metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[5-(2-pyrid­yl)tetra­zolato-κ2N1,N5]iron(II)

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: humin@zzuli.edu.cn

(Received 23 February 2009; accepted 4 March 2009; online 11 March 2009)

The title complex, [Fe(C6H4N5)2(H2O)2], was synthesized by the reaction of ferrous sulfate with 5-(2-pyrid­yl)-2H-tetra­zole (HL). The FeII atom, located on a crystallographic center of inversion, is coordinated by four N-atom donors from two planar trans-related deprotonated L ligands and two O atoms from two axial water mol­ecules in a distorted octa­hedral geometry. The FeII mononuclear units are further connected by inter­molecular O—H⋯N and C—H⋯O hydrogen-bonding inter­actions, forming a three-dimensional framework.

Related literature

For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Kitagawa & Uemura (2005[Kitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109-119.]); For general background, see: Rizk et al. (2005[Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359-362.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); For structurally related complexes with tetra­zole ligands, see: Mo et al. (2004[Mo, X.-J., Gao, E.-Q., He, Z., Li, W.-J. & Yan, C.-H. (2004). Inorg. Chem. Commun. 7, 353-355.]); Song et al. (2008[Song, Y.-H., Chiu, Y.-C., Chi, Y., Chou, P.-T., Cheng, Y.-M., Lin, C.-W., Lee, G.-H. & Carty, A. J. (2008). Organometallics, 27, 80-87.]); Tao et al. (2008[Tao, Y., Li, J.-R., Yu, Q., Song, W.-C., Tong, X.-L. & Bu, X.-H. (2008). CrystEngComm, 10, 699-705.]); Wang et al. (2003[Wang, L.-Z., Qu, Z.-R., Zhao, H., Wang, X.-S., Xiong, R.-G. & Xue, Z.-L. (2003). Inorg. Chem. 42, 3969-3971.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]); Wu et al. (2007[Wu, L.-L., Yang, C.-H., Sun, I.-W., Chu, S.-Y., Kao, P.-C. & Huang, H.-H. (2007). Organometallics, 26, 2017-2023.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C6H4N5)2(H2O)2]

  • Mr = 384.17

  • Monoclinic, P 21 /c

  • a = 8.114 (2) Å

  • b = 12.924 (3) Å

  • c = 7.360 (2) Å

  • β = 96.021 (3)°

  • V = 767.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.29 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.757, Tmax = 0.897

  • 4287 measured reflections

  • 1356 independent reflections

  • 1204 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.057

  • S = 1.10

  • 1356 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯N5i 0.85 1.91 2.764 (2) 177
O1—H12⋯N4ii 0.85 2.00 2.823 (2) 162
C2—H2⋯O1iii 0.93 2.56 3.362 (3) 145
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Currently, there is considerable interest in self-assembly and construction of supramolecular complexes featuring fascinating architectures realized by noncovalent interactions such as coordination bonds, hydrogen bonds and other weak intermolecular interactions (Rizk et al., 2005; Robin & Fromm, 2006). Hydrogen bonds, combining directionality, strength and selectivity, have been noted as the most versatile organizing force to assemble supramolecular structures (Kitagawa & Uemura, 2005). Due to their ability of providing multi-coordination sites as well as hydrogen bonding acceptors, tetrazole and its derivatives are receiving much attention in coordination and supramolecular chemistry (Mo et al., 2004; Song et al., 2008; Tao et al., 2008; Wang et al., 2003; Wen, 2008; Wu et al., 2007). Herein we report the crystal structure of an iron(II) complex of 2-pyridyl-tetrazole HL, [Fe(L)2(H2O)2].

In the title complex, the FeII atom is located on a crystallographic center of inversion. It is six-coordinated by two O atoms from water molecules and four N-atom donors from two deprotonated N,N'-chelating L ligands binding via the pyridyl nitrogen and the tetrazole nitrogen in 1-position, in a transoid pseudo-octahedral geometry (Fig. 1).

Each FeII mononuclear unit exhibits both proton donors (water molecules) and acceptors (uncoordinated N atoms on the tetrazole rings) and can therefore act as a good building unit for hydrogen bonded networks. As shown in Fig. 2 the O—H···N hydrogen bonds (Table 1) between tetrazole rings and coordinated water molecules link neighboring mononuclear [Fe(L)2(H2O)2] units resulting in an infinite hydrogen bonded layer running parallel to the crystallographic (100) plane. Furthermore, the crystal structure of (I) also contains intermolecular C—H···O (Table 1) hydrogen-bonding interactions (Desiraju & Steiner, 1999), between the L ligands and the coordinated water molecules that interlink the twodimensional layers to form a three dimensional supramolecular framework.

Related literature top

For hydrogen bonds, see: Desiraju & Steiner (1999); Kitagawa & Uemura (2005); For general background, see: Rizk et al. (2005); Robin & Fromm (2006); For structurally related complexes with tetrazole ligands, see: Mo et al. (2004); Song et al. (2008); Tao et al. (2008); Wang et al. (2003); Wen (2008); Wu et al. (2007).

Experimental top

A solution of HL (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value of the reaction system to basic conditions) was carefully layered on top of an aqueous solution (15 ml) of FeSO4 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis appeared at the tube wall after ca one month at room temperature (yield ~30% based on HL). Elemental analysis calculated for (C12H12FeN10O2): H 3.15, C 37.52, N 36.46%; found: H 3.08, C 37.37, N 36.68%.

Refinement top

H atoms of the water molecules were located from the difference Fourier map and were allowed to ride on the O atom, with Uiso(H) = 1.2 Ueq(O). The remaining H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic), and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (–x, –y + 1,–z + 2).
[Figure 2] Fig. 2. Two dimensional network, parallel to the (100) plane, formed by the intermolecular O—H···N (fine dashed lines) interactions. For clarity, only H atoms involved in the interactions are shown.
Diaquabis[5-(2-pyridyl)tetrazolato-κ2N1,N5]iron(II) top
Crystal data top
[Fe(C6H4N5)2(H2O)2]F(000) = 392
Mr = 384.17Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2211 reflections
a = 8.114 (2) Åθ = 3.0–28.3°
b = 12.924 (3) ŵ = 1.02 mm1
c = 7.360 (2) ÅT = 293 K
β = 96.021 (3)°Block, yellow
V = 767.5 (3) Å30.29 × 0.14 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1356 independent reflections
Radiation source: fine-focus sealed tube1204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.757, Tmax = 0.897k = 1515
4287 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.3154P]
where P = (Fo2 + 2Fc2)/3
1356 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C6H4N5)2(H2O)2]V = 767.5 (3) Å3
Mr = 384.17Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.114 (2) ŵ = 1.02 mm1
b = 12.924 (3) ÅT = 293 K
c = 7.360 (2) Å0.29 × 0.14 × 0.11 mm
β = 96.021 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1204 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.897Rint = 0.017
4287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
1356 reflectionsΔρmin = 0.24 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.50001.00000.02908 (12)
C10.3360 (2)0.51552 (16)0.8123 (3)0.0456 (5)
H10.33060.44370.80650.055*
C20.4708 (3)0.56508 (19)0.7511 (3)0.0565 (6)
H20.55430.52700.70500.068*
C30.4800 (3)0.67167 (19)0.7593 (3)0.0539 (6)
H30.57080.70630.72130.065*
C40.3524 (2)0.72590 (16)0.8246 (3)0.0440 (5)
H40.35500.79780.82960.053*
C50.2204 (2)0.67171 (13)0.8826 (2)0.0318 (4)
C60.0757 (2)0.72097 (12)0.9502 (2)0.0304 (4)
N10.21327 (18)0.56715 (11)0.87949 (19)0.0332 (3)
N20.04622 (17)0.66384 (10)1.00861 (18)0.0308 (3)
N30.15883 (19)0.73201 (11)1.0590 (2)0.0367 (4)
N40.1046 (2)0.82582 (11)1.0311 (2)0.0396 (4)
N50.0442 (2)0.82160 (11)0.9625 (2)0.0375 (4)
O10.13384 (15)0.50897 (8)1.26584 (16)0.0340 (3)
H110.10910.56061.32920.041*
H120.14610.45091.31990.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0345 (2)0.01947 (19)0.0352 (2)0.00073 (14)0.01281 (15)0.00110 (14)
C10.0410 (11)0.0464 (12)0.0517 (12)0.0074 (9)0.0153 (9)0.0027 (9)
C20.0407 (13)0.0745 (16)0.0573 (13)0.0099 (11)0.0195 (10)0.0056 (12)
C30.0357 (11)0.0773 (17)0.0497 (12)0.0136 (11)0.0102 (9)0.0086 (11)
C40.0444 (12)0.0457 (11)0.0423 (10)0.0154 (9)0.0069 (9)0.0037 (9)
C50.0352 (9)0.0332 (10)0.0268 (8)0.0052 (7)0.0020 (7)0.0027 (7)
C60.0409 (10)0.0249 (9)0.0253 (8)0.0037 (7)0.0028 (7)0.0007 (7)
N10.0343 (8)0.0313 (8)0.0355 (8)0.0010 (6)0.0099 (6)0.0028 (6)
N20.0378 (8)0.0215 (7)0.0346 (8)0.0018 (6)0.0103 (6)0.0002 (6)
N30.0449 (9)0.0274 (8)0.0390 (8)0.0062 (7)0.0091 (7)0.0022 (6)
N40.0564 (10)0.0255 (8)0.0371 (8)0.0046 (7)0.0064 (7)0.0017 (6)
N50.0543 (10)0.0223 (7)0.0358 (8)0.0032 (7)0.0040 (7)0.0015 (6)
O10.0434 (7)0.0226 (6)0.0373 (7)0.0035 (5)0.0105 (5)0.0006 (5)
Geometric parameters (Å, º) top
Fe1—O1i2.1389 (13)C3—H30.9300
Fe1—O12.1389 (13)C4—C51.384 (2)
Fe1—N22.1526 (14)C4—H40.9300
Fe1—N2i2.1526 (14)C5—N11.353 (2)
Fe1—N1i2.2037 (14)C5—C61.468 (2)
Fe1—N12.2037 (14)C6—N51.330 (2)
C1—N11.336 (2)C6—N21.341 (2)
C1—C21.383 (3)N2—N31.3489 (19)
C1—H10.9300N3—N41.313 (2)
C2—C31.380 (3)N4—N51.358 (2)
C2—H20.9300O1—H110.8501
C3—C41.378 (3)O1—H120.8500
O1i—Fe1—O1180.0C2—C3—H3120.5
O1i—Fe1—N290.40 (5)C3—C4—C5118.96 (19)
O1—Fe1—N289.60 (5)C3—C4—H4120.5
O1i—Fe1—N2i89.60 (5)C5—C4—H4120.5
O1—Fe1—N2i90.40 (5)N1—C5—C4122.25 (17)
N2—Fe1—N2i180.0N1—C5—C6113.85 (14)
O1i—Fe1—N1i90.12 (5)C4—C5—C6123.89 (16)
O1—Fe1—N1i89.88 (5)N5—C6—N2111.28 (15)
N2—Fe1—N1i103.24 (5)N5—C6—C5127.83 (15)
N2i—Fe1—N1i76.76 (5)N2—C6—C5120.89 (14)
O1i—Fe1—N189.89 (5)C1—N1—C5118.22 (16)
O1—Fe1—N190.11 (5)C1—N1—Fe1126.83 (13)
N2—Fe1—N176.76 (5)C5—N1—Fe1114.89 (11)
N2i—Fe1—N1103.24 (5)C6—N2—N3105.81 (13)
N1i—Fe1—N1180.000 (1)C6—N2—Fe1113.29 (11)
N1—C1—C2122.33 (19)N3—N2—Fe1140.87 (11)
N1—C1—H1118.8N4—N3—N2108.19 (14)
C2—C1—H1118.8N3—N4—N5110.28 (13)
C3—C2—C1119.3 (2)C6—N5—N4104.44 (14)
C3—C2—H2120.4Fe1—O1—H11114.7
C1—C2—H2120.4Fe1—O1—H12113.8
C4—C3—C2118.92 (19)H11—O1—H12117.3
C4—C3—H3120.5
N1—C1—C2—C30.0 (3)N2—Fe1—N1—C55.08 (12)
C1—C2—C3—C41.4 (3)N2i—Fe1—N1—C5174.92 (12)
C2—C3—C4—C51.0 (3)N5—C6—N2—N30.17 (19)
C3—C4—C5—N10.8 (3)C5—C6—N2—N3179.46 (14)
C3—C4—C5—C6178.37 (17)N5—C6—N2—Fe1178.30 (11)
N1—C5—C6—N5177.20 (16)C5—C6—N2—Fe12.07 (19)
C4—C5—C6—N52.1 (3)O1i—Fe1—N2—C693.43 (12)
N1—C5—C6—N22.4 (2)O1—Fe1—N2—C686.57 (12)
C4—C5—C6—N2178.36 (16)N1i—Fe1—N2—C6176.36 (11)
C2—C1—N1—C51.8 (3)N1—Fe1—N2—C63.64 (11)
C2—C1—N1—Fe1175.34 (15)O1i—Fe1—N2—N388.90 (18)
C4—C5—N1—C12.2 (3)O1—Fe1—N2—N391.10 (18)
C6—C5—N1—C1177.07 (16)N1i—Fe1—N2—N31.31 (18)
C4—C5—N1—Fe1175.23 (13)N1—Fe1—N2—N3178.69 (18)
C6—C5—N1—Fe15.48 (18)C6—N2—N3—N40.01 (18)
O1i—Fe1—N1—C187.30 (16)Fe1—N2—N3—N4177.76 (13)
O1—Fe1—N1—C192.70 (16)N2—N3—N4—N50.15 (19)
N2—Fe1—N1—C1177.74 (17)N2—C6—N5—N40.26 (19)
N2i—Fe1—N1—C12.26 (17)C5—C6—N5—N4179.35 (16)
O1i—Fe1—N1—C595.51 (12)N3—N4—N5—C60.25 (19)
O1—Fe1—N1—C584.49 (12)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N5ii0.851.912.764 (2)177
O1—H12···N4iii0.852.002.823 (2)162
C2—H2···O1iv0.932.563.362 (3)145
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+5/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe(C6H4N5)2(H2O)2]
Mr384.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.114 (2), 12.924 (3), 7.360 (2)
β (°) 96.021 (3)
V3)767.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.29 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.757, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
4287, 1356, 1204
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.10
No. of reflections1356
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N5i0.851.912.764 (2)177
O1—H12···N4ii0.852.002.823 (2)162
C2—H2···O1iii0.932.563.362 (3)145
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+5/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the Start-up Fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2006BSJJ001 to SMF). We also thank Dr Chun-Sen Liu for his helpful discussions and valuable suggestions.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationKitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMo, X.-J., Gao, E.-Q., He, Z., Li, W.-J. & Yan, C.-H. (2004). Inorg. Chem. Commun. 7, 353–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationRizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.  Web of Science CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-H., Chiu, Y.-C., Chi, Y., Chou, P.-T., Cheng, Y.-M., Lin, C.-W., Lee, G.-H. & Carty, A. J. (2008). Organometallics, 27, 80–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Y., Li, J.-R., Yu, Q., Song, W.-C., Tong, X.-L. & Bu, X.-H. (2008). CrystEngComm, 10, 699–705.  Web of Science CrossRef CAS Google Scholar
First citationWang, L.-Z., Qu, Z.-R., Zhao, H., Wang, X.-S., Xiong, R.-G. & Xue, Z.-L. (2003). Inorg. Chem. 42, 3969–3971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, L.-L., Yang, C.-H., Sun, I.-W., Chu, S.-Y., Kao, P.-C. & Huang, H.-H. (2007). Organometallics, 26, 2017–2023.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds