metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­(μ5-2-oxido-4-sulfonato­benzoato)lanthanum(III)]

aCollege of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China, and bFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhengjiang 315211, People's Republic of China
*Correspondence e-mail: shengeh@mail.ahnu.edu.cn

(Received 8 December 2008; accepted 4 March 2009; online 11 March 2009)

The title compound, [La(C7H3O6S)(H2O)]n, forms a three-dimensional framework in which the asymmetric unit contains one LaIII atom, one 5-sulfosalicylate (2-oxido-4-sulfonatobenzoate) ligand and one coordinated water mol­ecule. The LaIII atom is coordinated by nine O atoms from three carboxyl­ate, three sulfonate and two hydroxyl groups, and one water mol­ecule, forming a distorted trigonal-prismatic square-face tricapped geometry.

Related literature

For the use of rigid carboxyl­ate ligands in the design and synthesis of a variety of structures, see: Cao et al. (2002[Cao, R., Sun, D. F., Liang, Y.-C., Hong, M.-C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087-2094.]); Li et al. (2004[Li, X., Shi, Q., Sun, D.-F., Bi, W.-H. & Cao, R. (2004). Eur. J. Inorg. Chem. pp. 2747-2753.], 2005[Li, X., Cao, R., Bi, W.-H., Yuan, D.-Q. & Sun, D.-F. (2005). Eur. J. Inorg. Chem. pp. 3156-3166.]). For the structure of the isotypic Nd compound, see: Wang et al. (2004[Wang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). Acta Cryst. C60, m657-m658.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C7H3O6S)(H2O)]

  • Mr = 372.08

  • Triclinic, [P \overline 1]

  • a = 6.2297 (7) Å

  • b = 8.2390 (8) Å

  • c = 9.9157 (9) Å

  • α = 111.587 (2)°

  • β = 94.325 (2)°

  • γ = 93.785 (2)°

  • V = 469.47 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.79 mm−1

  • T = 293 K

  • 0.24 × 0.16 × 0.12 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.415, Tmax = 0.563

  • 2457 measured reflections

  • 1633 independent reflections

  • 1527 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.07

  • 1633 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Selected bond lengths (Å)

La1—O1i 2.676 (5)
La1—O2ii 2.449 (5)
La1—O2i 2.561 (5)
La1—O3iii 2.478 (4)
La1—O3ii 2.499 (4)
La1—O4 2.573 (5)
La1—O5 2.970 (7)
La1—O6iv 2.548 (5)
La1—O7 2.501 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z+1; (iii) -x+2, -y+1, -z; (iv) -x+2, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The carboxylate groups have a strong ability to bond various metal ions and afford abundant coordination modes, thus rigid carboxylate ligands have been widely used for the design and synthesis of a great variety of structures (Cao et al., 2002; Li et al., 2004). Introduction of a sulfonate group into rigid carboxylate ligands may result in the formation of unexpected frameworks as the sulfonic group has a different shape and properties in terms of its coordination ability compared to the carboxylate group (Li et al., 2005).

Studies on the coordination chemistry of mixed carboxylate-sulfonic ligands are not very common. By employing 5-sulfoisophthalic acid as an organic ligand, we have successfully prepared one new metal-organic polymer [La(C7H3O6S)(H2O)]n with three dimensional framework by the bridging carboxylate and the sulfonate groups. Single X-ray diffraction analysis reveals that the title complex is isomorphous to the La-compound reported previously (Wang et al., 2004). As Fig. 1 shown, the lanthanum(III) atom is surrounded by nine oxygen atoms, of which three come from carboxylate groups, three from sulfonates, two from hydroxyl groups and one from the coordinated water. The sulfosalicylate ligands serve as µ5-bridge linking five La(III) ions (Fig. 2), resulting in a three dimensional framework.

Related literature top

For the use of rigid carboxylate ligands in the design and synthesis of a variety of structures, see: Cao et al. (2002); Li et al. (2004, 2005). For the structure of an isomorphous La compound, see: Wang et al. (2004).

Experimental top

A mixture of 5-sulfosalicylic acid (0.60 mmol, 0.15 g), La2O3 (0.2 mmol, 0.065 g) and H2O (15 ml) was sealed in a 25 ml stainless steel reactor with Teflon linear and heated 433 K for 72 h. After cooling to room temperature, colorless crystals were isolated by filtering (yield 35%).

Refinement top

Aromatic hydrogen atoms were assigned to calculated positions and allowed to ride on their respective parent C atoms with isotropic thermal displacement parameters. For the hydrogen atoms bonded to coordination water oxygen atom, The H7A was positioned geometrically and H7B was located in a difference map and constrained with O—H = 0.82 Å. The deepest residual electron density peak is located at 0.87 Å from atom La1.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the lanthanum ion coordination, Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The sulfosalicylate ligands linking fashion.
Poly[aqua(µ5-2-oxido-4-sulfonatobenzoato)lanthanum(III)] top
Crystal data top
[La(C7H3O6S)(H2O)]Z = 2
Mr = 372.08F(000) = 352
Triclinic, P1Dx = 2.632 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2297 (7) ÅCell parameters from 2088 reflections
b = 8.2390 (8) Åθ = 2.2–25.1°
c = 9.9157 (9) ŵ = 4.79 mm1
α = 111.587 (2)°T = 293 K
β = 94.325 (2)°Block, colorless
γ = 93.785 (2)°0.24 × 0.16 × 0.12 mm
V = 469.47 (8) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
1633 independent reflections
Radiation source: fine-focus sealed tube1527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 47
Tmin = 0.415, Tmax = 0.563k = 99
2457 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0456P)2 + 4.598P]
where P = (Fo2 + 2Fc2)/3
1633 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
[La(C7H3O6S)(H2O)]γ = 93.785 (2)°
Mr = 372.08V = 469.47 (8) Å3
Triclinic, P1Z = 2
a = 6.2297 (7) ÅMo Kα radiation
b = 8.2390 (8) ŵ = 4.79 mm1
c = 9.9157 (9) ÅT = 293 K
α = 111.587 (2)°0.24 × 0.16 × 0.12 mm
β = 94.325 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1633 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1527 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.563Rint = 0.029
2457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.79 e Å3
1633 reflectionsΔρmin = 1.66 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.76441 (5)0.64763 (5)0.46004 (4)0.01280 (16)
S10.9837 (3)0.8865 (2)0.28204 (17)0.0167 (4)
O10.4823 (8)0.4571 (7)0.2043 (5)0.0258 (12)
O20.5737 (8)0.5722 (7)0.3605 (5)0.0215 (11)
O31.0224 (7)0.6040 (6)0.3536 (5)0.0139 (9)
O41.0612 (9)0.7528 (6)0.3353 (5)0.0229 (11)
O50.7603 (9)0.9023 (8)0.3122 (6)0.0360 (14)
O61.1278 (9)1.0487 (6)0.3439 (5)0.0237 (11)
O70.4427 (9)0.8190 (7)0.5052 (7)0.0332 (13)
H7A0.34720.77220.43750.040*
H7B0.41850.90290.57660.040*
C10.6163 (12)0.5488 (9)0.2412 (7)0.0181 (14)
C20.8185 (11)0.6385 (9)0.1475 (7)0.0150 (13)
C30.8153 (11)0.7035 (9)0.0033 (7)0.0153 (13)
H3A0.69380.67770.04370.018*
C40.9937 (11)0.8069 (9)0.0930 (7)0.0168 (14)
C51.1779 (12)0.8448 (10)0.0340 (7)0.0210 (15)
H5A1.29640.91480.09530.025*
C61.1846 (11)0.7790 (9)0.1142 (8)0.0192 (14)
H6A1.30850.80410.15260.023*
C71.0069 (11)0.6740 (8)0.2089 (7)0.0141 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0098 (2)0.0143 (2)0.0121 (2)0.00092 (15)0.00131 (14)0.00277 (16)
S10.0185 (8)0.0174 (8)0.0098 (8)0.0033 (7)0.0027 (6)0.0005 (6)
O10.023 (3)0.034 (3)0.019 (3)0.016 (2)0.001 (2)0.012 (2)
O20.017 (2)0.031 (3)0.016 (3)0.009 (2)0.005 (2)0.012 (2)
O30.015 (2)0.015 (2)0.009 (2)0.0004 (18)0.0007 (18)0.0012 (18)
O40.034 (3)0.019 (2)0.017 (3)0.002 (2)0.005 (2)0.009 (2)
O50.025 (3)0.047 (4)0.022 (3)0.001 (3)0.008 (2)0.004 (3)
O60.031 (3)0.014 (2)0.020 (3)0.010 (2)0.001 (2)0.001 (2)
O70.023 (3)0.030 (3)0.037 (3)0.010 (2)0.003 (2)0.000 (3)
C10.024 (4)0.014 (3)0.014 (3)0.000 (3)0.004 (3)0.002 (3)
C20.014 (3)0.018 (3)0.014 (3)0.004 (3)0.003 (3)0.005 (3)
C30.017 (3)0.019 (3)0.012 (3)0.003 (3)0.007 (3)0.007 (3)
C40.022 (3)0.018 (3)0.008 (3)0.002 (3)0.001 (3)0.003 (3)
C50.019 (3)0.028 (4)0.010 (3)0.003 (3)0.001 (3)0.001 (3)
C60.017 (3)0.020 (3)0.017 (3)0.003 (3)0.008 (3)0.002 (3)
C70.019 (3)0.014 (3)0.008 (3)0.001 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
La1—O1i2.676 (5)O2—C11.279 (9)
La1—O2ii2.449 (5)O3—C71.349 (8)
La1—O2i2.561 (5)O7—H7A0.8200
La1—O3iii2.478 (4)O7—H7B0.8200
La1—O3ii2.499 (4)C1—C21.480 (10)
La1—O42.573 (5)C2—C31.393 (9)
La1—O52.970 (7)C2—C71.424 (9)
La1—O6iv2.548 (5)C3—C41.385 (10)
La1—O72.501 (5)C3—H3A0.9300
S1—O41.478 (5)C4—C51.395 (10)
S1—O51.450 (6)C5—C61.372 (10)
S1—O61.457 (5)C5—H5A0.9300
S1—C41.751 (7)C6—C71.405 (10)
O1—C11.251 (9)C6—H6A0.9300
O2ii—La1—O3iii103.65 (16)O6—S1—O4110.7 (3)
O2ii—La1—O3ii68.47 (15)O5—S1—C4109.1 (3)
O3iii—La1—O3ii67.24 (16)O6—S1—C4107.0 (3)
O2ii—La1—O772.75 (19)O4—S1—C4107.5 (3)
O3iii—La1—O7158.70 (17)C1—O1—La1i93.1 (4)
O3ii—La1—O7127.17 (17)C1—O2—La1v139.2 (4)
O2ii—La1—O6iv87.98 (17)C1—O2—La1i97.8 (4)
O3iii—La1—O6iv131.23 (16)La1v—O2—La1i116.49 (18)
O3ii—La1—O6iv74.06 (16)C7—O3—La1iii121.3 (4)
O7—La1—O6iv70.05 (18)C7—O3—La1v123.5 (4)
O2ii—La1—O2i63.51 (18)La1iii—O3—La1v112.76 (16)
O3iii—La1—O2i86.88 (16)S1—O4—La1110.1 (3)
O3ii—La1—O2i116.96 (15)S1—O5—La193.3 (3)
O7—La1—O2i72.64 (18)S1—O6—La1iv151.0 (3)
O6iv—La1—O2i138.33 (17)La1—O7—H7A109.5
O2ii—La1—O4162.22 (17)La1—O7—H7B130.5
O3iii—La1—O473.55 (15)H7A—O7—H7B119.7
O3ii—La1—O494.76 (16)O1—C1—O2119.2 (6)
O7—La1—O4116.21 (18)O1—C1—C2122.1 (6)
O6iv—La1—O481.48 (16)O2—C1—C2118.6 (6)
O2i—La1—O4132.71 (16)C3—C2—C7120.0 (6)
O2ii—La1—O1i110.68 (15)C3—C2—C1118.6 (6)
O3iii—La1—O1i88.69 (16)C7—C2—C1121.1 (6)
O3ii—La1—O1i154.12 (16)C4—C3—C2119.7 (6)
O7—La1—O1i73.65 (18)C4—C3—H3A120.1
O6iv—La1—O1i131.55 (17)C2—C3—H3A120.1
O2i—La1—O1i49.19 (15)C3—C4—C5120.7 (6)
O4—La1—O1i86.95 (15)C3—C4—S1118.5 (5)
O2ii—La1—O5139.80 (16)C5—C4—S1120.8 (5)
O3iii—La1—O5115.64 (15)C6—C5—C4120.1 (6)
O3ii—La1—O5134.13 (15)C6—C5—H5A120.0
O7—La1—O567.57 (18)C4—C5—H5A120.0
O6iv—La1—O572.93 (16)C5—C6—C7120.9 (6)
O2i—La1—O5108.88 (15)C5—C6—H6A119.5
O4—La1—O549.58 (16)C7—C6—H6A119.5
O1i—La1—O564.08 (16)O3—C7—C6119.5 (6)
O5—S1—O6115.5 (3)O3—C7—C2122.0 (6)
O5—S1—O4106.9 (3)C6—C7—C2118.4 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+2, y+1, z; (iv) x+2, y+2, z+1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[La(C7H3O6S)(H2O)]
Mr372.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2297 (7), 8.2390 (8), 9.9157 (9)
α, β, γ (°)111.587 (2), 94.325 (2), 93.785 (2)
V3)469.47 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.79
Crystal size (mm)0.24 × 0.16 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.415, 0.563
No. of measured, independent and
observed [I > 2σ(I)] reflections
2457, 1633, 1527
Rint0.029
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.07
No. of reflections1633
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 1.66

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
La1—O1i2.676 (5)La1—O42.573 (5)
La1—O2ii2.449 (5)La1—O52.970 (7)
La1—O2i2.561 (5)La1—O6iv2.548 (5)
La1—O3iii2.478 (4)La1—O72.501 (5)
La1—O3ii2.499 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+2, y+1, z; (iv) x+2, y+2, z+1.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Anhui Province (grant No. KJ2008B166), the Ningbo Municipal Natural Science Foundation (grant No. 2008 A610048) and the Scientific Research Fund of Ningbo University (grant No. 2006050), and sponsored by the K. C. Wong Magna Fund of Ningbo University.

References

First citationCao, R., Sun, D. F., Liang, Y.-C., Hong, M.-C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., Cao, R., Bi, W.-H., Yuan, D.-Q. & Sun, D.-F. (2005). Eur. J. Inorg. Chem. pp. 3156–3166.  Web of Science CSD CrossRef Google Scholar
First citationLi, X., Shi, Q., Sun, D.-F., Bi, W.-H. & Cao, R. (2004). Eur. J. Inorg. Chem. pp. 2747–2753.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). Acta Cryst. C60, m657–m658.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds