organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1,3-Benzo­thia­zol-2-yl)imino­meth­yl]phenol

aSchool of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266012, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
*Correspondence e-mail: chm_liusq@ujn.cn

(Received 4 February 2009; accepted 4 March 2009; online 11 March 2009)

The title compound, C14H10N2OS, is nearly planar, with a maximum deviation of 0.0698 (13) Å from the mean plane, and exists in an E configuration with respect to the C=N bond. The dihedral angle between the two benzene rings is 2.81 (9)°. There is an intra­molecular O—H⋯N hydrogen bond and inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For related structures of 2-amino­benzothia­zole derivatives and their Schiff bases, see: Büyükgüngör et al. (2004[Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414-o1416.]); Liang et al. (1999[Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393-396.]); Liu et al. (2009[Liu, S.-Q., Bi, C.-F. & Fan, Y.-H. (2009). Fine Chem. 26, 135-137.]). For the biological activity of the title compound and related structures, see: Yan et al. (1999[Yan, W., He, J. & Yu, Z. (1999). Fine Chem. 25, 631-635.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2OS

  • Mr = 254.30

  • Orthorhombic, P b c a

  • a = 12.150 (2) Å

  • b = 8.9578 (15) Å

  • c = 22.026 (4) Å

  • V = 2397.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.51 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 12166 measured reflections

  • 2353 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.06

  • 2353 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.88 2.6034 (19) 147
C7—H7⋯O1i 0.93 2.43 3.309 (2) 158
C2—H2⋯N1ii 0.93 2.68 3.593 (2) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A wide range of biological activities have been attributed to the title compounds and compound having similar structure (Yan et al., 1999). One kind of schiff base of 2-aminobenzothiazole was prepared by Büyükgüngör et al. (2004). The title compound has been prepared to utilize it as an intermediate ligand and for complexation with various metals (Liang et al., 1999; Liu et al., 2009).

In the molecule of the title compound (Fig. 1), the bond length of C8—N2 [1.379 (2) Å] is shorter than normal C—N (1.47 Å). The entire molecule is almost planar due to the C6—C7—N2—C8—N1—C9 π-π conjunction. The dihedral angle between the two benzene rings (C1—C6 and C9—C14) is 2.81 (9)°. The benzothiazol and the o-hydroxy benzenyl at the C=N double bond are in an E configuration due to the hydrogen bond between O—H···N.

In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures of 2-aminobenzothiazole derivatives and their Schiff bases, see: Büyükgüngör et al. (2004); Liang et al. (1999); Liu et al. (2009). For the biological activity of the title compound and related structures, see: Yan et al. (1999).

Experimental top

2-Aminobenzithiazole (0.01 mol) and salicylaldehyde (0.01 mol) were dissolved in 50 ml ethanol at 298 K, then the reaction temperature raised to 343 K. After 3 h of reaction, the reaction mixture was condensed to 20 ml and cooled down to 273 K to give a dark orange solid. The crude was purified by column chromatography, affording salmon pink crystals of the title compound (yield 91%; m.p. 417–418 K).

Refinement top

H atoms were positioned geometrically (O—H = 0.82 Å for OH, C—H = 0.93 Å for aromatic H and C—H = 0.93 Å for acyclic H) and were refined as riding, with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds were shown by dashed lines.
2-[(1,3-Benzothiazol-2-yl)iminomethyl]phenol top
Crystal data top
C14H10N2OSDx = 1.409 Mg m3
Mr = 254.30Melting point: 417 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3147 reflections
a = 12.150 (2) Åθ = 2.5–27.1°
b = 8.9578 (15) ŵ = 0.26 mm1
c = 22.026 (4) ÅT = 298 K
V = 2397.4 (7) Å3Rod, yellow
Z = 80.51 × 0.15 × 0.11 mm
F(000) = 1056
Data collection top
Bruker SMART APEX
diffractometer
1939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ϕ and ω scansh = 1414
12166 measured reflectionsk = 1110
2353 independent reflectionsl = 2718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.4758P]
where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H10N2OSV = 2397.4 (7) Å3
Mr = 254.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.150 (2) ŵ = 0.26 mm1
b = 8.9578 (15) ÅT = 298 K
c = 22.026 (4) Å0.51 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEX
diffractometer
1939 reflections with I > 2σ(I)
12166 measured reflectionsRint = 0.036
2353 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2353 reflectionsΔρmin = 0.24 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88027 (14)0.3483 (2)0.21383 (9)0.0409 (4)
C20.91856 (18)0.4419 (2)0.16848 (10)0.0541 (6)
H20.99370.44970.16110.065*
C30.8451 (2)0.5230 (3)0.13448 (10)0.0570 (6)
H30.87150.58580.10420.068*
C40.73328 (19)0.5138 (2)0.14422 (9)0.0530 (5)
H40.68470.56910.12060.064*
C50.69463 (16)0.4221 (2)0.18923 (9)0.0451 (5)
H50.61920.41590.19600.054*
C60.76636 (14)0.3374 (2)0.22515 (8)0.0370 (4)
C70.72317 (13)0.2428 (2)0.27182 (8)0.0381 (4)
H70.64740.23820.27730.046*
C80.74236 (14)0.0726 (2)0.35054 (8)0.0366 (4)
C90.74360 (15)0.0870 (2)0.42653 (8)0.0397 (4)
C100.78616 (17)0.1805 (2)0.47105 (9)0.0519 (5)
H100.86190.19120.47530.062*
C110.71662 (19)0.2563 (3)0.50844 (10)0.0574 (6)
H110.74520.31900.53820.069*
C120.60333 (19)0.2410 (3)0.50247 (11)0.0614 (6)
H120.55700.29350.52840.074*
C130.55866 (18)0.1495 (3)0.45897 (10)0.0589 (6)
H130.48280.13950.45510.071*
C140.62954 (15)0.0724 (2)0.42097 (9)0.0419 (4)
N10.80522 (12)0.00477 (18)0.38564 (7)0.0419 (4)
N20.78539 (11)0.16428 (17)0.30618 (7)0.0382 (4)
O10.95340 (10)0.26804 (18)0.24619 (7)0.0549 (4)
H10.92100.22140.27280.082*
S10.59914 (4)0.05133 (6)0.36285 (2)0.04566 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (9)0.0443 (11)0.0447 (10)0.0016 (8)0.0039 (8)0.0077 (8)
C20.0457 (11)0.0596 (14)0.0571 (13)0.0105 (10)0.0130 (10)0.0046 (10)
C30.0714 (16)0.0517 (13)0.0480 (12)0.0107 (12)0.0098 (11)0.0030 (10)
C40.0639 (14)0.0503 (12)0.0449 (12)0.0039 (11)0.0043 (10)0.0009 (9)
C50.0394 (10)0.0477 (12)0.0481 (11)0.0018 (9)0.0018 (8)0.0045 (9)
C60.0320 (9)0.0384 (10)0.0405 (10)0.0008 (7)0.0018 (7)0.0081 (8)
C70.0261 (8)0.0428 (10)0.0455 (10)0.0003 (8)0.0018 (7)0.0058 (8)
C80.0277 (9)0.0405 (10)0.0416 (10)0.0008 (7)0.0012 (7)0.0073 (8)
C90.0390 (10)0.0424 (11)0.0378 (10)0.0018 (8)0.0022 (8)0.0064 (8)
C100.0478 (11)0.0582 (13)0.0497 (12)0.0082 (10)0.0029 (9)0.0003 (10)
C110.0681 (14)0.0566 (14)0.0475 (12)0.0035 (11)0.0003 (10)0.0086 (10)
C120.0591 (14)0.0670 (15)0.0579 (14)0.0063 (12)0.0101 (10)0.0144 (12)
C130.0427 (11)0.0685 (15)0.0656 (14)0.0061 (10)0.0086 (10)0.0116 (12)
C140.0384 (9)0.0430 (11)0.0443 (11)0.0005 (8)0.0002 (8)0.0022 (8)
N10.0332 (8)0.0472 (9)0.0453 (9)0.0050 (7)0.0017 (7)0.0014 (8)
N20.0302 (7)0.0420 (9)0.0425 (8)0.0007 (6)0.0034 (6)0.0034 (7)
O10.0289 (6)0.0699 (10)0.0660 (10)0.0016 (7)0.0052 (6)0.0088 (8)
S10.0277 (3)0.0558 (4)0.0535 (3)0.0020 (2)0.00019 (19)0.0079 (2)
Geometric parameters (Å, º) top
C1—O11.347 (2)C8—N21.379 (2)
C1—C21.384 (3)C8—S11.7714 (18)
C1—C61.410 (2)C9—N11.384 (2)
C2—C31.373 (3)C9—C101.389 (3)
C2—H20.9300C9—C141.397 (3)
C3—C41.378 (3)C10—C111.362 (3)
C3—H30.9300C10—H100.9300
C4—C51.371 (3)C11—C121.390 (3)
C4—H40.9300C11—H110.9300
C5—C61.400 (3)C12—C131.373 (3)
C5—H50.9300C12—H120.9300
C6—C71.432 (3)C13—C141.385 (3)
C7—N21.280 (2)C13—H130.9300
C7—H70.9300C14—S11.733 (2)
C8—N11.289 (2)O1—H10.8200
O1—C1—C2118.89 (16)N2—C8—S1123.03 (13)
O1—C1—C6121.15 (17)N1—C9—C10125.37 (17)
C2—C1—C6119.96 (18)N1—C9—C14115.45 (16)
C3—C2—C1119.71 (19)C10—C9—C14119.17 (18)
C3—C2—H2120.1C11—C10—C9119.79 (19)
C1—C2—H2120.1C11—C10—H10120.1
C2—C3—C4121.6 (2)C9—C10—H10120.1
C2—C3—H3119.2C10—C11—C12120.5 (2)
C4—C3—H3119.2C10—C11—H11119.7
C5—C4—C3119.1 (2)C12—C11—H11119.7
C5—C4—H4120.4C13—C12—C11121.1 (2)
C3—C4—H4120.4C13—C12—H12119.4
C4—C5—C6121.34 (19)C11—C12—H12119.4
C4—C5—H5119.3C12—C13—C14118.3 (2)
C6—C5—H5119.3C12—C13—H13120.9
C5—C6—C1118.29 (17)C14—C13—H13120.9
C5—C6—C7119.87 (16)C13—C14—C9121.12 (18)
C1—C6—C7121.84 (17)C13—C14—S1129.24 (16)
N2—C7—C6122.23 (15)C9—C14—S1109.64 (14)
N2—C7—H7118.9C8—N1—C9110.86 (15)
C6—C7—H7118.9C7—N2—C8121.47 (15)
N1—C8—N2121.36 (16)C1—O1—H1109.5
N1—C8—S1115.61 (14)C14—S1—C888.44 (9)
O1—C1—C2—C3179.13 (19)C12—C13—C14—C90.1 (3)
C6—C1—C2—C30.4 (3)C12—C13—C14—S1179.36 (17)
C1—C2—C3—C40.1 (3)N1—C9—C14—C13179.63 (19)
C2—C3—C4—C50.5 (3)C10—C9—C14—C130.1 (3)
C3—C4—C5—C60.3 (3)N1—C9—C14—S10.8 (2)
C4—C5—C6—C10.2 (3)C10—C9—C14—S1179.44 (15)
C4—C5—C6—C7179.96 (18)N2—C8—N1—C9179.65 (15)
O1—C1—C6—C5178.96 (17)S1—C8—N1—C91.0 (2)
C2—C1—C6—C50.5 (3)C10—C9—N1—C8179.13 (18)
O1—C1—C6—C70.9 (3)C14—C9—N1—C81.2 (2)
C2—C1—C6—C7179.64 (18)C6—C7—N2—C8179.39 (16)
C5—C6—C7—N2179.38 (17)N1—C8—N2—C7179.05 (17)
C1—C6—C7—N20.8 (3)S1—C8—N2—C71.6 (2)
N1—C9—C10—C11179.61 (19)C13—C14—S1—C8179.7 (2)
C14—C9—C10—C110.1 (3)C9—C14—S1—C80.24 (14)
C9—C10—C11—C120.1 (3)N1—C8—S1—C140.43 (15)
C10—C11—C12—C130.0 (4)N2—C8—S1—C14179.80 (15)
C11—C12—C13—C140.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.882.6034 (19)147
C7—H7···O1i0.932.433.309 (2)158
C2—H2···N1ii0.932.683.593 (2)167
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10N2OS
Mr254.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.150 (2), 8.9578 (15), 22.026 (4)
V3)2397.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.51 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12166, 2353, 1939
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.06
No. of reflections2353
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.882.6034 (19)147
C7—H7···O1i0.932.433.309 (2)158
C2—H2···N1ii0.932.683.593 (2)167
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Guangyou Zhang for help with the purification of the title compound.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414–o1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393–396.  CAS Google Scholar
First citationLiu, S.-Q., Bi, C.-F. & Fan, Y.-H. (2009). Fine Chem. 26, 135–137.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, W., He, J. & Yu, Z. (1999). Fine Chem. 25, 631–635.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds