metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(2,2′-bi­imidazole)zinc(II) 4,4′-di­carboxybi­phenyl-3,3′-di­carboxyl­ate

aCollege of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China, and bState Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: davidkj660825@163.com

(Received 20 January 2009; accepted 5 March 2009; online 28 March 2009)

In the title compound, [Zn(C6H6N4)2(H2O)2](C16H8O8), the ZnII atom, located on an inversion centre, is coordinated by two aqua and two bidentate biimidizole ligands, resulting in a slightly distorted octa­hedral ZnO2N4 geometry. The four N atoms from the two biimidizole ligands lie in the equatorial plane and the two aqua O atoms lie in the axial sites. The biphenyl­tetra­carboxyl­ate anion also lies on an inversion centre. The ZnII complex cation and the anion are held together by N—H⋯O hydrogen bonds, forming a zigzag chain along [2[\overline{1}]1]. The chains are further connected by water mol­ecules via O—H⋯O hydrogen bonds.

Related literature

For general background, see: Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Jia et al. (2007[Jia, H.-P., Li, W., Ju, Z.-F. & Zhang, J. (2007). Inorg. Chem. 10, 265-268.]); Kortz et al. (2003[Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J. 9, 2945-2952.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H6N4)2(H2O)2](C16H8O8)

  • Mr = 697.92

  • Triclinic, [P \overline 1]

  • a = 8.2133 (16) Å

  • b = 9.810 (2) Å

  • c = 10.498 (2) Å

  • α = 63.72 (3)°

  • β = 68.00 (3)°

  • γ = 83.85 (3)°

  • V = 701.4 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.928

  • 5074 measured reflections

  • 2674 independent reflections

  • 2579 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.00

  • 2674 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1W 2.135 (2)
Zn1—N3 2.1419 (18)
Zn1—N2 2.1625 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 1.94 2.802 (3) 169
N4—H4A⋯O2i 0.90 1.89 2.791 (3) 176
O1W—H1W⋯O4ii 0.81 1.90 2.683 (2) 162
O1W—H2W⋯O2iii 0.79 1.98 2.751 (3) 164
O3—H3A⋯O1 0.93 (3) 1.52 (3) 2.434 (3) 165 (4)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas absorption, molecular recognition, nonlinear optics and magnetochemistry (Hagrman et al., 1999; Jia et al., 2007; Kortz et al., 2003). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the ZnII atom (site symmetry 1) is bonded to two aqua and two bidentate biimidizole ligands, to result in a slightly distorted octahedral ZnO2N4 geometry for the central metal. The ZnII atom lies on an inversion centre, as a consequence which the asymmetric unit comprises a half of the molecule. The four nitrogen atoms belonging to two biimidizole ligands lie in the equatorial plane and the two aqua oxygen atoms lie in the axial coordination sites. The bonds around Zn is listed in Table 1. The 3,3',4,4'-biphenyl tetracarboxylate acts as negative electron balance. With two kinds of hydrogen bonds of N4—H4A···O2 and N1—H1A···O1, a zigzag chain is formed. Furthermore, a 3-D frameworks is constructed with O1W—H2W···O2 and O1W—H1W···O4 along the c axis, shown in Fig. 2.

Related literature top

For general background, see: Hagrman et al. (1999); Jia et al. (2007); Kortz et al. (2003).

Experimental top

All chemicals and Teflon-lined stainless steel autoclave were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. A mixture of 3,3',4,4'-biphenyl tetracarboxylic acid (0.1 mmol), zinc(II) sulfate (0.1 mmol), and diimdazole (0.1 mmol) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals suitable for X-ray were obtained.

Refinement top

Atom H3A on O3 was located in a difference Fourier map and refined with an O—H distance [0.93 (1) Å] restraint. O-bound H atoms except H3A and N-bound H atoms were located in a difference Fourier map and were constrained as riding, with Uiso(H) = 1.2Ueq(O or N). Other H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound formed with the hydrogen bonds (dashed lines).
Diaquabis(2,2'-biimidazole)zinc(II) 4,4'-dicarboxybiphenyl-3,3'-dicarboxylate top
Crystal data top
[Zn(C6H6N4)2(H2O)2](C16H8O8)Z = 1
Mr = 697.92F(000) = 358
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2133 (16) ÅCell parameters from 2674 reflections
b = 9.810 (2) Åθ = 3.4–26.0°
c = 10.498 (2) ŵ = 0.95 mm1
α = 63.72 (3)°T = 293 K
β = 68.00 (3)°Block, colorless
γ = 83.85 (3)°0.12 × 0.10 × 0.08 mm
V = 701.4 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2674 independent reflections
Radiation source: fine-focus sealed tube2579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.894, Tmax = 0.928k = 1212
5074 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.052P)2 + 0.4235P]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max = 0.018
218 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
[Zn(C6H6N4)2(H2O)2](C16H8O8)γ = 83.85 (3)°
Mr = 697.92V = 701.4 (2) Å3
Triclinic, P1Z = 1
a = 8.2133 (16) ÅMo Kα radiation
b = 9.810 (2) ŵ = 0.95 mm1
c = 10.498 (2) ÅT = 293 K
α = 63.72 (3)°0.12 × 0.10 × 0.08 mm
β = 68.00 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2579 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.928Rint = 0.022
5074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
2674 reflectionsΔρmin = 0.22 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.00000.03706 (14)
C10.8917 (3)0.0165 (3)0.6897 (3)0.0359 (5)
C20.7565 (3)0.0726 (2)0.6220 (2)0.0299 (4)
C30.6742 (3)0.0082 (2)0.5790 (2)0.0317 (4)
H30.71130.10400.58870.038*
C40.5400 (3)0.0464 (2)0.5224 (2)0.0300 (4)
C50.4858 (3)0.1890 (3)0.5114 (3)0.0399 (5)
H50.39410.22880.47710.048*
C60.5668 (3)0.2719 (2)0.5509 (3)0.0392 (5)
H60.52800.36730.54150.047*
C70.7037 (3)0.2197 (2)0.6041 (2)0.0305 (4)
C80.7779 (3)0.3350 (3)0.6322 (3)0.0375 (5)
C90.7614 (3)0.3778 (2)0.1372 (2)0.0328 (4)
C100.7227 (3)0.2594 (2)0.1042 (2)0.0336 (5)
C110.5985 (3)0.1497 (3)0.0235 (3)0.0436 (6)
H190.52630.13070.01790.052*
C120.7149 (4)0.0538 (3)0.0759 (3)0.0473 (6)
H200.73680.04160.07710.057*
C130.8671 (3)0.5175 (3)0.2050 (3)0.0440 (6)
H210.93290.55240.24140.053*
C140.7403 (3)0.5901 (3)0.1520 (3)0.0436 (6)
H220.70410.68530.14560.052*
N10.7933 (3)0.1248 (2)0.1265 (2)0.0406 (4)
H1A0.86590.08210.17420.049*
N20.6044 (3)0.2788 (2)0.0414 (2)0.0366 (4)
N30.6732 (2)0.5025 (2)0.1091 (2)0.0372 (4)
N40.8794 (3)0.3831 (2)0.1946 (2)0.0402 (4)
H4A0.95380.31100.22110.048*
O10.9901 (3)0.0489 (2)0.7164 (3)0.0592 (5)
O20.9025 (2)0.15120 (19)0.7137 (2)0.0528 (5)
O30.9163 (3)0.3100 (2)0.6670 (3)0.0576 (5)
O40.7063 (3)0.4532 (2)0.6186 (2)0.0536 (5)
O1W0.2826 (2)0.4101 (2)0.2126 (2)0.0517 (5)
H1W0.26800.43780.27820.078*
H2W0.23670.32770.24770.078*
H3A0.962 (5)0.217 (2)0.673 (5)0.100 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0416 (2)0.0294 (2)0.0549 (3)0.00961 (15)0.03317 (18)0.01971 (17)
C10.0359 (11)0.0351 (11)0.0469 (12)0.0071 (9)0.0249 (10)0.0197 (10)
C20.0321 (10)0.0270 (10)0.0351 (10)0.0038 (8)0.0184 (9)0.0129 (8)
C30.0346 (11)0.0260 (10)0.0424 (11)0.0073 (8)0.0229 (9)0.0155 (9)
C40.0355 (11)0.0254 (10)0.0351 (10)0.0042 (8)0.0201 (9)0.0130 (8)
C50.0489 (13)0.0323 (11)0.0604 (14)0.0156 (10)0.0411 (12)0.0242 (11)
C60.0502 (13)0.0280 (11)0.0542 (13)0.0122 (10)0.0320 (11)0.0220 (10)
C70.0349 (11)0.0284 (10)0.0343 (10)0.0029 (8)0.0174 (9)0.0152 (8)
C80.0452 (13)0.0319 (11)0.0446 (12)0.0026 (9)0.0226 (10)0.0195 (10)
C90.0317 (10)0.0327 (11)0.0402 (11)0.0070 (8)0.0200 (9)0.0166 (9)
C100.0349 (11)0.0291 (10)0.0396 (11)0.0059 (8)0.0182 (9)0.0145 (9)
C110.0566 (15)0.0321 (11)0.0559 (14)0.0036 (10)0.0337 (12)0.0201 (11)
C120.0608 (16)0.0309 (12)0.0636 (16)0.0106 (11)0.0330 (13)0.0253 (11)
C130.0460 (13)0.0461 (14)0.0579 (15)0.0050 (11)0.0316 (12)0.0281 (12)
C140.0490 (14)0.0380 (12)0.0640 (15)0.0105 (10)0.0332 (12)0.0308 (12)
N10.0456 (11)0.0326 (10)0.0545 (12)0.0137 (8)0.0324 (10)0.0192 (9)
N20.0418 (10)0.0300 (9)0.0489 (11)0.0083 (8)0.0282 (9)0.0181 (8)
N30.0394 (10)0.0347 (10)0.0532 (11)0.0105 (8)0.0302 (9)0.0233 (9)
N40.0394 (10)0.0393 (10)0.0552 (12)0.0115 (8)0.0315 (9)0.0223 (9)
O10.0659 (12)0.0518 (11)0.1051 (16)0.0251 (9)0.0670 (12)0.0479 (11)
O20.0539 (11)0.0330 (9)0.0920 (14)0.0141 (8)0.0539 (11)0.0248 (9)
O30.0620 (12)0.0441 (10)0.1003 (15)0.0128 (9)0.0549 (12)0.0412 (11)
O40.0706 (12)0.0399 (10)0.0807 (13)0.0161 (9)0.0472 (11)0.0387 (9)
O1W0.0637 (12)0.0427 (9)0.0564 (11)0.0089 (8)0.0204 (9)0.0268 (8)
Geometric parameters (Å, º) top
Zn1—O1W2.135 (2)C8—O31.288 (3)
Zn1—O1Wi2.135 (2)C9—N31.326 (3)
Zn1—N3i2.1419 (18)C9—N41.334 (3)
Zn1—N32.1419 (18)C9—C101.445 (3)
Zn1—N2i2.1625 (19)C10—N21.321 (3)
Zn1—N22.1625 (19)C10—N11.341 (3)
C1—O21.231 (3)C11—C121.358 (4)
C1—O11.258 (3)C11—N21.368 (3)
C1—C21.528 (3)C11—H190.9300
C2—C31.395 (3)C12—N11.364 (3)
C2—C71.411 (3)C12—H200.9300
C3—C41.392 (3)C13—C141.351 (4)
C3—H30.9300C13—N41.361 (3)
C4—C51.390 (3)C13—H210.9300
C4—C4ii1.490 (4)C14—N31.370 (3)
C5—C61.376 (3)C14—H220.9300
C5—H50.9300N1—H1A0.8755
C6—C71.391 (3)N4—H4A0.9008
C6—H60.9300O3—H3A0.93 (3)
C7—C81.522 (3)O1W—H1W0.8119
C8—O41.217 (3)O1W—H2W0.7930
O1W—Zn1—O1Wi180.00 (10)O4—C8—C7119.0 (2)
O1W—Zn1—N3i88.19 (8)O3—C8—C7120.8 (2)
O1Wi—Zn1—N3i91.81 (8)N3—C9—N4111.41 (19)
O1W—Zn1—N391.81 (8)N3—C9—C10119.57 (19)
O1Wi—Zn1—N388.19 (8)N4—C9—C10129.0 (2)
N3i—Zn1—N3180.0N2—C10—N1111.27 (19)
O1W—Zn1—N2i87.51 (8)N2—C10—C9119.67 (19)
O1Wi—Zn1—N2i92.49 (8)N1—C10—C9129.1 (2)
N3i—Zn1—N2i79.56 (7)C12—C11—N2109.2 (2)
N3—Zn1—N2i100.44 (7)C12—C11—H19125.4
O1W—Zn1—N292.49 (8)N2—C11—H19125.4
O1Wi—Zn1—N287.51 (8)C11—C12—N1106.6 (2)
N3i—Zn1—N2100.44 (7)C11—C12—H20126.7
N3—Zn1—N279.56 (7)N1—C12—H20126.7
N2i—Zn1—N2180.0C14—C13—N4106.3 (2)
O2—C1—O1122.0 (2)C14—C13—H21126.8
O2—C1—C2117.98 (19)N4—C13—H21126.8
O1—C1—C2120.0 (2)C13—C14—N3109.8 (2)
C3—C2—C7118.34 (19)C13—C14—H22125.1
C3—C2—C1113.56 (18)N3—C14—H22125.1
C7—C2—C1128.06 (18)C10—N1—C12107.05 (19)
C4—C3—C2123.86 (19)C10—N1—H1A128.5
C4—C3—H3118.1C12—N1—H1A124.1
C2—C3—H3118.1C10—N2—C11105.86 (19)
C5—C4—C3116.66 (19)C10—N2—Zn1110.26 (14)
C5—C4—C4ii122.8 (2)C11—N2—Zn1143.84 (16)
C3—C4—C4ii120.6 (2)C9—N3—C14105.05 (18)
C6—C5—C4120.6 (2)C9—N3—Zn1110.75 (14)
C6—C5—H5119.7C14—N3—Zn1143.92 (16)
C4—C5—H5119.7C9—N4—C13107.4 (2)
C5—C6—C7123.1 (2)C9—N4—H4A126.2
C5—C6—H6118.5C13—N4—H4A126.4
C7—C6—H6118.5C8—O3—H3A113 (3)
C6—C7—C2117.43 (18)Zn1—O1W—H1W121.7
C6—C7—C8113.31 (18)Zn1—O1W—H2W121.9
C2—C7—C8129.25 (19)H1W—O1W—H2W111.7
O4—C8—O3120.1 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1iii0.881.942.802 (3)169
N4—H4A···O2iii0.901.892.791 (3)176
O1W—H1W···O4iv0.811.902.683 (2)162
O1W—H2W···O2ii0.791.982.751 (3)164
O3—H3A···O10.93 (3)1.52 (3)2.434 (3)165 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C6H6N4)2(H2O)2](C16H8O8)
Mr697.92
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2133 (16), 9.810 (2), 10.498 (2)
α, β, γ (°)63.72 (3), 68.00 (3), 83.85 (3)
V3)701.4 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.894, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
5074, 2674, 2579
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.00
No. of reflections2674
No. of parameters218
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O1W2.135 (2)Zn1—N22.1625 (19)
Zn1—N32.1419 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.881.942.802 (3)168.9
N4—H4A···O2i0.901.892.791 (3)176.4
O1W—H1W···O4ii0.811.902.683 (2)161.9
O1W—H2W···O2iii0.791.982.751 (3)163.5
O3—H3A···O10.93 (3)1.52 (3)2.434 (3)165 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Foundation of the Education Committee of Fujian Province (JA08103), and the Foundation of Daiichi Pharmaceutical (Beijing) Co, Ltd. (No. 06B004).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationJia, H.-P., Li, W., Ju, Z.-F. & Zhang, J. (2007). Inorg. Chem. 10, 265–268.  CrossRef CAS Google Scholar
First citationKortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J. 9, 2945–2952.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds