organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl­ammonium di­hydrogen phosphate hemihydrate

aDepartment of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan, bSchool of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia, and cInstrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: ohnoh@cc.tuat.ac.jp

(Received 24 February 2009; accepted 12 March 2009; online 19 March 2009)

In the crystal structure of the title compound, C4H12N+·H2PO4·0.5H2O, the anions form an infinite hydrogen-bonded chain along the [1[\overline{1}]0] direction. The anion chains are connected by water mol­ecules, which lie on crystallographic twofold rotation axes, through O—H⋯O hydrogen bonds. These hydrogen bonds are almost perpendicular to the other hydrogen bonds which create an assembled structure of anions. In addition, C—H⋯O hydrogen bonds between anions and cations are observed.

Related literature

For the structure of tetra­methyl­ammonium dihydrogen phosphate monohydrate, see: Ohama et al. (1987[Ohama, N., Machida, M., Nakamura, T. & Kunifuji, Y. (1987). Acta Cryst. C43, 962-964.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N+·H2PO4·0.5H2O

  • Mr = 180.14

  • Monoclinic, C 2/c

  • a = 14.3213 (3) Å

  • b = 9.2607 (2) Å

  • c = 13.1990 (2) Å

  • β = 103.614 (1)°

  • V = 1701.34 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.72 mm−1

  • T = 193 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.390, Tmax = 0.580

  • 14805 measured reflections

  • 1565 independent reflections

  • 1505 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.05

  • 1565 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.96 (4) 1.57 (4) 2.5196 (18) 169 (4)
O4—H4O⋯O1ii 0.75 (3) 1.83 (3) 2.5644 (19) 169 (3)
O5—H5O⋯O1 0.83 (3) 2.06 (3) 2.8883 (15) 173 (3)
C1—H1B⋯O1iii 0.98 2.62 3.405 (2) 137
C2—H2B⋯O4iv 0.98 2.39 3.291 (3) 153
C2—H2C⋯O2 0.98 2.59 3.506 (3) 156
C2—H2C⋯O1 0.98 2.62 3.473 (3) 145
C3—H3A⋯O3v 0.98 2.57 3.495 (3) 157
C4—H4C⋯O3vi 0.98 2.62 3.465 (3) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku/MSC, 1998[Rigaku/MSC (1998). PROCESS-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), forms two hydrate states, hemihydrate and monohydrate. Basic structure about monohydrate had been published (Ohama et al., 1987). We report herein the crystal structure of the hemihydrate compound.

The molecular structures of (I) are shown in Fig. 1. There are eight anions and cations, and four water molecules in a unit cell. The water molecules are located on twofold rotation axes. The anions create infinite chains by using two hydrogen bonds of O4—H···O1 and O3—H···O2 (Fig. 2). These chains run two different directions mutually along the c axis. One is [110] direction, the other is [110] direction. Water molecules connect the anion chains by hydrogen bonds of O5—H···O1, so as to create three dimensional networks. The cations are arranged along with the anion chains (Fig. 3). Molecular packing is additionally stabilized by C—H···O hydrogen bonds between anions and cations (Table 1).

Related literature top

For the structure of tetramethylammonium dihydrogen phosphate monohydrate, see: Ohama et al. (1987).

Experimental top

Tetramethylammonium hydrated solution was mixed with phosphoric acid. The solvent was evaporated and product was dried in vacuo. Final purification was achieved by recrystallization from a methanol solution. The compound was identified using 1H NMR, DSC and Electrospray mass spectrometry.

Refinement top

Hydroxyl H atoms in dihydrogen phosphate and water molecule were located in a difference Fourier map and were subsequently refined freely. Methyl H atoms were positioned by using the HFIX 137 instruction in SHELXL97, with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 1998); cell refinement: PROCESS-AUTO (Rigaku/MSC, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot and atomic numbering scheme of (I). Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (vii) -x + 1, y, -z + 1/2.]
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the b axis. Dashed lines indicate intermolecular O—H···O hydrogen bonds. For clarity, only H atoms involved in O—H···O hydrogen bonding have been included. [Symmetry codes: (i) -x + 1/2,-y + 1/2, -z + 1; (ii) -x + 1, -y, -z + 1.]
[Figure 3] Fig. 3. The molecular packing of (I), viewed along the c axis. Dashed lines indicate intermolecular O—H···O hydrogen bonds. For clarity, only H atoms involved in O—H···O hydrogen bonding have been included. [Symmetry codes: (i) -x + 1/2,-y + 1/2, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 1/2, y + 1/2, -z + 1/2.]
Tetramethylammonium dihydrogen phosphate hemihydrate top
Crystal data top
C4H12N+·H2O4P·0.5H2OF(000) = 776
Mr = 180.14Dx = 1.407 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2ycCell parameters from 13463 reflections
a = 14.3213 (3) Åθ = 3.4–68.2°
b = 9.2607 (2) ŵ = 2.72 mm1
c = 13.1990 (2) ÅT = 193 K
β = 103.614 (1)°Block, colorless
V = 1701.34 (6) Å30.40 × 0.35 × 0.20 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1565 independent reflections
Radiation source: rotating anode1505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 5.7°
ω scansh = 1717
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1111
Tmin = 0.390, Tmax = 0.580l = 1515
14805 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0404P)2 + 2.3234P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1565 reflectionsΔρmax = 0.23 e Å3
113 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (3)
Crystal data top
C4H12N+·H2O4P·0.5H2OV = 1701.34 (6) Å3
Mr = 180.14Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.3213 (3) ŵ = 2.72 mm1
b = 9.2607 (2) ÅT = 193 K
c = 13.1990 (2) Å0.40 × 0.35 × 0.20 mm
β = 103.614 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1565 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1505 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.580Rint = 0.040
14805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
1565 reflectionsΔρmin = 0.31 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.37195 (3)0.13092 (4)0.48223 (3)0.02350 (19)
O10.43439 (8)0.11276 (14)0.40616 (9)0.0306 (3)
O20.26771 (8)0.08626 (14)0.43819 (10)0.0355 (3)
O30.37576 (9)0.28806 (13)0.52247 (11)0.0355 (3)
O40.41159 (10)0.03446 (16)0.58089 (10)0.0375 (4)
N10.15455 (10)0.15807 (15)0.14754 (10)0.0264 (3)
C10.11725 (17)0.2789 (2)0.20042 (16)0.0456 (5)
H1A0.04690.27840.18080.055*
H1B0.14100.37070.17930.055*
H1C0.13930.26750.27610.055*
C20.26055 (16)0.1614 (4)0.17612 (19)0.0726 (9)
H2A0.28310.25500.15660.087*
H2B0.28560.08410.13920.087*
H2C0.28330.14720.25150.087*
C30.12037 (14)0.1727 (2)0.03190 (14)0.0384 (5)
H3A0.05020.16530.01220.046*
H3B0.14840.09560.00230.046*
H3C0.14010.26670.01000.046*
C40.1185 (3)0.0209 (3)0.1815 (2)0.0816 (10)
H4A0.04810.01940.16020.098*
H4B0.13900.01280.25760.098*
H4C0.14440.06050.14930.098*
O50.50000.2765 (2)0.25000.0533 (6)
H3O0.318 (3)0.325 (5)0.537 (3)0.130 (14)*
H4O0.4569 (19)0.003 (3)0.5780 (19)0.048 (7)*
H5O0.4803 (19)0.223 (3)0.291 (2)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0201 (3)0.0248 (3)0.0272 (3)0.00388 (15)0.00872 (17)0.00004 (15)
O10.0281 (6)0.0381 (7)0.0282 (6)0.0099 (5)0.0117 (5)0.0056 (5)
O20.0240 (6)0.0379 (7)0.0445 (7)0.0021 (5)0.0074 (5)0.0135 (6)
O30.0291 (6)0.0264 (7)0.0538 (8)0.0022 (5)0.0155 (6)0.0083 (6)
O40.0340 (7)0.0466 (8)0.0380 (7)0.0179 (6)0.0206 (6)0.0146 (6)
N10.0293 (7)0.0262 (7)0.0246 (7)0.0037 (6)0.0081 (6)0.0018 (5)
C10.0584 (13)0.0441 (12)0.0370 (10)0.0183 (10)0.0169 (9)0.0020 (9)
C20.0317 (11)0.145 (3)0.0396 (12)0.0238 (14)0.0061 (9)0.0052 (15)
C30.0414 (10)0.0471 (11)0.0260 (9)0.0102 (9)0.0064 (8)0.0030 (8)
C40.162 (3)0.0378 (13)0.0494 (14)0.0344 (17)0.0325 (17)0.0002 (11)
O50.0807 (17)0.0291 (11)0.0653 (15)0.0000.0476 (13)0.000
Geometric parameters (Å, º) top
P1—O11.5029 (12)C1—H1C0.9800
P1—O21.5261 (12)C2—H2A0.9800
P1—O31.5456 (12)C2—H2B0.9800
P1—O41.5710 (13)C2—H2C0.9800
O3—H3O0.96 (5)C3—H3A0.9800
O4—H4O0.75 (3)C3—H3B0.9800
N1—C21.476 (3)C3—H3C0.9800
N1—C41.480 (3)C4—H4A0.9800
N1—C11.483 (2)C4—H4B0.9800
N1—C31.495 (2)C4—H4C0.9800
C1—H1A0.9800O5—H5O0.83 (3)
C1—H1B0.9800
O1—P1—O2113.43 (7)H1B—C1—H1C109.5
O1—P1—O3110.89 (7)N1—C2—H2A109.5
O2—P1—O3109.77 (7)N1—C2—H2B109.5
O1—P1—O4109.53 (7)H2A—C2—H2B109.5
O2—P1—O4106.97 (8)N1—C2—H2C109.5
O3—P1—O4105.89 (8)H2A—C2—H2C109.5
P1—O3—H3O116 (3)H2B—C2—H2C109.5
P1—O4—H4O111.8 (19)N1—C3—H3A109.5
C2—N1—C4110.6 (2)N1—C3—H3B109.5
C2—N1—C1109.08 (18)H3A—C3—H3B109.5
C4—N1—C1108.36 (18)N1—C3—H3C109.5
C2—N1—C3109.20 (15)H3A—C3—H3C109.5
C4—N1—C3109.46 (17)H3B—C3—H3C109.5
C1—N1—C3110.14 (14)N1—C4—H4A109.5
N1—C1—H1A109.5N1—C4—H4B109.5
N1—C1—H1B109.5H4A—C4—H4B109.5
H1A—C1—H1B109.5N1—C4—H4C109.5
N1—C1—H1C109.5H4A—C4—H4C109.5
H1A—C1—H1C109.5H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.96 (4)1.57 (4)2.5196 (18)169 (4)
O4—H4O···O1ii0.75 (3)1.83 (3)2.5644 (19)169 (3)
O5—H5O···O10.83 (3)2.06 (3)2.8883 (15)173 (3)
C1—H1B···O1iii0.982.623.405 (2)137
C2—H2B···O4iv0.982.393.291 (3)153
C2—H2C···O20.982.593.506 (3)156
C2—H2C···O10.982.623.473 (3)145
C3—H3A···O3v0.982.573.495 (3)157
C4—H4C···O3vi0.982.623.465 (3)144
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z1/2; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H12N+·H2O4P·0.5H2O
Mr180.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)14.3213 (3), 9.2607 (2), 13.1990 (2)
β (°) 103.614 (1)
V3)1701.34 (6)
Z8
Radiation typeCu Kα
µ (mm1)2.72
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.390, 0.580
No. of measured, independent and
observed [I > 2σ(I)] reflections
14805, 1565, 1505
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.05
No. of reflections1565
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: PROCESS-AUTO (Rigaku/MSC, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.96 (4)1.57 (4)2.5196 (18)169 (4)
O4—H4O···O1ii0.75 (3)1.83 (3)2.5644 (19)169 (3)
O5—H5O···O10.83 (3)2.06 (3)2.8883 (15)173 (3)
C1—H1B···O1iii0.982.623.405 (2)137
C2—H2B···O4iv0.982.393.291 (3)153
C2—H2C···O20.982.593.506 (3)156
C2—H2C···O10.982.623.473 (3)145
C3—H3A···O3v0.982.573.495 (3)157
C4—H4C···O3vi0.982.623.465 (3)144
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z1/2; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. KF thanks the Japan Society for Promotion of Science (Research Fellowship for Young Scientists) for support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOhama, N., Machida, M., Nakamura, T. & Kunifuji, Y. (1987). Acta Cryst. C43, 962–964.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (1998). PROCESS-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds