052.833 (5)151
O1W—H1WA···O7iii0.821.872.678 (5)167
O1W—H1WB···O6iv0.822.052.825 (5)157
O4—H4B···O1W0.821.782.575 (4)163
Symmetry codes: (i) x, y, z+2; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (grant Nos. 2006 F3141 and 2008 J0142).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKulynych, A. D. & Shimizu, G. K. H. (2002). CrystEngComm, 4, 102–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q.-Y. & Xu, L. (2005). Inorg. Chem. Commun. 8, 401–405.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D.-F., Cao, R., Sun, Y.-Q., Bi, W.-H., Yuan, D.-Q., Shi, Q. & Li, X. (2003). Chem. Commun. pp. 1528–1529.  Web of Science CSD CrossRef Google Scholar
First citationXia, C.-K., Lu, C.-Z., Yuan, D.-Q., Zhang, Q.-Z., Wu, X.-Y., Xiang, S.-C., Zhang, J.-J. & Wu, D.-M. (2006). CrystEngComm, 8, 281–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationXia, C.-K., Lu, C.-Z., Zhang, Q.-Z., He, X., Zhang, J.-J. & Wu, D.-M. (2005). Cryst. Growth Des. 5, 1569–1574.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m413-m414
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds