organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Bromo­benzyl­­idene)quinoline-8-sulfonohydrazide

aDepartamento de Química–UFSC, 88040-900 Florianópolis, SC, Brazil, and bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany
*Correspondence e-mail: kely_navakoski@yahoo.com.br

(Received 31 October 2008; accepted 10 March 2009; online 19 March 2009)

In the title compound, C16H12BrN3O2S, the dihedral angle between the planes of the almost planar (r.m.s. deviation = 0.0263 Å) quinoline group and the bromo­phenyl group is 87.4 (1)°. The torsion angle of the central S—N—N—C bridge is 144.8 (2)°. The amino group has an intra­molecular contact to the quinoline N atom. The structure is stabilized by one N—H⋯O and two C—H⋯O inter­molecular hydrogen bonds.

Related literature

For general background, see: Dueñas-Romero et al. (2006[Dueñas-Romero, A. M., Loiseau, P. M. & Saint-Pierre-Chazalet, M. (2006). Biochim. Biophys. Acta, 1768, 246-252.]); da Silva et al. (2007[Silva, L. E. da, Joussef, A. C., Pacheco, L. K., Duarte, A. M. C., Steindel, M. & Rebelo, R. A. (2007). Bioorg. Med. Chem. 15, 7553-7560.]). For related compounds, see: Oliveira & Nunes (2006[Oliveira, K. N. de & Nunes, R. J. (2006). Synth. Commun. 36, 3401-3409.]); Silva et al. (2006[Silva, L. L., de Oliveira, K. N. & Nunes, R. J. (2006). Arkivoc, xiii, 124-129.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrN3O2S

  • Mr = 390.26

  • Monoclinic, C 2/c

  • a = 32.149 (3) Å

  • b = 7.011 (1) Å

  • c = 16.589 (2) Å

  • β = 117.86 (1)°

  • V = 3305.7 (7) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 4.68 mm−1

  • T = 299 K

  • 0.65 × 0.28 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.147, Tmax = 0.626

  • 3889 measured reflections

  • 2942 independent reflections

  • 2677 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.147

  • S = 1.05

  • 2942 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.89 (4) 2.18 (4) 2.959 (3) 146 (3)
N1—H1N⋯N3 0.89 (4) 2.36 (3) 2.887 (4) 118 (3)
C10—H10⋯O2ii 0.93 2.57 3.395 (4) 149
C12—H12⋯O2ii 0.93 2.50 3.361 (5) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: CAD-4-PC (Nonius, 1996[Nonius (1996). CAD-4-PC. Nonius GmbH, Solingen, Germany.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the title compound has been synthesized to investigate its biological activity. Quinoline derivatives have been shown to be active against parasites. The quinine, for example, has been used as antimalarial drug years ago (Dueñas-Romero et al., 2007). Recently, studies showed that quinoline sulfonic acid derivatives are active in assays with Leishmania spp (da Silva et al., 2007). As part of our screening programs to investigate antiparasitic activity of quinoline derivatives, we report here a X-ray crystallographic study of the title compound (I). In the molecule of (I) (Fig. 1) the torsional angle of the central bridge S1—N1—N2—C10 is 144.8 (2)° and the plane of the quinoline ring system encloses a dihedral angle of 87.4 (1)° with the plane of the bromophenyl group. The NH group shows an intermolecular hydrogen bond towards the sulfonyl oxygen atom O1 [N—H···O = 2.18 (4) Å] and an intramolecular hydrogen bond to N3 [N—H···N = 2.36 (3) Å] leading to a bifurcated hydrogen bond. C10 and C12 have an intermolecular contact towards the sulfonyloxygen atom O2 [C—H···O = 2.57 (3) Å, C—H···O = 2.50 (3) Å, respectively] (Table 1).

Related literature top

For general background, see: Dueñas-Romero et al. (2007); da Silva et al. (2007). For related compounds, see: Oliveira & Nunes (2006); Silva et al. (2002006).

Experimental top

The title compound (I) was synthesized by the reaction of p- bromobenzaldehyde (0.89 mmol, 160 mg) with quinoline-8-sulfonylhydrazide (0.89 mmol, 200 mg). The reaction was carried out in ethyl alcohol acidified with two drops of hydrochloric acid, as described for similar compounds (Oliveira et al., 2006; Silva et al., 2006). The mixture was stirred at room temperature for 4 h. After that, the solution was diluted with water and the resulting solid was filtered. The crystal used for data collection was obtained by dissolving 188 mg of (I) in 25 ml of ethyl alcohol and cooling down the solution to room temperature.

Refinement top

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. The amino H atom was located in the difference map and was refined N—H = 0.89 (4) Å. The isotropic displacement parameters of all H atoms were set equal to 1.2Ueq (parent atom).

The residual electron-density features are located in the region of Br1. The highest peak and the deepest hole are 0.92 and 1.00 Å from Br1, respectively.

Computing details top

Data collection: CAD-4-PC (Nonius, 1996); cell refinement: CAD-4-PC (Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds shown as dashed lines.
N'-(4-Bromobenzylidene)quinoline-8-sulfonohydrazide top
Crystal data top
C16H12BrN3O2SF(000) = 1568
Mr = 390.26Dx = 1.568 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 32.149 (3) Åθ = 3.1–20.6°
b = 7.011 (1) ŵ = 4.68 mm1
c = 16.589 (2) ÅT = 299 K
β = 117.86 (1)°Long plate, colorless
V = 3305.7 (7) Å30.65 × 0.28 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 66.9°, θmin = 3.1°
ω/2θ scansh = 3638
Absorption correction: ψ scan
(North et al., 1968)
k = 80
Tmin = 0.147, Tmax = 0.626l = 194
3889 measured reflections3 standard reflections every 120 min
2942 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0805P)2 + 6.9219P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.007
2942 reflectionsΔρmax = 0.75 e Å3
212 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00043 (7)
Crystal data top
C16H12BrN3O2SV = 3305.7 (7) Å3
Mr = 390.26Z = 8
Monoclinic, C2/cCu Kα radiation
a = 32.149 (3) ŵ = 4.68 mm1
b = 7.011 (1) ÅT = 299 K
c = 16.589 (2) Å0.65 × 0.28 × 0.10 mm
β = 117.86 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2677 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.147, Tmax = 0.6263 standard reflections every 120 min
3889 measured reflections intensity decay: 1.5%
2942 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.75 e Å3
2942 reflectionsΔρmin = 1.00 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.070685 (17)0.11247 (10)0.09298 (5)0.0984 (3)
S10.19475 (2)0.54754 (10)0.16299 (5)0.0399 (2)
O10.24468 (8)0.5560 (3)0.20074 (15)0.0506 (6)
O20.16963 (9)0.7062 (3)0.17320 (17)0.0550 (6)
N10.18486 (8)0.3613 (4)0.21089 (16)0.0383 (5)
H1N0.2045 (13)0.269 (6)0.214 (2)0.046*
N20.13725 (8)0.3233 (4)0.18004 (16)0.0401 (5)
N30.20861 (9)0.1911 (4)0.07924 (17)0.0454 (6)
C10.17125 (10)0.4981 (4)0.04547 (19)0.0406 (6)
C20.14454 (13)0.6347 (5)0.0160 (2)0.0535 (8)
H20.13580.74420.00390.064*
C30.13046 (15)0.6088 (6)0.1090 (3)0.0670 (11)
H30.11190.70070.15080.080*
C40.14362 (15)0.4515 (6)0.1386 (2)0.0646 (11)
H40.13480.43840.20030.077*
C50.17042 (12)0.3077 (5)0.0775 (2)0.0501 (8)
C60.18600 (15)0.1403 (6)0.1035 (3)0.0624 (10)
H60.17890.12200.16410.075*
C70.21095 (14)0.0087 (6)0.0407 (3)0.0638 (10)
H70.22160.10040.05730.077*
C80.22084 (13)0.0368 (5)0.0498 (3)0.0552 (8)
H80.23700.05870.09180.066*
C90.18388 (10)0.3272 (4)0.01633 (19)0.0405 (6)
C100.12657 (11)0.1475 (5)0.1748 (2)0.0424 (7)
H100.14940.05540.18540.051*
C110.07855 (12)0.0890 (5)0.1521 (2)0.0467 (7)
C120.06707 (15)0.1023 (6)0.1405 (3)0.0679 (11)
H120.08940.19180.14490.082*
C130.02227 (16)0.1614 (7)0.1221 (4)0.0785 (12)
H130.01450.29030.11420.094*
C140.01013 (13)0.0307 (6)0.1158 (3)0.0639 (10)
C150.00053 (14)0.1602 (7)0.1269 (3)0.0758 (12)
H150.02200.24870.12240.091*
C160.04473 (13)0.2196 (6)0.1446 (3)0.0657 (10)
H160.05190.34890.15160.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0546 (3)0.1028 (5)0.1379 (6)0.0215 (3)0.0451 (3)0.0083 (3)
S10.0378 (4)0.0351 (4)0.0470 (4)0.0033 (3)0.0202 (3)0.0071 (3)
O10.0393 (12)0.0493 (13)0.0586 (12)0.0131 (10)0.0189 (10)0.0155 (10)
O20.0625 (14)0.0372 (11)0.0706 (14)0.0061 (11)0.0356 (12)0.0071 (10)
N10.0326 (12)0.0390 (13)0.0421 (12)0.0041 (10)0.0164 (10)0.0014 (10)
N20.0346 (12)0.0430 (14)0.0435 (12)0.0001 (11)0.0189 (10)0.0027 (10)
N30.0453 (14)0.0429 (14)0.0519 (14)0.0017 (12)0.0259 (12)0.0043 (11)
C10.0401 (15)0.0382 (15)0.0444 (15)0.0080 (12)0.0206 (12)0.0009 (12)
C20.0531 (19)0.0418 (17)0.0601 (19)0.0021 (15)0.0219 (16)0.0094 (14)
C30.070 (3)0.063 (2)0.056 (2)0.0072 (19)0.0195 (18)0.0198 (18)
C40.071 (2)0.077 (3)0.0429 (17)0.024 (2)0.0244 (17)0.0044 (17)
C50.0496 (17)0.061 (2)0.0467 (16)0.0209 (16)0.0282 (14)0.0089 (15)
C60.071 (2)0.070 (2)0.061 (2)0.027 (2)0.0441 (19)0.0252 (19)
C70.065 (2)0.060 (2)0.082 (3)0.0125 (19)0.047 (2)0.026 (2)
C80.0527 (19)0.0480 (19)0.074 (2)0.0014 (15)0.0368 (17)0.0094 (16)
C90.0375 (14)0.0438 (16)0.0446 (15)0.0112 (13)0.0227 (12)0.0029 (12)
C100.0392 (15)0.0413 (16)0.0469 (15)0.0020 (13)0.0203 (13)0.0002 (12)
C110.0424 (16)0.0472 (17)0.0517 (16)0.0041 (14)0.0231 (14)0.0008 (13)
C120.055 (2)0.048 (2)0.104 (3)0.0022 (16)0.039 (2)0.0016 (19)
C130.062 (2)0.053 (2)0.121 (4)0.014 (2)0.043 (2)0.002 (2)
C140.0454 (19)0.070 (3)0.075 (2)0.0129 (18)0.0271 (17)0.0046 (19)
C150.048 (2)0.068 (3)0.112 (3)0.0004 (19)0.038 (2)0.003 (2)
C160.0480 (19)0.049 (2)0.098 (3)0.0031 (17)0.0332 (19)0.004 (2)
Geometric parameters (Å, º) top
Br1—C141.890 (4)C5—C61.420 (5)
S1—O11.426 (2)C6—C71.342 (6)
S1—O21.431 (2)C6—H60.9300
S1—N11.635 (3)C7—C81.395 (5)
S1—C11.765 (3)C7—H70.9300
N1—N21.394 (3)C8—H80.9300
N1—H1N0.89 (4)C10—C111.467 (4)
N2—C101.271 (4)C10—H100.9300
N3—C81.320 (4)C11—C121.380 (5)
N3—C91.362 (4)C11—C161.382 (5)
C1—C21.369 (5)C12—C131.389 (6)
C1—C91.421 (4)C12—H120.9300
C2—C31.403 (5)C13—C141.354 (6)
C2—H20.9300C13—H130.9300
C3—C41.353 (6)C14—C151.373 (6)
C3—H30.9300C15—C161.374 (5)
C4—C51.403 (6)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C91.413 (4)
O1—S1—O2119.85 (14)C6—C7—H7120.3
O1—S1—N1104.74 (14)C8—C7—H7120.3
O2—S1—N1108.35 (14)N3—C8—C7123.7 (4)
O1—S1—C1107.83 (14)N3—C8—H8118.1
O2—S1—C1108.02 (15)C7—C8—H8118.1
N1—S1—C1107.45 (13)N3—C9—C5123.0 (3)
N2—N1—S1113.80 (19)N3—C9—C1119.2 (3)
N2—N1—H1N121 (2)C5—C9—C1117.8 (3)
S1—N1—H1N108 (2)N2—C10—C11120.5 (3)
C10—N2—N1115.2 (3)N2—C10—H10119.8
C8—N3—C9117.3 (3)C11—C10—H10119.8
C2—C1—C9121.1 (3)C12—C11—C16118.9 (3)
C2—C1—S1118.7 (3)C12—C11—C10119.2 (3)
C9—C1—S1119.9 (2)C16—C11—C10121.8 (3)
C1—C2—C3119.7 (4)C11—C12—C13120.2 (4)
C1—C2—H2120.1C11—C12—H12119.9
C3—C2—H2120.1C13—C12—H12119.9
C4—C3—C2120.6 (4)C14—C13—C12119.8 (4)
C4—C3—H3119.7C14—C13—H13120.1
C2—C3—H3119.7C12—C13—H13120.1
C3—C4—C5121.0 (3)C13—C14—C15121.0 (4)
C3—C4—H4119.5C13—C14—Br1119.6 (3)
C5—C4—H4119.5C15—C14—Br1119.5 (3)
C4—C5—C9119.6 (3)C14—C15—C16119.5 (4)
C4—C5—C6124.0 (3)C14—C15—H15120.2
C9—C5—C6116.4 (3)C16—C15—H15120.2
C7—C6—C5120.0 (3)C15—C16—C11120.7 (4)
C7—C6—H6120.0C15—C16—H16119.7
C5—C6—H6120.0C11—C16—H16119.7
C6—C7—C8119.5 (3)
O1—S1—N1—N2177.68 (19)C8—N3—C9—C1178.1 (3)
O2—S1—N1—N253.3 (2)C4—C5—C9—N3177.9 (3)
C1—S1—N1—N263.2 (2)C6—C5—C9—N32.9 (4)
S1—N1—N2—C10144.8 (2)C4—C5—C9—C12.8 (4)
O1—S1—C1—C2113.8 (3)C6—C5—C9—C1176.4 (3)
O2—S1—C1—C217.1 (3)C2—C1—C9—N3176.9 (3)
N1—S1—C1—C2133.8 (3)S1—C1—C9—N39.3 (4)
O1—S1—C1—C960.2 (3)C2—C1—C9—C53.7 (4)
O2—S1—C1—C9168.9 (2)S1—C1—C9—C5170.1 (2)
N1—S1—C1—C952.2 (3)N1—N2—C10—C11173.8 (2)
C9—C1—C2—C31.9 (5)N2—C10—C11—C12175.4 (3)
S1—C1—C2—C3172.0 (3)N2—C10—C11—C166.5 (5)
C1—C2—C3—C41.0 (6)C16—C11—C12—C130.4 (7)
C2—C3—C4—C52.0 (6)C10—C11—C12—C13177.7 (4)
C3—C4—C5—C90.0 (5)C11—C12—C13—C140.1 (7)
C3—C4—C5—C6179.1 (4)C12—C13—C14—C150.3 (7)
C4—C5—C6—C7179.1 (3)C12—C13—C14—Br1178.9 (4)
C9—C5—C6—C71.8 (5)C13—C14—C15—C160.0 (7)
C5—C6—C7—C80.8 (6)Br1—C14—C15—C16179.2 (3)
C9—N3—C8—C71.8 (5)C14—C15—C16—C110.5 (7)
C6—C7—C8—N32.8 (6)C12—C11—C16—C150.8 (6)
C8—N3—C9—C51.2 (4)C10—C11—C16—C15177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.89 (4)2.18 (4)2.959 (3)146 (3)
N1—H1N···N30.89 (4)2.36 (3)2.887 (4)118 (3)
C10—H10···O2ii0.932.573.395 (4)149
C12—H12···O2ii0.932.503.361 (5)154
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H12BrN3O2S
Mr390.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)32.149 (3), 7.011 (1), 16.589 (2)
β (°) 117.86 (1)
V3)3305.7 (7)
Z8
Radiation typeCu Kα
µ (mm1)4.68
Crystal size (mm)0.65 × 0.28 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.147, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
3889, 2942, 2677
Rint0.035
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.05
No. of reflections2942
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 1.00

Computer programs: CAD-4-PC (Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.89 (4)2.18 (4)2.959 (3)146 (3)
N1—H1N···N30.89 (4)2.36 (3)2.887 (4)118 (3)
C10—H10···O2ii0.932.573.395 (4)148.7
C12—H12···O2ii0.932.503.361 (5)153.9
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, Technische Universität Darmstadt, for diffractometer time.

References

First citationDueñas-Romero, A. M., Loiseau, P. M. & Saint-Pierre-Chazalet, M. (2006). Biochim. Biophys. Acta, 1768, 246–252.  Web of Science PubMed Google Scholar
First citationNonius (1996). CAD-4-PC. Nonius GmbH, Solingen, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOliveira, K. N. de & Nunes, R. J. (2006). Synth. Commun. 36, 3401–3409.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. L., de Oliveira, K. N. & Nunes, R. J. (2006). Arkivoc, xiii, 124–129.  CrossRef Google Scholar
First citationSilva, L. E. da, Joussef, A. C., Pacheco, L. K., Duarte, A. M. C., Steindel, M. & Rebelo, R. A. (2007). Bioorg. Med. Chem. 15, 7553–7560.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds