organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o789-o790

9-[(2,6-Di­meth­oxy­phen­­oxy)carbon­yl]-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 11 February 2009; accepted 2 March 2009; online 19 March 2009)

In the crystal structure of the title compound, C23H20NO4+·CF3SO3, the cations are linked through C—H⋯O, C—H⋯π and ππ inter­actions [centroid-centroid distances = 3.641 (2) and 3.885 (2) Å]. The cation and the anion are held together by C—H⋯O and S—O⋯π inter­actions. The acridine ring system and the benzene ring in the cation are oriented at a dihedral angle of 8.7 (1)°. The carb­oxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton.

Related literature

For general background, see: Adamczyk et al. (2004[Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett. 14, 2313-2317.]); Becker et al. (1999[Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601-5611.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2008[Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372-o373.]). For mol­ecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Steiner (1999[Steiner, T. (1999). Chem. Commun. pp. 313-314.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20NO4+·CF3SO3

  • Mr = 523.48

  • Monoclinic, P 21 /c

  • a = 11.6803 (4) Å

  • b = 14.7434 (5) Å

  • c = 13.6286 (5) Å

  • β = 93.462 (4)°

  • V = 2342.66 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.55 × 0.30 × 0.02 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.911, Tmax = 0.995

  • 20680 measured reflections

  • 4160 independent reflections

  • 2274 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 0.87

  • 4160 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O30i 0.93 2.57 3.449 (3) 158
C4—H4⋯O31i 0.93 2.58 3.352 (3) 141
C7—H7⋯O32ii 0.93 2.54 3.427 (3) 159
C27—H27C⋯O17iii 0.96 2.46 3.371 (3) 159
C25—H25CCg4iv 0.96 2.98 3.845 (3) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1. Cg4 is the centroid of the C18–C23 ring.

Table 2
S—O⋯π Interactions (Å,°)

X I J IJ XJ XIJ
S29 O32 Cg1v 3.178 (2) 3.757 (2) 103
Symmetry codes: (v) –x+1, –y+1, –z+1. Cg1 is the centroid of the C9/N10/C11–C14 ring.

Table 3
ππ Interactions (Å,°)

I J CgICgJ Dihedral angle CgIPerp CgJPerp CgIOffset CgJOffset
1 4ii 3.641 (2) 5.31 (10) 3.416 (2) 3.492 (2) 0.767 (2) 1.031 (2)
2 4ii 3.885 (2) 6.74 (11) 3.666 (2) 3.491 (2) 1.286 (2) 1.705 (2)
Symmetry code: (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Notes: Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl 10-alkylacridinium-9-carboxylates have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Becker et al., 1999; Adamczyk et al., 2004). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer & Jacquemijns, 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the convertion of the rest of molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). Continuing our investigations onto the above mentioned effect, we synthesized the compound containing two methoxy groups in the phenyl fragment. Here, we present its structure. Methoxy groups, which possess electron-attractive features, may influence the stability and chemiluminogenic ability of the compound investigated.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2008). With respective average deviations from planarity of 0.037 (3) Å and 0.010 (3) Å, the acridine and benzene ring systems in the cation are oriented at 8.7 (1)°. The carboxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are either parallel or inclined at an angle of 10.9 (1)° in the lattice.

In the crystal structure, the cations are linked through C—H···O (Table 1, Fig. 2), C—H···π (Table 1, Fig. 2) and ππ (Table 3, Fig. 2) interactions, and the cations and anions by C—H···O (Table 1, Fig. 2) and S—O···π (Table 2, Fig. 2) interactions. The C—H···O (Steiner, 1999; Bianchi et al., 2004) interactions are of the hydrogen-bond type. The C—H···π (Takahashi et al., 2001) and S—O···π (Dorn et al., 2005) interactions should be of an attractive nature, like the ππ contacts (Hunter et al., 2001). The crystal structure is stabilized by a network of the aforementioned short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Rak et al. (1999); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2008). For molecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Sato (1996). Cg4 is the centroid of the C18–C23 ring.

Experimental top

2,6-Dimethoxyphenylacridine-9-carboxylate was prepared by heating anhydrous acridine-9-carboxylic acid with thionyl chloride, followed by esterification of the resulting acid chloride with an equimolar quantity of 2,6-dimethoxyphenol (Sato, 1996). The reaction was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine (1.5 molar excess) and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 - 25 h). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2,6-dimethoxyphenylacridine-9-carboxylate thus obtained was subsequently dissolved in anhydrous dichloromethane and treated with a fivefold molar excess of methyl triluoromethanesulfonate dissolved in the same solvent (under an Ar atmosphere at room temperature for 4 h). The crude salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield 42%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 243–245 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure, the C—H···O interactions are represented by dashed lines, the C—H···π, S—O···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) x, -y + 1/2, z - 1/2; (iii) x, -y + 1/2, z + 1/2; (iv) -x + 2, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1.]
9-[(2,6-Dimethoxyphenoxy)carbonyl]-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C23H20NO4+·CF3SO3F(000) = 1080
Mr = 523.48Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 6747 reflections
a = 11.6803 (4) Åθ = 3.1–29.2°
b = 14.7434 (5) ŵ = 0.21 mm1
c = 13.6286 (5) ÅT = 295 K
β = 93.462 (4)°Plate, yellow
V = 2342.66 (14) Å30.55 × 0.30 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
4160 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1717
Tmin = 0.911, Tmax = 0.995l = 1516
20680 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0672P)2]
where P = (Fo2 + 2Fc2)/3
4160 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C23H20NO4+·CF3SO3V = 2342.66 (14) Å3
Mr = 523.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6803 (4) ŵ = 0.21 mm1
b = 14.7434 (5) ÅT = 295 K
c = 13.6286 (5) Å0.55 × 0.30 × 0.02 mm
β = 93.462 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
4160 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2274 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.995Rint = 0.045
20680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.87Δρmax = 0.24 e Å3
4160 reflectionsΔρmin = 0.29 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7814 (2)0.40388 (17)0.39746 (18)0.0638 (6)
H10.82560.37370.44620.077*
C20.7685 (2)0.49461 (18)0.4029 (2)0.0758 (8)
H20.80310.52650.45560.091*
C30.7034 (2)0.54073 (18)0.3296 (2)0.0732 (8)
H30.69530.60330.33410.088*
C40.6517 (2)0.49643 (17)0.2521 (2)0.0651 (7)
H40.60960.52890.20380.078*
C50.5619 (2)0.2128 (2)0.08150 (18)0.0665 (7)
H50.52160.24370.03100.080*
C60.5684 (2)0.1217 (2)0.0792 (2)0.0759 (8)
H60.53220.09080.02650.091*
C70.6277 (2)0.07213 (19)0.1532 (2)0.0748 (7)
H70.62840.00910.15050.090*
C80.6843 (2)0.11584 (17)0.22920 (18)0.0622 (6)
H80.72550.08280.27760.075*
C90.73852 (17)0.26032 (15)0.31071 (15)0.0471 (6)
N100.61009 (14)0.35392 (13)0.16713 (13)0.0508 (5)
C110.72823 (17)0.35398 (15)0.31827 (15)0.0497 (6)
C120.66127 (18)0.40128 (15)0.24392 (16)0.0503 (6)
C130.68078 (18)0.21248 (15)0.23483 (16)0.0495 (6)
C140.61625 (18)0.26140 (16)0.16052 (16)0.0514 (6)
C150.8199 (2)0.21059 (14)0.38169 (16)0.0523 (6)
O160.77183 (12)0.18961 (10)0.46502 (11)0.0556 (4)
O170.91548 (15)0.19252 (14)0.36460 (13)0.0862 (6)
C180.84322 (18)0.14411 (16)0.53585 (15)0.0512 (6)
C190.84232 (19)0.05032 (16)0.53766 (17)0.0548 (6)
C200.9070 (2)0.00594 (18)0.61157 (19)0.0657 (7)
H200.90730.05700.61510.079*
C210.9708 (2)0.0567 (2)0.67943 (19)0.0742 (8)
H211.01340.02700.72960.089*
C220.9739 (2)0.1498 (2)0.67584 (17)0.0700 (7)
H221.01850.18230.72240.084*
C230.9101 (2)0.19452 (17)0.60234 (16)0.0569 (6)
O240.77711 (14)0.01014 (11)0.46366 (12)0.0674 (5)
C250.7774 (2)0.08702 (17)0.4597 (2)0.0771 (8)
H25A0.73870.10680.39930.116*
H25B0.73860.11080.51430.116*
H25C0.85510.10860.46290.116*
O260.90647 (16)0.28607 (12)0.58923 (12)0.0754 (5)
C270.9977 (3)0.3383 (2)0.6341 (2)0.0978 (10)
H27A0.99180.39980.61110.147*
H27B1.06980.31320.61720.147*
H27C0.99320.33720.70420.147*
C280.5417 (2)0.40504 (19)0.09069 (19)0.0798 (8)
H28A0.59040.44720.05930.120*
H28B0.48160.43760.12050.120*
H28C0.50860.36350.04260.120*
S290.62429 (6)0.72700 (4)0.67537 (5)0.0605 (2)
O300.6575 (2)0.73286 (15)0.77722 (13)0.1141 (8)
O310.59056 (15)0.81084 (11)0.62945 (13)0.0719 (5)
O320.55268 (15)0.65261 (13)0.64848 (15)0.0913 (6)
C330.7559 (2)0.70003 (18)0.6202 (2)0.0687 (7)
F340.79921 (14)0.62064 (11)0.65070 (14)0.1050 (6)
F350.83549 (13)0.76166 (12)0.64108 (16)0.1158 (6)
F360.74067 (16)0.69624 (13)0.52297 (12)0.1107 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0710 (16)0.0497 (17)0.0707 (15)0.0017 (13)0.0038 (13)0.0012 (13)
C20.095 (2)0.0490 (18)0.0841 (19)0.0063 (15)0.0125 (16)0.0089 (14)
C30.0845 (19)0.0378 (15)0.099 (2)0.0033 (14)0.0219 (17)0.0021 (16)
C40.0616 (16)0.0456 (17)0.0894 (19)0.0057 (12)0.0156 (14)0.0186 (14)
C50.0560 (15)0.071 (2)0.0721 (17)0.0045 (14)0.0009 (12)0.0024 (15)
C60.0752 (18)0.065 (2)0.0870 (19)0.0106 (15)0.0002 (15)0.0110 (16)
C70.0789 (18)0.0448 (16)0.101 (2)0.0049 (14)0.0100 (16)0.0090 (16)
C80.0645 (15)0.0417 (16)0.0806 (17)0.0021 (12)0.0055 (13)0.0037 (13)
C90.0448 (12)0.0396 (14)0.0578 (13)0.0018 (10)0.0112 (11)0.0103 (11)
N100.0406 (10)0.0473 (13)0.0649 (12)0.0041 (9)0.0070 (9)0.0127 (10)
C110.0483 (13)0.0400 (14)0.0616 (14)0.0005 (11)0.0109 (11)0.0071 (12)
C120.0464 (13)0.0385 (15)0.0675 (15)0.0019 (11)0.0170 (12)0.0087 (12)
C130.0456 (12)0.0412 (15)0.0628 (14)0.0006 (11)0.0114 (11)0.0057 (11)
C140.0410 (12)0.0483 (15)0.0658 (15)0.0006 (11)0.0104 (11)0.0082 (12)
C150.0512 (15)0.0434 (15)0.0634 (15)0.0005 (11)0.0114 (12)0.0072 (11)
O160.0543 (9)0.0517 (10)0.0617 (9)0.0094 (7)0.0104 (8)0.0111 (8)
O170.0573 (11)0.1193 (17)0.0841 (12)0.0260 (10)0.0210 (9)0.0410 (11)
C180.0500 (13)0.0538 (16)0.0505 (13)0.0100 (12)0.0085 (11)0.0076 (12)
C190.0551 (14)0.0506 (16)0.0596 (15)0.0053 (12)0.0115 (12)0.0081 (13)
C200.0700 (16)0.0562 (17)0.0721 (17)0.0092 (14)0.0144 (14)0.0178 (14)
C210.0784 (19)0.081 (2)0.0628 (16)0.0142 (16)0.0023 (14)0.0194 (16)
C220.0726 (17)0.081 (2)0.0564 (15)0.0022 (15)0.0027 (13)0.0005 (14)
C230.0622 (15)0.0554 (17)0.0542 (14)0.0075 (13)0.0131 (13)0.0059 (13)
O240.0732 (11)0.0490 (11)0.0794 (11)0.0003 (9)0.0007 (9)0.0070 (9)
C250.0817 (19)0.0502 (18)0.1008 (19)0.0032 (14)0.0178 (15)0.0019 (15)
O260.0934 (13)0.0544 (12)0.0776 (11)0.0019 (10)0.0010 (10)0.0035 (9)
C270.126 (3)0.083 (2)0.0849 (19)0.028 (2)0.0082 (18)0.0061 (17)
C280.0725 (18)0.074 (2)0.0911 (18)0.0139 (15)0.0125 (14)0.0230 (16)
S290.0693 (4)0.0491 (4)0.0639 (4)0.0018 (3)0.0105 (3)0.0018 (3)
O300.183 (2)0.1048 (17)0.0545 (11)0.0155 (16)0.0050 (12)0.0030 (11)
O310.0811 (12)0.0492 (11)0.0853 (11)0.0124 (9)0.0036 (9)0.0049 (9)
O320.0713 (12)0.0602 (13)0.1427 (16)0.0205 (10)0.0087 (11)0.0027 (12)
C330.0625 (17)0.0533 (17)0.089 (2)0.0042 (14)0.0076 (14)0.0083 (14)
F340.0808 (11)0.0678 (11)0.1654 (16)0.0192 (9)0.0016 (10)0.0175 (11)
F350.0617 (10)0.0977 (13)0.1853 (18)0.0272 (10)0.0152 (10)0.0345 (12)
F360.1302 (15)0.1217 (16)0.0842 (12)0.0248 (11)0.0384 (11)0.0103 (10)
Geometric parameters (Å, º) top
C1—C21.349 (3)C18—C231.377 (3)
C1—C111.418 (3)C18—C191.383 (3)
C1—H10.9300C19—O241.362 (3)
C2—C31.396 (4)C19—C201.387 (3)
C2—H20.9300C20—C211.374 (3)
C3—C41.353 (3)C20—H200.9300
C3—H30.9300C21—C221.374 (4)
C4—C121.412 (3)C21—H210.9300
C4—H40.9300C22—C231.380 (3)
C5—C61.345 (4)C22—H220.9300
C5—C141.412 (3)C23—O261.362 (3)
C5—H50.9300O24—C251.433 (3)
C6—C71.396 (4)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C7—C81.357 (3)C25—H25C0.9600
C7—H70.9300O26—C271.423 (3)
C8—C131.428 (3)C27—H27A0.9600
C8—H80.9300C27—H27B0.9600
C9—C111.390 (3)C27—H27C0.9600
C9—C131.392 (3)C28—H28A0.9600
C9—C151.506 (3)C28—H28B0.9600
N10—C121.366 (3)C28—H28C0.9600
N10—C141.369 (3)S29—O321.4142 (19)
N10—C281.480 (3)S29—O301.421 (2)
C11—C121.424 (3)S29—O311.4300 (17)
C13—C141.422 (3)S29—C331.796 (3)
C15—O171.184 (2)C33—F351.319 (3)
C15—O161.334 (2)C33—F361.327 (3)
O16—C181.407 (2)C33—F341.332 (3)
C2—C1—C11120.8 (2)C19—C18—O16118.9 (2)
C2—C1—H1119.6O24—C19—C18115.2 (2)
C11—C1—H1119.6O24—C19—C20126.1 (2)
C1—C2—C3120.1 (3)C18—C19—C20118.7 (2)
C1—C2—H2120.0C21—C20—C19118.8 (2)
C3—C2—H2120.0C21—C20—H20120.6
C4—C3—C2121.5 (2)C19—C20—H20120.6
C4—C3—H3119.3C20—C21—C22122.3 (2)
C2—C3—H3119.3C20—C21—H21118.8
C3—C4—C12120.5 (2)C22—C21—H21118.8
C3—C4—H4119.7C21—C22—C23119.3 (3)
C12—C4—H4119.7C21—C22—H22120.4
C6—C5—C14120.1 (2)C23—C22—H22120.4
C6—C5—H5119.9O26—C23—C18115.9 (2)
C14—C5—H5119.9O26—C23—C22125.5 (2)
C5—C6—C7122.1 (3)C18—C23—C22118.7 (2)
C5—C6—H6118.9C19—O24—C25117.39 (19)
C7—C6—H6118.9O24—C25—H25A109.5
C8—C7—C6120.0 (2)O24—C25—H25B109.5
C8—C7—H7120.0H25A—C25—H25B109.5
C6—C7—H7120.0O24—C25—H25C109.5
C7—C8—C13120.0 (2)H25A—C25—H25C109.5
C7—C8—H8120.0H25B—C25—H25C109.5
C13—C8—H8120.0C23—O26—C27117.6 (2)
C11—C9—C13121.2 (2)O26—C27—H27A109.5
C11—C9—C15119.3 (2)O26—C27—H27B109.5
C13—C9—C15119.3 (2)H27A—C27—H27B109.5
C12—N10—C14122.52 (18)O26—C27—H27C109.5
C12—N10—C28118.1 (2)H27A—C27—H27C109.5
C14—N10—C28119.28 (19)H27B—C27—H27C109.5
C9—C11—C1122.4 (2)N10—C28—H28A109.5
C9—C11—C12118.7 (2)N10—C28—H28B109.5
C1—C11—C12118.9 (2)H28A—C28—H28B109.5
N10—C12—C4122.4 (2)N10—C28—H28C109.5
N10—C12—C11119.4 (2)H28A—C28—H28C109.5
C4—C12—C11118.2 (2)H28B—C28—H28C109.5
C9—C13—C14119.0 (2)O32—S29—O30115.00 (13)
C9—C13—C8122.1 (2)O32—S29—O31114.45 (12)
C14—C13—C8118.9 (2)O30—S29—O31115.25 (12)
N10—C14—C5122.2 (2)O32—S29—C33103.15 (12)
N10—C14—C13119.1 (2)O30—S29—C33103.43 (14)
C5—C14—C13118.7 (2)O31—S29—C33103.20 (11)
O17—C15—O16124.5 (2)F35—C33—F36107.1 (2)
O17—C15—C9123.3 (2)F35—C33—F34106.8 (2)
O16—C15—C9112.20 (19)F36—C33—F34107.5 (2)
C15—O16—C18115.60 (16)F35—C33—S29111.5 (2)
C23—C18—C19122.2 (2)F36—C33—S29111.15 (18)
C23—C18—O16118.9 (2)F34—C33—S29112.49 (19)
C11—C1—C2—C30.7 (4)C8—C13—C14—C52.7 (3)
C1—C2—C3—C40.2 (4)C11—C9—C15—O1794.4 (3)
C2—C3—C4—C120.8 (4)C13—C9—C15—O1781.4 (3)
C14—C5—C6—C70.1 (4)C11—C9—C15—O1685.7 (2)
C5—C6—C7—C82.1 (4)C13—C9—C15—O1698.5 (2)
C6—C7—C8—C131.7 (4)O17—C15—O16—C181.0 (3)
C13—C9—C11—C1176.74 (19)C9—C15—O16—C18179.09 (18)
C15—C9—C11—C17.6 (3)C15—O16—C18—C2388.2 (2)
C13—C9—C11—C122.9 (3)C15—O16—C18—C1993.1 (2)
C15—C9—C11—C12172.79 (19)C23—C18—C19—O24176.27 (18)
C2—C1—C11—C9179.3 (2)O16—C18—C19—O245.0 (3)
C2—C1—C11—C120.3 (3)C23—C18—C19—C202.9 (3)
C14—N10—C12—C4177.94 (19)O16—C18—C19—C20175.80 (18)
C28—N10—C12—C40.5 (3)O24—C19—C20—C21178.2 (2)
C14—N10—C12—C112.9 (3)C18—C19—C20—C210.9 (3)
C28—N10—C12—C11179.61 (19)C19—C20—C21—C220.9 (4)
C3—C4—C12—N10179.7 (2)C20—C21—C22—C230.7 (4)
C3—C4—C12—C111.1 (3)C19—C18—C23—O26177.12 (18)
C9—C11—C12—N100.6 (3)O16—C18—C23—O264.2 (3)
C1—C11—C12—N10179.75 (18)C19—C18—C23—C223.1 (3)
C9—C11—C12—C4179.77 (18)O16—C18—C23—C22175.59 (18)
C1—C11—C12—C40.6 (3)C21—C22—C23—O26179.0 (2)
C11—C9—C13—C144.1 (3)C21—C22—C23—C181.3 (3)
C15—C9—C13—C14171.59 (19)C18—C19—O24—C25177.29 (18)
C11—C9—C13—C8175.94 (19)C20—C19—O24—C251.8 (3)
C15—C9—C13—C88.4 (3)C18—C23—O26—C27160.7 (2)
C7—C8—C13—C9179.3 (2)C22—C23—O26—C2719.5 (3)
C7—C8—C13—C140.7 (3)O32—S29—C33—F35177.69 (18)
C12—N10—C14—C5179.21 (18)O30—S29—C33—F3557.6 (2)
C28—N10—C14—C51.8 (3)O31—S29—C33—F3562.9 (2)
C12—N10—C14—C131.7 (3)O32—S29—C33—F3662.8 (2)
C28—N10—C14—C13179.15 (19)O30—S29—C33—F36177.05 (19)
C6—C5—C14—N10178.6 (2)O31—S29—C33—F3656.6 (2)
C6—C5—C14—C132.3 (3)O32—S29—C33—F3457.7 (2)
C9—C13—C14—N101.8 (3)O30—S29—C33—F3462.4 (2)
C8—C13—C14—N10178.23 (18)O31—S29—C33—F34177.18 (18)
C9—C13—C14—C5177.31 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30i0.932.573.449 (3)158
C4—H4···O31i0.932.583.352 (3)141
C7—H7···O32ii0.932.543.427 (3)159
C27—H27C···O17iii0.962.463.371 (3)159
C25—H25C···Cg4iv0.962.983.845 (3)150
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H20NO4+·CF3SO3
Mr523.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.6803 (4), 14.7434 (5), 13.6286 (5)
β (°) 93.462 (4)
V3)2342.66 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.55 × 0.30 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.911, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
20680, 4160, 2274
Rint0.045
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 0.87
No. of reflections4160
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30i0.932.573.449 (3)158
C4—H4···O31i0.932.583.352 (3)141
C7—H7···O32ii0.932.543.427 (3)159
C27—H27C···O17iii0.962.463.371 (3)159
C25—H25C···Cg4iv0.962.983.845 (3)150
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y, z+1.
S–O···π Interactions (Å,°) top
XIJI···JX···JX—I···J
S29O31Cg3v3.968 (2)4.111 (2)85
S29O32Cg1v3.178 (2)3.757 (2)103
S29O32Cg2v3.512 (2)4.741 (2)145
Symmetry codes: (v) –x+1, –y+1, –z+1.

Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively.
ππ Interactions (Å,°) top
IJCgI···CgJDihedral angleCgIPerpCgJPerpCgIOffsetCgJOffset
14ii3.641 (2)5.31 (10)3.416 (2)3.492 (2)0.767 (2)1.031 (2)
24ii3.885 (2)6.74 (11)3.666 (2)3.491 (2)1.286 (2)1.705 (2)
Symmetry code: (ii) x, –y+1/2, z–1/2.

Notes: Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

References

First citationAdamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett. 14, 2313–2317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBecker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611.  Web of Science CrossRef Google Scholar
First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1999). Chem. Commun. pp. 313–314.  Web of Science CrossRef Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o789-o790
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds