organic compounds
9-[(2,6-Dimethoxyphenoxy)carbonyl]-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 23H20NO4+·CF3SO3−, the cations are linked through C—H⋯O, C—H⋯π and π–π interactions [centroid-centroid distances = 3.641 (2) and 3.885 (2) Å]. The cation and the anion are held together by C—H⋯O and S—O⋯π interactions. The acridine ring system and the benzene ring in the cation are oriented at a dihedral angle of 8.7 (1)°. The carboxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton.
of the title compound, CRelated literature
For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Rak et al. (1999); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2008). For molecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Sato (1996).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809007570/is2390sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007570/is2390Isup2.hkl
2,6-Dimethoxyphenylacridine-9-carboxylate was prepared by heating anhydrous acridine-9-carboxylic acid with thionyl chloride, followed by esterification of the resulting acid chloride with an equimolar quantity of 2,6-dimethoxyphenol (Sato, 1996). The reaction was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine (1.5 molar excess) and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 - 25 h). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2,6-dimethoxyphenylacridine-9-carboxylate thus obtained was subsequently dissolved in anhydrous dichloromethane and treated with a fivefold molar excess of methyl triluoromethanesulfonate dissolved in the same solvent (under an Ar atmosphere at room temperature for 4 h). The crude salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield 42%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 243–245 K).
H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure, the C—H···O interactions are represented by dashed lines, the C—H···π, S—O···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) x, -y + 1/2, z - 1/2; (iii) x, -y + 1/2, z + 1/2; (iv) -x + 2, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1.] |
C23H20NO4+·CF3SO3− | F(000) = 1080 |
Mr = 523.48 | Dx = 1.484 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2ybc | Cell parameters from 6747 reflections |
a = 11.6803 (4) Å | θ = 3.1–29.2° |
b = 14.7434 (5) Å | µ = 0.21 mm−1 |
c = 13.6286 (5) Å | T = 295 K |
β = 93.462 (4)° | Plate, yellow |
V = 2342.66 (14) Å3 | 0.55 × 0.30 × 0.02 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 4160 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 2274 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.1° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −17→17 |
Tmin = 0.911, Tmax = 0.995 | l = −15→16 |
20680 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 0.87 | w = 1/[σ2(Fo2) + (0.0672P)2] where P = (Fo2 + 2Fc2)/3 |
4160 reflections | (Δ/σ)max = 0.001 |
328 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C23H20NO4+·CF3SO3− | V = 2342.66 (14) Å3 |
Mr = 523.48 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.6803 (4) Å | µ = 0.21 mm−1 |
b = 14.7434 (5) Å | T = 295 K |
c = 13.6286 (5) Å | 0.55 × 0.30 × 0.02 mm |
β = 93.462 (4)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 4160 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2274 reflections with I > 2σ(I) |
Tmin = 0.911, Tmax = 0.995 | Rint = 0.045 |
20680 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 0.87 | Δρmax = 0.24 e Å−3 |
4160 reflections | Δρmin = −0.29 e Å−3 |
328 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7814 (2) | 0.40388 (17) | 0.39746 (18) | 0.0638 (6) | |
H1 | 0.8256 | 0.3737 | 0.4462 | 0.077* | |
C2 | 0.7685 (2) | 0.49461 (18) | 0.4029 (2) | 0.0758 (8) | |
H2 | 0.8031 | 0.5265 | 0.4556 | 0.091* | |
C3 | 0.7034 (2) | 0.54073 (18) | 0.3296 (2) | 0.0732 (8) | |
H3 | 0.6953 | 0.6033 | 0.3341 | 0.088* | |
C4 | 0.6517 (2) | 0.49643 (17) | 0.2521 (2) | 0.0651 (7) | |
H4 | 0.6096 | 0.5289 | 0.2038 | 0.078* | |
C5 | 0.5619 (2) | 0.2128 (2) | 0.08150 (18) | 0.0665 (7) | |
H5 | 0.5216 | 0.2437 | 0.0310 | 0.080* | |
C6 | 0.5684 (2) | 0.1217 (2) | 0.0792 (2) | 0.0759 (8) | |
H6 | 0.5322 | 0.0908 | 0.0265 | 0.091* | |
C7 | 0.6277 (2) | 0.07213 (19) | 0.1532 (2) | 0.0748 (7) | |
H7 | 0.6284 | 0.0091 | 0.1505 | 0.090* | |
C8 | 0.6843 (2) | 0.11584 (17) | 0.22920 (18) | 0.0622 (6) | |
H8 | 0.7255 | 0.0828 | 0.2776 | 0.075* | |
C9 | 0.73852 (17) | 0.26032 (15) | 0.31071 (15) | 0.0471 (6) | |
N10 | 0.61009 (14) | 0.35392 (13) | 0.16713 (13) | 0.0508 (5) | |
C11 | 0.72823 (17) | 0.35398 (15) | 0.31827 (15) | 0.0497 (6) | |
C12 | 0.66127 (18) | 0.40128 (15) | 0.24392 (16) | 0.0503 (6) | |
C13 | 0.68078 (18) | 0.21248 (15) | 0.23483 (16) | 0.0495 (6) | |
C14 | 0.61625 (18) | 0.26140 (16) | 0.16052 (16) | 0.0514 (6) | |
C15 | 0.8199 (2) | 0.21059 (14) | 0.38169 (16) | 0.0523 (6) | |
O16 | 0.77183 (12) | 0.18961 (10) | 0.46502 (11) | 0.0556 (4) | |
O17 | 0.91548 (15) | 0.19252 (14) | 0.36460 (13) | 0.0862 (6) | |
C18 | 0.84322 (18) | 0.14411 (16) | 0.53585 (15) | 0.0512 (6) | |
C19 | 0.84232 (19) | 0.05032 (16) | 0.53766 (17) | 0.0548 (6) | |
C20 | 0.9070 (2) | 0.00594 (18) | 0.61157 (19) | 0.0657 (7) | |
H20 | 0.9073 | −0.0570 | 0.6151 | 0.079* | |
C21 | 0.9708 (2) | 0.0567 (2) | 0.67943 (19) | 0.0742 (8) | |
H21 | 1.0134 | 0.0270 | 0.7296 | 0.089* | |
C22 | 0.9739 (2) | 0.1498 (2) | 0.67584 (17) | 0.0700 (7) | |
H22 | 1.0185 | 0.1823 | 0.7224 | 0.084* | |
C23 | 0.9101 (2) | 0.19452 (17) | 0.60234 (16) | 0.0569 (6) | |
O24 | 0.77711 (14) | 0.01014 (11) | 0.46366 (12) | 0.0674 (5) | |
C25 | 0.7774 (2) | −0.08702 (17) | 0.4597 (2) | 0.0771 (8) | |
H25A | 0.7387 | −0.1068 | 0.3993 | 0.116* | |
H25B | 0.7386 | −0.1108 | 0.5143 | 0.116* | |
H25C | 0.8551 | −0.1086 | 0.4629 | 0.116* | |
O26 | 0.90647 (16) | 0.28607 (12) | 0.58923 (12) | 0.0754 (5) | |
C27 | 0.9977 (3) | 0.3383 (2) | 0.6341 (2) | 0.0978 (10) | |
H27A | 0.9918 | 0.3998 | 0.6111 | 0.147* | |
H27B | 1.0698 | 0.3132 | 0.6172 | 0.147* | |
H27C | 0.9932 | 0.3372 | 0.7042 | 0.147* | |
C28 | 0.5417 (2) | 0.40504 (19) | 0.09069 (19) | 0.0798 (8) | |
H28A | 0.5904 | 0.4472 | 0.0593 | 0.120* | |
H28B | 0.4816 | 0.4376 | 0.1205 | 0.120* | |
H28C | 0.5086 | 0.3635 | 0.0426 | 0.120* | |
S29 | 0.62429 (6) | 0.72700 (4) | 0.67537 (5) | 0.0605 (2) | |
O30 | 0.6575 (2) | 0.73286 (15) | 0.77722 (13) | 0.1141 (8) | |
O31 | 0.59056 (15) | 0.81084 (11) | 0.62945 (13) | 0.0719 (5) | |
O32 | 0.55268 (15) | 0.65261 (13) | 0.64848 (15) | 0.0913 (6) | |
C33 | 0.7559 (2) | 0.70003 (18) | 0.6202 (2) | 0.0687 (7) | |
F34 | 0.79921 (14) | 0.62064 (11) | 0.65070 (14) | 0.1050 (6) | |
F35 | 0.83549 (13) | 0.76166 (12) | 0.64108 (16) | 0.1158 (6) | |
F36 | 0.74067 (16) | 0.69624 (13) | 0.52297 (12) | 0.1107 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0710 (16) | 0.0497 (17) | 0.0707 (15) | −0.0017 (13) | 0.0038 (13) | 0.0012 (13) |
C2 | 0.095 (2) | 0.0490 (18) | 0.0841 (19) | −0.0063 (15) | 0.0125 (16) | −0.0089 (14) |
C3 | 0.0845 (19) | 0.0378 (15) | 0.099 (2) | 0.0033 (14) | 0.0219 (17) | 0.0021 (16) |
C4 | 0.0616 (16) | 0.0456 (17) | 0.0894 (19) | 0.0057 (12) | 0.0156 (14) | 0.0186 (14) |
C5 | 0.0560 (15) | 0.071 (2) | 0.0721 (17) | −0.0045 (14) | −0.0009 (12) | 0.0024 (15) |
C6 | 0.0752 (18) | 0.065 (2) | 0.0870 (19) | −0.0106 (15) | −0.0002 (15) | −0.0110 (16) |
C7 | 0.0789 (18) | 0.0448 (16) | 0.101 (2) | −0.0049 (14) | 0.0100 (16) | −0.0090 (16) |
C8 | 0.0645 (15) | 0.0417 (16) | 0.0806 (17) | 0.0021 (12) | 0.0055 (13) | 0.0037 (13) |
C9 | 0.0448 (12) | 0.0396 (14) | 0.0578 (13) | 0.0018 (10) | 0.0112 (11) | 0.0103 (11) |
N10 | 0.0406 (10) | 0.0473 (13) | 0.0649 (12) | 0.0041 (9) | 0.0070 (9) | 0.0127 (10) |
C11 | 0.0483 (13) | 0.0400 (14) | 0.0616 (14) | −0.0005 (11) | 0.0109 (11) | 0.0071 (12) |
C12 | 0.0464 (13) | 0.0385 (15) | 0.0675 (15) | 0.0019 (11) | 0.0170 (12) | 0.0087 (12) |
C13 | 0.0456 (12) | 0.0412 (15) | 0.0628 (14) | −0.0006 (11) | 0.0114 (11) | 0.0057 (11) |
C14 | 0.0410 (12) | 0.0483 (15) | 0.0658 (15) | 0.0006 (11) | 0.0104 (11) | 0.0082 (12) |
C15 | 0.0512 (15) | 0.0434 (15) | 0.0634 (15) | 0.0005 (11) | 0.0114 (12) | 0.0072 (11) |
O16 | 0.0543 (9) | 0.0517 (10) | 0.0617 (9) | 0.0094 (7) | 0.0104 (8) | 0.0111 (8) |
O17 | 0.0573 (11) | 0.1193 (17) | 0.0841 (12) | 0.0260 (10) | 0.0210 (9) | 0.0410 (11) |
C18 | 0.0500 (13) | 0.0538 (16) | 0.0505 (13) | 0.0100 (12) | 0.0085 (11) | 0.0076 (12) |
C19 | 0.0551 (14) | 0.0506 (16) | 0.0596 (15) | 0.0053 (12) | 0.0115 (12) | 0.0081 (13) |
C20 | 0.0700 (16) | 0.0562 (17) | 0.0721 (17) | 0.0092 (14) | 0.0144 (14) | 0.0178 (14) |
C21 | 0.0784 (19) | 0.081 (2) | 0.0628 (16) | 0.0142 (16) | 0.0023 (14) | 0.0194 (16) |
C22 | 0.0726 (17) | 0.081 (2) | 0.0564 (15) | 0.0022 (15) | 0.0027 (13) | −0.0005 (14) |
C23 | 0.0622 (15) | 0.0554 (17) | 0.0542 (14) | 0.0075 (13) | 0.0131 (13) | 0.0059 (13) |
O24 | 0.0732 (11) | 0.0490 (11) | 0.0794 (11) | −0.0003 (9) | −0.0007 (9) | 0.0070 (9) |
C25 | 0.0817 (19) | 0.0502 (18) | 0.1008 (19) | −0.0032 (14) | 0.0178 (15) | −0.0019 (15) |
O26 | 0.0934 (13) | 0.0544 (12) | 0.0776 (11) | −0.0019 (10) | −0.0010 (10) | −0.0035 (9) |
C27 | 0.126 (3) | 0.083 (2) | 0.0849 (19) | −0.028 (2) | 0.0082 (18) | −0.0061 (17) |
C28 | 0.0725 (18) | 0.074 (2) | 0.0911 (18) | 0.0139 (15) | −0.0125 (14) | 0.0230 (16) |
S29 | 0.0693 (4) | 0.0491 (4) | 0.0639 (4) | −0.0018 (3) | 0.0105 (3) | 0.0018 (3) |
O30 | 0.183 (2) | 0.1048 (17) | 0.0545 (11) | 0.0155 (16) | 0.0050 (12) | 0.0030 (11) |
O31 | 0.0811 (12) | 0.0492 (11) | 0.0853 (11) | 0.0124 (9) | 0.0036 (9) | 0.0049 (9) |
O32 | 0.0713 (12) | 0.0602 (13) | 0.1427 (16) | −0.0205 (10) | 0.0087 (11) | 0.0027 (12) |
C33 | 0.0625 (17) | 0.0533 (17) | 0.089 (2) | −0.0042 (14) | −0.0076 (14) | 0.0083 (14) |
F34 | 0.0808 (11) | 0.0678 (11) | 0.1654 (16) | 0.0192 (9) | −0.0016 (10) | 0.0175 (11) |
F35 | 0.0617 (10) | 0.0977 (13) | 0.1853 (18) | −0.0272 (10) | −0.0152 (10) | 0.0345 (12) |
F36 | 0.1302 (15) | 0.1217 (16) | 0.0842 (12) | 0.0248 (11) | 0.0384 (11) | −0.0103 (10) |
C1—C2 | 1.349 (3) | C18—C23 | 1.377 (3) |
C1—C11 | 1.418 (3) | C18—C19 | 1.383 (3) |
C1—H1 | 0.9300 | C19—O24 | 1.362 (3) |
C2—C3 | 1.396 (4) | C19—C20 | 1.387 (3) |
C2—H2 | 0.9300 | C20—C21 | 1.374 (3) |
C3—C4 | 1.353 (3) | C20—H20 | 0.9300 |
C3—H3 | 0.9300 | C21—C22 | 1.374 (4) |
C4—C12 | 1.412 (3) | C21—H21 | 0.9300 |
C4—H4 | 0.9300 | C22—C23 | 1.380 (3) |
C5—C6 | 1.345 (4) | C22—H22 | 0.9300 |
C5—C14 | 1.412 (3) | C23—O26 | 1.362 (3) |
C5—H5 | 0.9300 | O24—C25 | 1.433 (3) |
C6—C7 | 1.396 (4) | C25—H25A | 0.9600 |
C6—H6 | 0.9300 | C25—H25B | 0.9600 |
C7—C8 | 1.357 (3) | C25—H25C | 0.9600 |
C7—H7 | 0.9300 | O26—C27 | 1.423 (3) |
C8—C13 | 1.428 (3) | C27—H27A | 0.9600 |
C8—H8 | 0.9300 | C27—H27B | 0.9600 |
C9—C11 | 1.390 (3) | C27—H27C | 0.9600 |
C9—C13 | 1.392 (3) | C28—H28A | 0.9600 |
C9—C15 | 1.506 (3) | C28—H28B | 0.9600 |
N10—C12 | 1.366 (3) | C28—H28C | 0.9600 |
N10—C14 | 1.369 (3) | S29—O32 | 1.4142 (19) |
N10—C28 | 1.480 (3) | S29—O30 | 1.421 (2) |
C11—C12 | 1.424 (3) | S29—O31 | 1.4300 (17) |
C13—C14 | 1.422 (3) | S29—C33 | 1.796 (3) |
C15—O17 | 1.184 (2) | C33—F35 | 1.319 (3) |
C15—O16 | 1.334 (2) | C33—F36 | 1.327 (3) |
O16—C18 | 1.407 (2) | C33—F34 | 1.332 (3) |
C2—C1—C11 | 120.8 (2) | C19—C18—O16 | 118.9 (2) |
C2—C1—H1 | 119.6 | O24—C19—C18 | 115.2 (2) |
C11—C1—H1 | 119.6 | O24—C19—C20 | 126.1 (2) |
C1—C2—C3 | 120.1 (3) | C18—C19—C20 | 118.7 (2) |
C1—C2—H2 | 120.0 | C21—C20—C19 | 118.8 (2) |
C3—C2—H2 | 120.0 | C21—C20—H20 | 120.6 |
C4—C3—C2 | 121.5 (2) | C19—C20—H20 | 120.6 |
C4—C3—H3 | 119.3 | C20—C21—C22 | 122.3 (2) |
C2—C3—H3 | 119.3 | C20—C21—H21 | 118.8 |
C3—C4—C12 | 120.5 (2) | C22—C21—H21 | 118.8 |
C3—C4—H4 | 119.7 | C21—C22—C23 | 119.3 (3) |
C12—C4—H4 | 119.7 | C21—C22—H22 | 120.4 |
C6—C5—C14 | 120.1 (2) | C23—C22—H22 | 120.4 |
C6—C5—H5 | 119.9 | O26—C23—C18 | 115.9 (2) |
C14—C5—H5 | 119.9 | O26—C23—C22 | 125.5 (2) |
C5—C6—C7 | 122.1 (3) | C18—C23—C22 | 118.7 (2) |
C5—C6—H6 | 118.9 | C19—O24—C25 | 117.39 (19) |
C7—C6—H6 | 118.9 | O24—C25—H25A | 109.5 |
C8—C7—C6 | 120.0 (2) | O24—C25—H25B | 109.5 |
C8—C7—H7 | 120.0 | H25A—C25—H25B | 109.5 |
C6—C7—H7 | 120.0 | O24—C25—H25C | 109.5 |
C7—C8—C13 | 120.0 (2) | H25A—C25—H25C | 109.5 |
C7—C8—H8 | 120.0 | H25B—C25—H25C | 109.5 |
C13—C8—H8 | 120.0 | C23—O26—C27 | 117.6 (2) |
C11—C9—C13 | 121.2 (2) | O26—C27—H27A | 109.5 |
C11—C9—C15 | 119.3 (2) | O26—C27—H27B | 109.5 |
C13—C9—C15 | 119.3 (2) | H27A—C27—H27B | 109.5 |
C12—N10—C14 | 122.52 (18) | O26—C27—H27C | 109.5 |
C12—N10—C28 | 118.1 (2) | H27A—C27—H27C | 109.5 |
C14—N10—C28 | 119.28 (19) | H27B—C27—H27C | 109.5 |
C9—C11—C1 | 122.4 (2) | N10—C28—H28A | 109.5 |
C9—C11—C12 | 118.7 (2) | N10—C28—H28B | 109.5 |
C1—C11—C12 | 118.9 (2) | H28A—C28—H28B | 109.5 |
N10—C12—C4 | 122.4 (2) | N10—C28—H28C | 109.5 |
N10—C12—C11 | 119.4 (2) | H28A—C28—H28C | 109.5 |
C4—C12—C11 | 118.2 (2) | H28B—C28—H28C | 109.5 |
C9—C13—C14 | 119.0 (2) | O32—S29—O30 | 115.00 (13) |
C9—C13—C8 | 122.1 (2) | O32—S29—O31 | 114.45 (12) |
C14—C13—C8 | 118.9 (2) | O30—S29—O31 | 115.25 (12) |
N10—C14—C5 | 122.2 (2) | O32—S29—C33 | 103.15 (12) |
N10—C14—C13 | 119.1 (2) | O30—S29—C33 | 103.43 (14) |
C5—C14—C13 | 118.7 (2) | O31—S29—C33 | 103.20 (11) |
O17—C15—O16 | 124.5 (2) | F35—C33—F36 | 107.1 (2) |
O17—C15—C9 | 123.3 (2) | F35—C33—F34 | 106.8 (2) |
O16—C15—C9 | 112.20 (19) | F36—C33—F34 | 107.5 (2) |
C15—O16—C18 | 115.60 (16) | F35—C33—S29 | 111.5 (2) |
C23—C18—C19 | 122.2 (2) | F36—C33—S29 | 111.15 (18) |
C23—C18—O16 | 118.9 (2) | F34—C33—S29 | 112.49 (19) |
C11—C1—C2—C3 | −0.7 (4) | C8—C13—C14—C5 | −2.7 (3) |
C1—C2—C3—C4 | 0.2 (4) | C11—C9—C15—O17 | −94.4 (3) |
C2—C3—C4—C12 | 0.8 (4) | C13—C9—C15—O17 | 81.4 (3) |
C14—C5—C6—C7 | 0.1 (4) | C11—C9—C15—O16 | 85.7 (2) |
C5—C6—C7—C8 | −2.1 (4) | C13—C9—C15—O16 | −98.5 (2) |
C6—C7—C8—C13 | 1.7 (4) | O17—C15—O16—C18 | 1.0 (3) |
C13—C9—C11—C1 | 176.74 (19) | C9—C15—O16—C18 | −179.09 (18) |
C15—C9—C11—C1 | −7.6 (3) | C15—O16—C18—C23 | 88.2 (2) |
C13—C9—C11—C12 | −2.9 (3) | C15—O16—C18—C19 | −93.1 (2) |
C15—C9—C11—C12 | 172.79 (19) | C23—C18—C19—O24 | −176.27 (18) |
C2—C1—C11—C9 | −179.3 (2) | O16—C18—C19—O24 | 5.0 (3) |
C2—C1—C11—C12 | 0.3 (3) | C23—C18—C19—C20 | 2.9 (3) |
C14—N10—C12—C4 | −177.94 (19) | O16—C18—C19—C20 | −175.80 (18) |
C28—N10—C12—C4 | −0.5 (3) | O24—C19—C20—C21 | 178.2 (2) |
C14—N10—C12—C11 | 2.9 (3) | C18—C19—C20—C21 | −0.9 (3) |
C28—N10—C12—C11 | −179.61 (19) | C19—C20—C21—C22 | −0.9 (4) |
C3—C4—C12—N10 | 179.7 (2) | C20—C21—C22—C23 | 0.7 (4) |
C3—C4—C12—C11 | −1.1 (3) | C19—C18—C23—O26 | 177.12 (18) |
C9—C11—C12—N10 | −0.6 (3) | O16—C18—C23—O26 | −4.2 (3) |
C1—C11—C12—N10 | 179.75 (18) | C19—C18—C23—C22 | −3.1 (3) |
C9—C11—C12—C4 | −179.77 (18) | O16—C18—C23—C22 | 175.59 (18) |
C1—C11—C12—C4 | 0.6 (3) | C21—C22—C23—O26 | −179.0 (2) |
C11—C9—C13—C14 | 4.1 (3) | C21—C22—C23—C18 | 1.3 (3) |
C15—C9—C13—C14 | −171.59 (19) | C18—C19—O24—C25 | 177.29 (18) |
C11—C9—C13—C8 | −175.94 (19) | C20—C19—O24—C25 | −1.8 (3) |
C15—C9—C13—C8 | 8.4 (3) | C18—C23—O26—C27 | −160.7 (2) |
C7—C8—C13—C9 | −179.3 (2) | C22—C23—O26—C27 | 19.5 (3) |
C7—C8—C13—C14 | 0.7 (3) | O32—S29—C33—F35 | −177.69 (18) |
C12—N10—C14—C5 | 179.21 (18) | O30—S29—C33—F35 | −57.6 (2) |
C28—N10—C14—C5 | 1.8 (3) | O31—S29—C33—F35 | 62.9 (2) |
C12—N10—C14—C13 | −1.7 (3) | O32—S29—C33—F36 | 62.8 (2) |
C28—N10—C14—C13 | −179.15 (19) | O30—S29—C33—F36 | −177.05 (19) |
C6—C5—C14—N10 | −178.6 (2) | O31—S29—C33—F36 | −56.6 (2) |
C6—C5—C14—C13 | 2.3 (3) | O32—S29—C33—F34 | −57.7 (2) |
C9—C13—C14—N10 | −1.8 (3) | O30—S29—C33—F34 | 62.4 (2) |
C8—C13—C14—N10 | 178.23 (18) | O31—S29—C33—F34 | −177.18 (18) |
C9—C13—C14—C5 | 177.31 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O30i | 0.93 | 2.57 | 3.449 (3) | 158 |
C4—H4···O31i | 0.93 | 2.58 | 3.352 (3) | 141 |
C7—H7···O32ii | 0.93 | 2.54 | 3.427 (3) | 159 |
C27—H27C···O17iii | 0.96 | 2.46 | 3.371 (3) | 159 |
C25—H25C···Cg4iv | 0.96 | 2.98 | 3.845 (3) | 150 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C23H20NO4+·CF3SO3− |
Mr | 523.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 11.6803 (4), 14.7434 (5), 13.6286 (5) |
β (°) | 93.462 (4) |
V (Å3) | 2342.66 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.55 × 0.30 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.911, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20680, 4160, 2274 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.109, 0.87 |
No. of reflections | 4160 |
No. of parameters | 328 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.29 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008 and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O30i | 0.93 | 2.57 | 3.449 (3) | 158 |
C4—H4···O31i | 0.93 | 2.58 | 3.352 (3) | 141 |
C7—H7···O32ii | 0.93 | 2.54 | 3.427 (3) | 159 |
C27—H27C···O17iii | 0.96 | 2.46 | 3.371 (3) | 159 |
C25—H25C···Cg4iv | 0.96 | 2.98 | 3.845 (3) | 150 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+2, −y, −z+1. |
X | I | J | I···J | X···J | X—I···J |
S29 | O31 | Cg3v | 3.968 (2) | 4.111 (2) | 85 |
S29 | O32 | Cg1v | 3.178 (2) | 3.757 (2) | 103 |
S29 | O32 | Cg2v | 3.512 (2) | 4.741 (2) | 145 |
Symmetry codes: (v) –x+1, –y+1, –z+1. Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. |
I | J | CgI···CgJ | Dihedral angle | CgIPerp | CgJPerp | CgIOffset | CgJOffset |
1 | 4ii | 3.641 (2) | 5.31 (10) | 3.416 (2) | 3.492 (2) | 0.767 (2) | 1.031 (2) |
2 | 4ii | 3.885 (2) | 6.74 (11) | 3.666 (2) | 3.491 (2) | 1.286 (2) | 1.705 (2) |
Symmetry code: (ii) x, –y+1/2, z–1/2. Notes: Cg1, Cg2 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.
References
Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett. 14, 2313–2317. Web of Science CrossRef PubMed CAS Google Scholar
Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611. Web of Science CrossRef Google Scholar
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phenyl 10-alkylacridinium-9-carboxylates have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Becker et al., 1999; Adamczyk et al., 2004). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer & Jacquemijns, 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the convertion of the rest of molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). Continuing our investigations onto the above mentioned effect, we synthesized the compound containing two methoxy groups in the phenyl fragment. Here, we present its structure. Methoxy groups, which possess electron-attractive features, may influence the stability and chemiluminogenic ability of the compound investigated.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2008). With respective average deviations from planarity of 0.037 (3) Å and 0.010 (3) Å, the acridine and benzene ring systems in the cation are oriented at 8.7 (1)°. The carboxy group is twisted at an angle of 83.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are either parallel or inclined at an angle of 10.9 (1)° in the lattice.
In the crystal structure, the cations are linked through C—H···O (Table 1, Fig. 2), C—H···π (Table 1, Fig. 2) and π–π (Table 3, Fig. 2) interactions, and the cations and anions by C—H···O (Table 1, Fig. 2) and S—O···π (Table 2, Fig. 2) interactions. The C—H···O (Steiner, 1999; Bianchi et al., 2004) interactions are of the hydrogen-bond type. The C—H···π (Takahashi et al., 2001) and S—O···π (Dorn et al., 2005) interactions should be of an attractive nature, like the π–π contacts (Hunter et al., 2001). The crystal structure is stabilized by a network of the aforementioned short-range specific interactions and by long-range electrostatic interactions between ions.