organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-3-mesityl-1-oxa­spiro­[4.4]non-3-en-2-one

aCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: chengjingli@zju.edu.cn

(Received 9 February 2009; accepted 9 March 2009; online 14 March 2009)

In the title compound, C17H20O3, the five-membered cyclo­pentyl ring displays an envelope conformation, with the atom at the flap position 0.538 (3) Å out of the mean plane formed by the other four atoms. The dihedral angle between the benzene and furan rings is 63.34 (15)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming a zigzag chain along [101].

Related literature

For related compounds, see: Fischer et al. (1995[Fischer, R., Santel, B. W. & Erdelen, C. (1995). German Patent No. 4 337 853.]); Bayer Aktiengesellschaft (1995[Bayer Aktiengesellschaft (1995). WO Patent No. 9 504 719A1.]). For a related structure, see: Yu et al. (2009[Yu, C.-M., Zhou, Y., Cheng, J.-L. & Zhao, J.-H. (2009). Acta Cryst. E65, o183.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20O3

  • Mr = 272.33

  • Monoclinic, P 21 /n

  • a = 8.8543 (4) Å

  • b = 17.9266 (7) Å

  • c = 9.4883 (4) Å

  • β = 97.809 (2)°

  • V = 1492.09 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.54 × 0.48 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.984

  • 14502 measured reflections

  • 3410 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.00

  • 3410 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.87 2.6267 (14) 154
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted 4-hydroxy-1-oxaspiro[4,4]non-3-en-2-one represent an important class of tetronic acids and part of them have high biological activity as herbicides and insecticides (Fischer et al., 1995). Bayer company has developed three tetronic acids pesticides-spirodiclofen, spiromesifen and spirotetramat (Bayer Aktiengesellschaft, 1995). In addition, the title compound 3-mesityl-4-hydroxy-1-oxaspiro[4,4]non-3-en-2-one is the key intermediate in preparing highly efficient acaricide- spiromesifen. As part of our continuing interest in the new acaricide design and synthesis, We have isolated the product, (I), of the cyclized reaction of 1-(2-mesityl-acetoxy)-cyclopentanecarboxylic acid methyl ester as colorless crystals suitable for X-ray analysis.

The molecular structure of (I) is shown in Fig. 1. The molecule contains one benzene ring and two five membered rings. The dihedral angle between benzene and furan rings is 63.28 (15)°, smaller than the angle between benzene and furan rings of the compound 3-Mesityl-2-oxo-1-oxaspiro[4,4]non-3-en-4-yl-2-(4-chlorophenyl) -3-methylbutyrate (Yu et al., 2009). The cyclopentyl ring displays an envelope conformation with C17 atom at the flap position 0.538 (3) Å out of the mean plane formed by the other four atoms. The title molecules are linked through an intermolecular hydrogen bond of O1—H1···O2. As expected, C2—C3 and C4—O2 are typically double bonds with bond distances of 1.344 (2) and 1.220 (2) Å. The bond distance of C3—C4 is 1.457 (2) Å, suggesting that carbonyl group on C4 has formed conjugate system with double bond on C3 and C2.

Related literature top

For related compounds, see: Fischer et al. (1995); Bayer Aktiengesellschaft (1995); Yu et al. (2009).

Experimental top

1-(2-Mesityl-acetoxy)-cyclopentanecarboxylic acid methyl ester (10 mmol, 3.04 g) was added to a solution of potassium t-butoxide (12 mmol, 1.34 g) in t-butylalcohol (35 ml) and the mixture was stirred at reflux for 5 h. Then water (70 ml) was added and the solution was acidified with hydrochloric (2M) to give a solid precipitate. The solid was filtrated and recrystallized with 95% ethanol to colourless blocks.

Refinement top

H atoms were included in calculated positions (C—H = 0.93–0.97 and O—H = 0.82 Å) and refined using a rinding model, with Uiso(H) = 1.2Ueq(C or O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing arrangement in the unit cell.
[Figure 3] Fig. 3. View showing the O—H···O hydrogen bonding (dashed lines). [Symmetry codes: (i) -1/2 + x, 1/2 - y, -1/2 + z; (ii) 1/2 + x, 1/2 - y, 1/2 + z.]
4-Hydroxy-3-mesityl-1-oxaspiro[4.4]non-3-en-2-one top
Crystal data top
C17H20O3F(000) = 584
Mr = 272.33Dx = 1.212 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 9815 reflections
a = 8.8543 (4) Åθ = 3.1–27.5°
b = 17.9266 (7) ŵ = 0.08 mm1
c = 9.4883 (4) ÅT = 296 K
β = 97.809 (2)°Chunk, colorless
V = 1492.09 (11) Å30.54 × 0.48 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3410 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2223
Tmin = 0.947, Tmax = 0.984l = 1211
14502 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.2966P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
3410 reflectionsΔρmax = 0.21 e Å3
186 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C17H20O3V = 1492.09 (11) Å3
Mr = 272.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8543 (4) ŵ = 0.08 mm1
b = 17.9266 (7) ÅT = 296 K
c = 9.4883 (4) Å0.54 × 0.48 × 0.20 mm
β = 97.809 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3410 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2344 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.984Rint = 0.026
14502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
3410 reflectionsΔρmin = 0.17 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58430 (13)0.34534 (6)0.74039 (12)0.0565 (3)
H10.66440.32240.76100.068*
O20.35651 (13)0.19282 (7)0.36494 (12)0.0566 (3)
O30.28216 (11)0.29401 (6)0.47485 (11)0.0509 (3)
C10.34616 (17)0.34474 (8)0.58738 (16)0.0479 (4)
C20.49897 (16)0.31085 (8)0.63500 (15)0.0441 (3)
C30.52342 (15)0.25023 (8)0.55790 (15)0.0423 (3)
C40.38583 (16)0.24044 (8)0.45643 (16)0.0449 (4)
C50.66240 (15)0.20313 (8)0.56780 (14)0.0418 (3)
C60.65908 (17)0.12818 (9)0.60806 (15)0.0466 (4)
C70.7938 (2)0.08727 (10)0.62374 (18)0.0577 (4)
H70.79100.03730.64960.069*
C80.93077 (19)0.11821 (12)0.60223 (19)0.0630 (5)
C90.93142 (18)0.19158 (12)0.55935 (19)0.0632 (5)
H91.02320.21290.54280.076*
C100.79980 (17)0.23510 (10)0.53979 (17)0.0516 (4)
C110.5131 (2)0.09125 (10)0.6355 (2)0.0669 (5)
H11A0.53480.04210.67290.080*
H11B0.44470.08790.54800.080*
H11C0.46650.12020.70290.080*
C121.0770 (2)0.07381 (16)0.6244 (3)0.0992 (9)
H12A1.12970.07950.54300.119*
H12B1.05390.02210.63650.119*
H12C1.14040.09160.70770.119*
C130.8078 (3)0.31327 (12)0.4869 (3)0.0788 (6)
H13A0.72320.32240.41440.095*
H13B0.90140.32020.44810.095*
H13C0.80390.34740.56420.095*
C140.2387 (2)0.35110 (11)0.7003 (2)0.0651 (5)
H14A0.16790.30950.69260.078*
H14B0.29640.35070.79480.078*
C150.1532 (3)0.42400 (14)0.6740 (3)0.0951 (8)
H15A0.04420.41570.66730.114*
H15B0.18360.45880.75090.114*
C160.1930 (3)0.45354 (13)0.5383 (3)0.0983 (9)
H16A0.19410.50760.53930.118*
H16B0.12010.43680.45900.118*
C170.3512 (2)0.42296 (10)0.5263 (2)0.0672 (5)
H17A0.36990.42150.42800.081*
H17B0.42970.45280.58110.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0467 (6)0.0659 (7)0.0516 (6)0.0019 (5)0.0130 (5)0.0115 (5)
O30.0375 (5)0.0604 (6)0.0503 (6)0.0066 (4)0.0107 (5)0.0036 (5)
O10.0467 (6)0.0621 (7)0.0544 (6)0.0071 (5)0.0158 (5)0.0121 (5)
C60.0434 (8)0.0533 (8)0.0421 (7)0.0022 (6)0.0023 (6)0.0025 (6)
C20.0375 (7)0.0511 (8)0.0404 (7)0.0005 (6)0.0062 (6)0.0018 (6)
C50.0337 (7)0.0544 (8)0.0350 (7)0.0002 (6)0.0033 (5)0.0035 (6)
C40.0362 (7)0.0538 (8)0.0420 (7)0.0003 (6)0.0040 (6)0.0018 (7)
C70.0587 (10)0.0606 (10)0.0515 (9)0.0148 (8)0.0014 (8)0.0052 (8)
C30.0331 (7)0.0508 (8)0.0403 (7)0.0003 (6)0.0045 (6)0.0010 (6)
C10.0415 (8)0.0530 (8)0.0450 (8)0.0063 (6)0.0086 (6)0.0003 (6)
C100.0393 (8)0.0672 (10)0.0471 (8)0.0077 (7)0.0016 (6)0.0061 (7)
C90.0325 (8)0.0966 (14)0.0598 (10)0.0071 (8)0.0035 (7)0.0207 (10)
C80.0434 (9)0.0874 (13)0.0544 (9)0.0161 (9)0.0069 (7)0.0207 (9)
C110.0600 (11)0.0624 (10)0.0800 (12)0.0036 (8)0.0157 (9)0.0087 (9)
C140.0505 (10)0.0856 (13)0.0572 (10)0.0117 (9)0.0003 (8)0.0070 (9)
C170.0730 (12)0.0551 (10)0.0672 (11)0.0017 (8)0.0126 (9)0.0091 (8)
C130.0677 (13)0.0812 (13)0.0881 (14)0.0219 (10)0.0133 (11)0.0100 (11)
C160.0885 (17)0.0668 (13)0.127 (2)0.0307 (12)0.0290 (16)0.0023 (14)
C120.0569 (12)0.129 (2)0.1046 (17)0.0382 (13)0.0141 (12)0.0354 (16)
C150.0583 (12)0.0889 (16)0.135 (2)0.0126 (11)0.0030 (13)0.0317 (16)
Geometric parameters (Å, º) top
O2—C41.2200 (18)C8—C121.510 (2)
O3—C41.3561 (18)C11—H11A0.9600
O3—C11.4574 (18)C11—H11B0.9600
O1—C21.3221 (17)C11—H11C0.9600
O1—H10.8200C14—C151.514 (3)
C6—C71.391 (2)C14—H14A0.9700
C6—C51.398 (2)C14—H14B0.9700
C6—C111.506 (2)C17—C161.523 (3)
C2—C31.344 (2)C17—H17A0.9700
C2—C11.4960 (19)C17—H17B0.9700
C5—C101.402 (2)C13—H13A0.9600
C5—C31.4847 (19)C13—H13B0.9600
C4—C31.4571 (19)C13—H13C0.9600
C7—C81.374 (3)C16—C151.479 (4)
C7—H70.9300C16—H16A0.9700
C1—C171.520 (2)C16—H16B0.9700
C1—C141.531 (3)C12—H12A0.9600
C10—C91.394 (2)C12—H12B0.9600
C10—C131.493 (3)C12—H12C0.9600
C9—C81.377 (3)C15—H15A0.9700
C9—H90.9300C15—H15B0.9700
C4—O3—C1109.49 (10)H11A—C11—H11C109.5
C2—O1—H1109.5H11B—C11—H11C109.5
C7—C6—C5119.10 (15)C15—C14—C1107.09 (18)
C7—C6—C11119.57 (15)C15—C14—H14A110.3
C5—C6—C11121.33 (14)C1—C14—H14A110.3
O1—C2—C3132.24 (13)C15—C14—H14B110.3
O1—C2—C1116.03 (13)C1—C14—H14B110.3
C3—C2—C1111.72 (12)H14A—C14—H14B108.6
C6—C5—C10119.70 (14)C1—C17—C16103.20 (18)
C6—C5—C3121.04 (13)C1—C17—H17A111.1
C10—C5—C3119.24 (14)C16—C17—H17A111.1
O2—C4—O3120.32 (12)C1—C17—H17B111.1
O2—C4—C3129.22 (14)C16—C17—H17B111.1
O3—C4—C3110.45 (13)H17A—C17—H17B109.1
C8—C7—C6122.20 (17)C10—C13—H13A109.5
C8—C7—H7118.9C10—C13—H13B109.5
C6—C7—H7118.9H13A—C13—H13B109.5
C2—C3—C4105.96 (13)C10—C13—H13C109.5
C2—C3—C5128.23 (12)H13A—C13—H13C109.5
C4—C3—C5125.79 (13)H13B—C13—H13C109.5
O3—C1—C2102.33 (11)C15—C16—C17105.47 (17)
O3—C1—C17108.96 (12)C15—C16—H16A110.6
C2—C1—C17114.67 (14)C17—C16—H16A110.6
O3—C1—C14110.02 (13)C15—C16—H16B110.6
C2—C1—C14116.21 (13)C17—C16—H16B110.6
C17—C1—C14104.56 (14)H16A—C16—H16B108.8
C9—C10—C5118.51 (16)C8—C12—H12A109.5
C9—C10—C13119.54 (16)C8—C12—H12B109.5
C5—C10—C13121.93 (16)H12A—C12—H12B109.5
C8—C9—C10122.48 (16)C8—C12—H12C109.5
C8—C9—H9118.8H12A—C12—H12C109.5
C10—C9—H9118.8H12B—C12—H12C109.5
C7—C8—C9117.95 (15)C16—C15—C14106.21 (19)
C7—C8—C12121.6 (2)C16—C15—H15A110.5
C9—C8—C12120.4 (2)C14—C15—H15A110.5
C6—C11—H11A109.5C16—C15—H15B110.5
C6—C11—H11B109.5C14—C15—H15B110.5
H11A—C11—H11B109.5H15A—C15—H15B108.7
C6—C11—H11C109.5
C7—C6—C5—C101.9 (2)C3—C2—C1—O31.92 (17)
C11—C6—C5—C10178.43 (15)O1—C2—C1—C1763.07 (19)
C7—C6—C5—C3176.40 (13)C3—C2—C1—C17115.89 (16)
C11—C6—C5—C33.2 (2)O1—C2—C1—C1459.24 (19)
C1—O3—C4—O2178.53 (14)C3—C2—C1—C14121.80 (16)
C1—O3—C4—C31.85 (17)C6—C5—C10—C92.9 (2)
C5—C6—C7—C80.6 (2)C3—C5—C10—C9175.51 (14)
C11—C6—C7—C8179.04 (16)C6—C5—C10—C13175.74 (16)
O1—C2—C3—C4179.64 (16)C3—C5—C10—C135.9 (2)
C1—C2—C3—C40.90 (18)C5—C10—C9—C81.3 (3)
O1—C2—C3—C51.5 (3)C13—C10—C9—C8177.29 (17)
C1—C2—C3—C5177.20 (14)C6—C7—C8—C92.1 (2)
O2—C4—C3—C2179.84 (16)C6—C7—C8—C12177.94 (17)
O3—C4—C3—C20.58 (18)C10—C9—C8—C71.1 (3)
O2—C4—C3—C51.7 (3)C10—C9—C8—C12178.93 (18)
O3—C4—C3—C5178.75 (13)O3—C1—C14—C15101.66 (17)
C6—C5—C3—C2116.31 (18)C2—C1—C14—C15142.70 (16)
C10—C5—C3—C262.0 (2)C17—C1—C14—C1515.21 (19)
C6—C5—C3—C465.9 (2)O3—C1—C17—C1685.95 (18)
C10—C5—C3—C4115.72 (17)C2—C1—C17—C16160.07 (16)
C4—O3—C1—C22.22 (16)C14—C1—C17—C1631.65 (18)
C4—O3—C1—C17119.58 (15)C1—C17—C16—C1537.3 (2)
C4—O3—C1—C14126.33 (14)C17—C16—C15—C1427.9 (2)
O1—C2—C1—O3179.12 (13)C1—C14—C15—C167.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.6267 (14)154
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H20O3
Mr272.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.8543 (4), 17.9266 (7), 9.4883 (4)
β (°) 97.809 (2)
V3)1492.09 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.48 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.947, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14502, 3410, 2344
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.00
No. of reflections3410
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO (Rigaku, 1998, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.872.6267 (14)154
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China, for financial support (2008 C21029) and also thank Professor Jian-Ming Gu for his help with the crystal data analysis.

References

First citationBayer Aktiengesellschaft (1995). WO Patent No. 9 504 719A1.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFischer, R., Santel, B. W. & Erdelen, C. (1995). German Patent No. 4 337 853.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, C.-M., Zhou, Y., Cheng, J.-L. & Zhao, J.-H. (2009). Acta Cryst. E65, o183.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds