organic compounds
9-(Biphenyl-4-yloxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 27H20NO2+·CF3SO3−, the cations form inversion dimers through π–π interactions between the acridine ring systems [centroid-centroid distances = 3.668 (2)–3.994 (2) Å]. These dimers are further linked by C—H⋯O and C—H⋯π interactions. The cation and the anion are connected by C—H⋯O interactions. The mean plane of the acridine ring system makes dihedral angles of 10.6 (1) and 82.5 (1)°, respectively, with the adjacent phenyl ring and the carboxy group. The two phenyl rings of the biphenyl group are oriented at 42.9 (1)°.
of the title compound, CRelated literature
For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Dodeigne et al. (2000); Rak et al. (1999); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2007, 2008). For molecular interactions, see: Bianchi et al. (2004); Hunter & Sanders (1990); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809007569/is2396sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007569/is2396Isup2.hkl
The compound was synthesized in three steps (Sikorski et al., 2007). First, 9-(chlorocarbonyl)-acridine was produced by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. Then, esterification with biphenyl-4-ol was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The biphenyl-4-yl acridine-9-carboxylate thus obtained was quaternalized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-[(biphenyl-4-yloxy)carbonyl]-10-methylacridinium salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield 50%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 241–243 K).
H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π and π–π interactions by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x - 1, y, z; (ii) x, -y + 3/2, z + 1/2; (iii) x + 1, -y + 3/2, z + 1/2; (iv) x + 1, y, z; (v) -x, -y+2, -z + 1.] |
C27H20NO2+·CF3SO3− | F(000) = 1112 |
Mr = 539.52 | Dx = 1.467 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1909 reflections |
a = 9.4619 (2) Å | θ = 3.0–29.2° |
b = 12.4558 (5) Å | µ = 0.20 mm−1 |
c = 20.7903 (7) Å | T = 295 K |
β = 94.559 (3)° | Needle, yellow |
V = 2442.50 (14) Å3 | 0.6 × 0.12 × 0.1 mm |
Z = 4 |
Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer | 4408 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3454 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.3°, θmin = 3.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −14→14 |
Tmin = 0.887, Tmax = 0.977 | l = −24→24 |
42490 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3778P] where P = (Fo2 + 2Fc2)/3 |
4408 reflections | (Δ/σ)max = 0.001 |
344 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C27H20NO2+·CF3SO3− | V = 2442.50 (14) Å3 |
Mr = 539.52 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.4619 (2) Å | µ = 0.20 mm−1 |
b = 12.4558 (5) Å | T = 295 K |
c = 20.7903 (7) Å | 0.6 × 0.12 × 0.1 mm |
β = 94.559 (3)° |
Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer | 4408 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 3454 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.977 | Rint = 0.033 |
42490 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.22 e Å−3 |
4408 reflections | Δρmin = −0.39 e Å−3 |
344 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0826 (2) | 0.85546 (17) | 0.66803 (10) | 0.0559 (5) | |
H1 | 0.1794 | 0.8419 | 0.6743 | 0.067* | |
C2 | 0.0070 (2) | 0.8721 (2) | 0.71966 (11) | 0.0666 (6) | |
H2 | 0.0516 | 0.8705 | 0.7612 | 0.080* | |
C3 | −0.1399 (2) | 0.8920 (2) | 0.71009 (11) | 0.0661 (6) | |
H3 | −0.1913 | 0.9025 | 0.7459 | 0.079* | |
C4 | −0.2082 (2) | 0.89610 (17) | 0.65079 (10) | 0.0556 (5) | |
H4 | −0.3052 | 0.9097 | 0.6462 | 0.067* | |
C5 | −0.1940 (2) | 0.87413 (17) | 0.41735 (10) | 0.0533 (5) | |
H5 | −0.2913 | 0.8854 | 0.4114 | 0.064* | |
C6 | −0.1171 (2) | 0.86205 (18) | 0.36536 (11) | 0.0608 (6) | |
H6 | −0.1632 | 0.8652 | 0.3242 | 0.073* | |
C7 | 0.0303 (2) | 0.84498 (17) | 0.37199 (11) | 0.0589 (5) | |
H7 | 0.0807 | 0.8385 | 0.3356 | 0.071* | |
C8 | 0.0983 (2) | 0.83809 (16) | 0.43131 (10) | 0.0506 (5) | |
H8 | 0.1956 | 0.8261 | 0.4355 | 0.061* | |
C9 | 0.08977 (17) | 0.84149 (13) | 0.54978 (9) | 0.0411 (4) | |
N10 | −0.19839 (14) | 0.88388 (11) | 0.53452 (7) | 0.0409 (4) | |
C11 | 0.01625 (17) | 0.85832 (14) | 0.60431 (9) | 0.0426 (4) | |
C12 | −0.13276 (18) | 0.87986 (14) | 0.59538 (9) | 0.0432 (4) | |
C13 | 0.02305 (17) | 0.84892 (13) | 0.48766 (9) | 0.0407 (4) | |
C14 | −0.12638 (17) | 0.86960 (13) | 0.48029 (9) | 0.0405 (4) | |
C15 | 0.24609 (17) | 0.81633 (15) | 0.55824 (9) | 0.0442 (4) | |
O16 | 0.26663 (11) | 0.71126 (10) | 0.55470 (6) | 0.0468 (3) | |
O17 | 0.33626 (14) | 0.88239 (12) | 0.56714 (9) | 0.0750 (5) | |
C18 | 0.40924 (17) | 0.67406 (14) | 0.56630 (9) | 0.0397 (4) | |
C19 | 0.48541 (18) | 0.65153 (15) | 0.51460 (9) | 0.0453 (4) | |
H19 | 0.4465 | 0.6623 | 0.4726 | 0.054* | |
C20 | 0.62226 (18) | 0.61225 (15) | 0.52661 (8) | 0.0443 (4) | |
H20 | 0.6754 | 0.5962 | 0.4921 | 0.053* | |
C21 | 0.68130 (17) | 0.59638 (14) | 0.58923 (8) | 0.0378 (4) | |
C22 | 0.59895 (19) | 0.61933 (16) | 0.63985 (9) | 0.0472 (4) | |
H22 | 0.6366 | 0.6088 | 0.6821 | 0.057* | |
C23 | 0.46215 (19) | 0.65756 (16) | 0.62865 (9) | 0.0493 (5) | |
H23 | 0.4072 | 0.6718 | 0.6628 | 0.059* | |
C24 | 0.82954 (17) | 0.55657 (14) | 0.60215 (8) | 0.0385 (4) | |
C25 | 0.88247 (19) | 0.47452 (16) | 0.56618 (9) | 0.0497 (5) | |
H25 | 0.8243 | 0.4422 | 0.5336 | 0.060* | |
C26 | 1.0212 (2) | 0.44002 (18) | 0.57816 (11) | 0.0587 (5) | |
H26 | 1.0549 | 0.3842 | 0.5539 | 0.070* | |
C27 | 1.1092 (2) | 0.48737 (19) | 0.62543 (11) | 0.0603 (6) | |
H27 | 1.2029 | 0.4649 | 0.6327 | 0.072* | |
C28 | 1.0580 (2) | 0.56810 (19) | 0.66193 (11) | 0.0607 (6) | |
H28 | 1.1171 | 0.6003 | 0.6943 | 0.073* | |
C29 | 0.91906 (19) | 0.60188 (16) | 0.65086 (9) | 0.0505 (5) | |
H29 | 0.8850 | 0.6558 | 0.6765 | 0.061* | |
C30 | −0.35306 (18) | 0.90607 (18) | 0.52817 (11) | 0.0586 (5) | |
H30A | −0.4013 | 0.8538 | 0.5524 | 0.088* | |
H30B | −0.3875 | 0.9021 | 0.4835 | 0.088* | |
H30C | −0.3703 | 0.9766 | 0.5445 | 0.088* | |
S31 | 0.43886 (5) | 0.83310 (5) | 0.31913 (2) | 0.05338 (17) | |
O32 | 0.42879 (16) | 0.85116 (15) | 0.38681 (7) | 0.0738 (5) | |
O33 | 0.56626 (19) | 0.87108 (17) | 0.29520 (8) | 0.0896 (6) | |
O34 | 0.31337 (17) | 0.85327 (16) | 0.27869 (8) | 0.0865 (6) | |
C35 | 0.4565 (3) | 0.6904 (2) | 0.31430 (13) | 0.0827 (8) | |
F36 | 0.3429 (3) | 0.64219 (17) | 0.33492 (13) | 0.1497 (9) | |
F37 | 0.5652 (2) | 0.65377 (17) | 0.35025 (10) | 0.1352 (8) | |
F38 | 0.4689 (3) | 0.65853 (16) | 0.25421 (10) | 0.1447 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0429 (10) | 0.0619 (13) | 0.0621 (13) | 0.0029 (9) | −0.0010 (9) | −0.0086 (10) |
C2 | 0.0657 (14) | 0.0780 (16) | 0.0557 (13) | 0.0022 (12) | 0.0015 (11) | −0.0135 (11) |
C3 | 0.0630 (13) | 0.0762 (16) | 0.0614 (14) | 0.0035 (11) | 0.0188 (11) | −0.0153 (11) |
C4 | 0.0403 (10) | 0.0604 (13) | 0.0681 (14) | 0.0041 (9) | 0.0168 (10) | −0.0122 (10) |
C5 | 0.0399 (10) | 0.0544 (12) | 0.0645 (13) | 0.0030 (9) | −0.0023 (9) | −0.0015 (10) |
C6 | 0.0603 (13) | 0.0672 (15) | 0.0542 (12) | 0.0026 (11) | −0.0006 (10) | −0.0018 (10) |
C7 | 0.0614 (13) | 0.0612 (13) | 0.0559 (13) | −0.0003 (10) | 0.0170 (10) | −0.0024 (10) |
C8 | 0.0394 (9) | 0.0508 (12) | 0.0631 (13) | 0.0009 (8) | 0.0135 (9) | −0.0019 (9) |
C9 | 0.0294 (8) | 0.0343 (10) | 0.0597 (11) | −0.0011 (7) | 0.0052 (8) | −0.0027 (8) |
N10 | 0.0263 (7) | 0.0368 (8) | 0.0598 (10) | 0.0017 (6) | 0.0048 (6) | −0.0044 (7) |
C11 | 0.0323 (8) | 0.0389 (10) | 0.0568 (11) | 0.0007 (7) | 0.0045 (8) | −0.0047 (8) |
C12 | 0.0357 (9) | 0.0346 (10) | 0.0600 (12) | −0.0001 (7) | 0.0095 (8) | −0.0063 (8) |
C13 | 0.0317 (8) | 0.0333 (9) | 0.0577 (11) | −0.0008 (7) | 0.0079 (8) | −0.0023 (8) |
C14 | 0.0328 (8) | 0.0312 (9) | 0.0575 (11) | −0.0004 (7) | 0.0048 (8) | −0.0028 (7) |
C15 | 0.0292 (9) | 0.0450 (11) | 0.0588 (12) | 0.0014 (8) | 0.0070 (8) | −0.0039 (8) |
O16 | 0.0289 (6) | 0.0435 (7) | 0.0673 (8) | 0.0036 (5) | −0.0001 (5) | −0.0044 (6) |
O17 | 0.0305 (7) | 0.0491 (9) | 0.1453 (16) | −0.0025 (6) | 0.0065 (8) | −0.0091 (9) |
C18 | 0.0279 (8) | 0.0392 (10) | 0.0518 (11) | 0.0032 (7) | 0.0021 (7) | −0.0023 (7) |
C19 | 0.0388 (9) | 0.0560 (12) | 0.0401 (10) | 0.0052 (8) | −0.0025 (8) | 0.0003 (8) |
C20 | 0.0368 (9) | 0.0562 (12) | 0.0403 (10) | 0.0056 (8) | 0.0063 (8) | −0.0029 (8) |
C21 | 0.0356 (9) | 0.0363 (9) | 0.0413 (9) | 0.0008 (7) | 0.0020 (7) | −0.0009 (7) |
C22 | 0.0426 (10) | 0.0601 (12) | 0.0383 (10) | 0.0084 (9) | −0.0003 (8) | 0.0004 (8) |
C23 | 0.0426 (10) | 0.0609 (12) | 0.0456 (11) | 0.0071 (9) | 0.0108 (8) | −0.0043 (9) |
C24 | 0.0335 (8) | 0.0389 (10) | 0.0429 (10) | 0.0022 (7) | 0.0016 (7) | 0.0068 (7) |
C25 | 0.0396 (9) | 0.0508 (12) | 0.0589 (12) | 0.0032 (8) | 0.0044 (8) | −0.0043 (9) |
C26 | 0.0483 (11) | 0.0570 (13) | 0.0730 (14) | 0.0149 (10) | 0.0175 (10) | 0.0068 (10) |
C27 | 0.0351 (10) | 0.0697 (15) | 0.0759 (14) | 0.0100 (10) | 0.0028 (10) | 0.0266 (12) |
C28 | 0.0449 (11) | 0.0656 (14) | 0.0683 (14) | −0.0025 (10) | −0.0171 (10) | 0.0106 (11) |
C29 | 0.0460 (10) | 0.0477 (11) | 0.0562 (12) | 0.0035 (9) | −0.0062 (9) | 0.0011 (9) |
C30 | 0.0273 (9) | 0.0701 (14) | 0.0787 (15) | 0.0081 (9) | 0.0060 (9) | −0.0022 (11) |
S31 | 0.0446 (3) | 0.0750 (4) | 0.0403 (3) | 0.0105 (2) | 0.0021 (2) | 0.0059 (2) |
O32 | 0.0688 (10) | 0.1071 (13) | 0.0460 (9) | 0.0136 (9) | 0.0071 (7) | −0.0074 (8) |
O33 | 0.0748 (11) | 0.1331 (16) | 0.0616 (10) | −0.0285 (11) | 0.0099 (8) | 0.0162 (10) |
O34 | 0.0632 (10) | 0.1304 (16) | 0.0636 (10) | 0.0386 (10) | −0.0095 (8) | 0.0109 (10) |
C35 | 0.094 (2) | 0.0887 (19) | 0.0651 (16) | 0.0174 (16) | 0.0063 (14) | 0.0031 (14) |
F36 | 0.160 (2) | 0.1052 (16) | 0.185 (2) | −0.0438 (14) | 0.0162 (17) | 0.0355 (14) |
F37 | 0.1460 (17) | 0.1334 (16) | 0.1238 (16) | 0.0835 (14) | −0.0050 (13) | 0.0290 (12) |
F38 | 0.231 (3) | 0.1055 (14) | 0.0970 (14) | 0.0430 (15) | 0.0084 (15) | −0.0326 (11) |
C1—C2 | 1.352 (3) | C19—C20 | 1.388 (2) |
C1—C11 | 1.421 (3) | C19—H19 | 0.9300 |
C1—H1 | 0.9300 | C20—C21 | 1.389 (2) |
C2—C3 | 1.411 (3) | C20—H20 | 0.9300 |
C2—H2 | 0.9300 | C21—C22 | 1.388 (2) |
C3—C4 | 1.347 (3) | C21—C24 | 1.492 (2) |
C3—H3 | 0.9300 | C22—C23 | 1.382 (3) |
C4—C12 | 1.418 (3) | C22—H22 | 0.9300 |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
C5—C6 | 1.358 (3) | C24—C25 | 1.384 (3) |
C5—C14 | 1.411 (3) | C24—C29 | 1.388 (3) |
C5—H5 | 0.9300 | C25—C26 | 1.385 (3) |
C6—C7 | 1.407 (3) | C25—H25 | 0.9300 |
C6—H6 | 0.9300 | C26—C27 | 1.370 (3) |
C7—C8 | 1.347 (3) | C26—H26 | 0.9300 |
C7—H7 | 0.9300 | C27—C28 | 1.371 (3) |
C8—C13 | 1.425 (3) | C27—H27 | 0.9300 |
C8—H8 | 0.9300 | C28—C29 | 1.383 (3) |
C9—C11 | 1.392 (3) | C28—H28 | 0.9300 |
C9—C13 | 1.395 (3) | C29—H29 | 0.9300 |
C9—C15 | 1.508 (2) | C30—H30A | 0.9600 |
N10—C12 | 1.365 (2) | C30—H30B | 0.9600 |
N10—C14 | 1.374 (2) | C30—H30C | 0.9600 |
N10—C30 | 1.485 (2) | S31—O33 | 1.4212 (17) |
C11—C12 | 1.433 (2) | S31—O34 | 1.4216 (16) |
C13—C14 | 1.433 (2) | S31—O32 | 1.4356 (15) |
C15—O17 | 1.189 (2) | S31—C35 | 1.788 (3) |
C15—O16 | 1.326 (2) | C35—F37 | 1.305 (3) |
O16—C18 | 1.4289 (19) | C35—F38 | 1.325 (3) |
C18—C23 | 1.368 (3) | C35—F36 | 1.332 (3) |
C18—C19 | 1.370 (3) | ||
C2—C1—C11 | 120.93 (19) | C18—C19—H19 | 120.9 |
C2—C1—H1 | 119.5 | C20—C19—H19 | 120.9 |
C11—C1—H1 | 119.5 | C19—C20—C21 | 121.24 (16) |
C1—C2—C3 | 119.5 (2) | C19—C20—H20 | 119.4 |
C1—C2—H2 | 120.3 | C21—C20—H20 | 119.4 |
C3—C2—H2 | 120.3 | C22—C21—C20 | 118.23 (15) |
C4—C3—C2 | 122.1 (2) | C22—C21—C24 | 120.56 (15) |
C4—C3—H3 | 118.9 | C20—C21—C24 | 121.21 (15) |
C2—C3—H3 | 118.9 | C23—C22—C21 | 121.20 (17) |
C3—C4—C12 | 120.16 (18) | C23—C22—H22 | 119.4 |
C3—C4—H4 | 119.9 | C21—C22—H22 | 119.4 |
C12—C4—H4 | 119.9 | C18—C23—C22 | 118.63 (17) |
C6—C5—C14 | 120.09 (18) | C18—C23—H23 | 120.7 |
C6—C5—H5 | 120.0 | C22—C23—H23 | 120.7 |
C14—C5—H5 | 120.0 | C25—C24—C29 | 117.95 (16) |
C5—C6—C7 | 121.9 (2) | C25—C24—C21 | 121.59 (16) |
C5—C6—H6 | 119.0 | C29—C24—C21 | 120.46 (16) |
C7—C6—H6 | 119.0 | C24—C25—C26 | 120.71 (19) |
C8—C7—C6 | 119.76 (19) | C24—C25—H25 | 119.6 |
C8—C7—H7 | 120.1 | C26—C25—H25 | 119.6 |
C6—C7—H7 | 120.1 | C27—C26—C25 | 120.6 (2) |
C7—C8—C13 | 120.91 (18) | C27—C26—H26 | 119.7 |
C7—C8—H8 | 119.5 | C25—C26—H26 | 119.7 |
C13—C8—H8 | 119.5 | C26—C27—C28 | 119.42 (18) |
C11—C9—C13 | 121.68 (16) | C26—C27—H27 | 120.3 |
C11—C9—C15 | 119.01 (17) | C28—C27—H27 | 120.3 |
C13—C9—C15 | 119.29 (16) | C27—C28—C29 | 120.3 (2) |
C12—N10—C14 | 122.46 (14) | C27—C28—H28 | 119.9 |
C12—N10—C30 | 117.50 (15) | C29—C28—H28 | 119.9 |
C14—N10—C30 | 120.04 (16) | C28—C29—C24 | 121.01 (19) |
C9—C11—C1 | 122.90 (17) | C28—C29—H29 | 119.5 |
C9—C11—C12 | 118.22 (17) | C24—C29—H29 | 119.5 |
C1—C11—C12 | 118.87 (17) | N10—C30—H30A | 109.5 |
N10—C12—C4 | 121.77 (16) | N10—C30—H30B | 109.5 |
N10—C12—C11 | 119.83 (15) | H30A—C30—H30B | 109.5 |
C4—C12—C11 | 118.40 (18) | N10—C30—H30C | 109.5 |
C9—C13—C8 | 122.43 (16) | H30A—C30—H30C | 109.5 |
C9—C13—C14 | 118.75 (16) | H30B—C30—H30C | 109.5 |
C8—C13—C14 | 118.82 (17) | O33—S31—O34 | 115.21 (11) |
N10—C14—C5 | 122.53 (16) | O33—S31—O32 | 114.53 (10) |
N10—C14—C13 | 118.99 (16) | O34—S31—O32 | 115.76 (10) |
C5—C14—C13 | 118.47 (16) | O33—S31—C35 | 103.03 (14) |
O17—C15—O16 | 125.81 (16) | O34—S31—C35 | 102.70 (13) |
O17—C15—C9 | 123.99 (17) | O32—S31—C35 | 102.97 (12) |
O16—C15—C9 | 110.20 (15) | F37—C35—F38 | 108.1 (2) |
C15—O16—C18 | 116.83 (13) | F37—C35—F36 | 106.1 (2) |
C23—C18—C19 | 122.49 (16) | F38—C35—F36 | 107.6 (3) |
C23—C18—O16 | 118.58 (15) | F37—C35—S31 | 112.9 (2) |
C19—C18—O16 | 118.86 (16) | F38—C35—S31 | 111.5 (2) |
C18—C19—C20 | 118.19 (17) | F36—C35—S31 | 110.4 (2) |
C11—C1—C2—C3 | 0.4 (3) | C13—C9—C15—O17 | 97.2 (2) |
C1—C2—C3—C4 | −0.7 (4) | C11—C9—C15—O16 | 97.79 (19) |
C2—C3—C4—C12 | 0.3 (3) | C13—C9—C15—O16 | −83.2 (2) |
C14—C5—C6—C7 | −0.1 (3) | O17—C15—O16—C18 | 3.8 (3) |
C5—C6—C7—C8 | 1.4 (3) | C9—C15—O16—C18 | −175.79 (14) |
C6—C7—C8—C13 | −0.6 (3) | C15—O16—C18—C23 | 84.4 (2) |
C13—C9—C11—C1 | −177.44 (17) | C15—O16—C18—C19 | −98.6 (2) |
C15—C9—C11—C1 | 1.6 (3) | C23—C18—C19—C20 | −1.1 (3) |
C13—C9—C11—C12 | 2.3 (3) | O16—C18—C19—C20 | −178.00 (16) |
C15—C9—C11—C12 | −178.69 (16) | C18—C19—C20—C21 | −0.2 (3) |
C2—C1—C11—C9 | −179.9 (2) | C19—C20—C21—C22 | 1.0 (3) |
C2—C1—C11—C12 | 0.4 (3) | C19—C20—C21—C24 | −178.56 (17) |
C14—N10—C12—C4 | 179.19 (17) | C20—C21—C22—C23 | −0.4 (3) |
C30—N10—C12—C4 | 0.0 (2) | C24—C21—C22—C23 | 179.15 (18) |
C14—N10—C12—C11 | −1.1 (2) | C19—C18—C23—C22 | 1.7 (3) |
C30—N10—C12—C11 | 179.76 (16) | O16—C18—C23—C22 | 178.58 (17) |
C3—C4—C12—N10 | −179.76 (19) | C21—C22—C23—C18 | −0.9 (3) |
C3—C4—C12—C11 | 0.5 (3) | C22—C21—C24—C25 | 137.96 (19) |
C9—C11—C12—N10 | −0.3 (2) | C20—C21—C24—C25 | −42.5 (3) |
C1—C11—C12—N10 | 179.44 (16) | C22—C21—C24—C29 | −42.4 (3) |
C9—C11—C12—C4 | 179.45 (17) | C20—C21—C24—C29 | 137.10 (19) |
C1—C11—C12—C4 | −0.8 (3) | C29—C24—C25—C26 | −0.8 (3) |
C11—C9—C13—C8 | 176.29 (17) | C21—C24—C25—C26 | 178.82 (17) |
C15—C9—C13—C8 | −2.7 (3) | C24—C25—C26—C27 | −0.7 (3) |
C11—C9—C13—C14 | −2.9 (2) | C25—C26—C27—C28 | 1.4 (3) |
C15—C9—C13—C14 | 178.10 (15) | C26—C27—C28—C29 | −0.4 (3) |
C7—C8—C13—C9 | 179.55 (18) | C27—C28—C29—C24 | −1.2 (3) |
C7—C8—C13—C14 | −1.3 (3) | C25—C24—C29—C28 | 1.8 (3) |
C12—N10—C14—C5 | −179.76 (16) | C21—C24—C29—C28 | −177.87 (17) |
C30—N10—C14—C5 | −0.6 (3) | O33—S31—C35—F37 | 61.9 (2) |
C12—N10—C14—C13 | 0.5 (2) | O34—S31—C35—F37 | −178.0 (2) |
C30—N10—C14—C13 | 179.62 (16) | O32—S31—C35—F37 | −57.4 (2) |
C6—C5—C14—N10 | 178.39 (19) | O33—S31—C35—F38 | −60.0 (2) |
C6—C5—C14—C13 | −1.8 (3) | O34—S31—C35—F38 | 60.1 (2) |
C9—C13—C14—N10 | 1.5 (2) | O32—S31—C35—F38 | −179.3 (2) |
C8—C13—C14—N10 | −177.72 (16) | O33—S31—C35—F36 | −179.51 (19) |
C9—C13—C14—C5 | −178.30 (16) | O34—S31—C35—F36 | −59.5 (2) |
C8—C13—C14—C5 | 2.5 (2) | O32—S31—C35—F36 | 61.1 (2) |
C11—C9—C15—O17 | −81.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O33i | 0.93 | 2.58 | 3.228 (3) | 127 |
C7—H7···O34 | 0.93 | 2.59 | 3.431 (3) | 151 |
C8—H8···O32 | 0.93 | 2.52 | 3.335 (2) | 147 |
C22—H22···O33ii | 0.93 | 2.51 | 3.271 (3) | 140 |
C28—H28···O34iii | 0.93 | 2.52 | 3.429 (3) | 166 |
C30—H30A···O17i | 0.96 | 2.55 | 3.125 (2) | 118 |
C29—H29···Cg2iv | 0.93 | 2.81 | 3.417 (2) | 123 |
C30—H30A···Cg4i | 0.96 | 2.83 | 3.683 (2) | 148 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z+1/2; (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C27H20NO2+·CF3SO3− |
Mr | 539.52 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 9.4619 (2), 12.4558 (5), 20.7903 (7) |
β (°) | 94.559 (3) |
V (Å3) | 2442.50 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.6 × 0.12 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.887, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42490, 4408, 3454 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.112, 1.05 |
No. of reflections | 4408 |
No. of parameters | 344 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.39 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O33i | 0.93 | 2.58 | 3.228 (3) | 127 |
C7—H7···O34 | 0.93 | 2.59 | 3.431 (3) | 151 |
C8—H8···O32 | 0.93 | 2.52 | 3.335 (2) | 147 |
C22—H22···O33ii | 0.93 | 2.51 | 3.271 (3) | 140 |
C28—H28···O34iii | 0.93 | 2.52 | 3.429 (3) | 166 |
C30—H30A···O17i | 0.96 | 2.55 | 3.125 (2) | 118 |
C29—H29···Cg2iv | 0.93 | 2.81 | 3.417 (2) | 123 |
C30—H30A···Cg4i | 0.96 | 2.83 | 3.683 (2) | 148 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z+1/2; (iv) x+1, y, z. |
I | J | CgI···CgJ | Dihedral angle | CgIPerp | CgJPerp | CgIOffset | CgJOffset |
1 | 1v | 3.993 (2) | 0 | 3.609 (2) | 3.609 (2) | 1.709 (2) | 1.709 (2) |
1 | 3v | 3.668 (2) | 2.0 | 3.583 (2) | 3.578 (2) | 0.785 (2) | 0.807 (2) |
2 | 3v | 3.944 (2) | 2.4 | 3.507 (2) | 3.577 (2) | 1.804 (2) | 1.661 (2) |
Symmetry codes: (v) -x, -y+2, -z+1. Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively. |
Acknowledgements
The financing of this work by State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010 is acknowledged.
References
Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett., 14, 2313–2317. Web of Science CrossRef PubMed CAS Google Scholar
Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611. Web of Science CrossRef Google Scholar
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415–439. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem., 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There has long been interest in phenyl 10-methylacridinium-9-carboxylates, owing to their distinctive chemiluminogenic features (Rak et al., 1999; Dodeigne et al., 2000; Zomer & Jacquemijns, 2001). Compounds of this kind are oxidized by hydrogen peroxide or other peroxides in alkaline media: the phenoxycarbonyl fragments are removed and the rest of the molecules are converted to electronically excited, light-emitting 10-methyl-9-acridinones. The above-mentioned chemiluminescence is the basis for using of phenyl 10-methylacridinium-9-carboxylates as chemiluminescent indicators, or as chemiluminogenic fragments of the chemiluminescent labels (Dodeigne et al., 2000; Zomer & Jacquemijns, 2001) applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes and DNA fragments (Becker et al., 1999; Adamczyk et al., 2004). As the structure of the phenyl fragment affects the efficiency of chemiluminescence (Zomer & Jacquemijns, 2001), we undertook investigations to enrich our knowledge of this effect. Here, we discuss the crystal structure of phenyl 10-methylacridinium-9-carboxylate substituted by phenyl in the phenyl fragment. The phenyl group, which enlarges the phenoxycarbonyl fragment removed during oxidation, may influence the stability and chemiluminescent efficiency of the compound investigated.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007, 2008). With respective average deviations from planarity of 0.026 (2) Å and 0.006 (2) Å, the acridine and benzene (C18—C23) ring systems in the cation are oriented at 10.6 (1)°. The C18—C23 and C24—C29 benzene ring systems, with respective average deviations from planarity of 0.006 (2) Å and 0.007 (2) Å, are mutually oriented at a dihedral angle of 42.9 (1)°. The carboxy group is twisted at an angle of 82.5 (1)° relative to the acridine skeleton. The mean planes of the acridine moieties are either parallel or are inclined at an angle of 21.1 (1)°.
In the crystal structure, the inversely oriented cations form dimers through multidirectional π–π interactions involving acridine moieties (Table 2, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–H···π (Table 1, Fig. 2) interactions to neighboring cations, and by C–H···O (Table 1, Fig. 2) interactions to neighboring anions. The C–H···O interactions are of the hydrogen-bond type (Steiner, 1999; Bianchi et al., 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the π–π interactions (Hunter & Sanders, 1990). The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.