organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o770-o771

9-(Bi­phenyl-4-yl­oxycarbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 24 February 2009; accepted 2 March 2009; online 14 March 2009)

In the crystal structure of the title compound, C27H20NO2+·CF3SO3, the cations form inversion dimers through ππ inter­actions between the acridine ring systems [centroid-centroid distances = 3.668 (2)–3.994 (2) Å]. These dimers are further linked by C—H⋯O and C—H⋯π inter­actions. The cation and the anion are connected by C—H⋯O inter­actions. The mean plane of the acridine ring system makes dihedral angles of 10.6 (1) and 82.5 (1)°, respectively, with the adjacent phenyl ring and the carb­oxy group. The two phenyl rings of the biphenyl group are oriented at 42.9 (1)°.

Related literature

For general background, see: Adamczyk et al. (2004[Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett., 14, 2313-2317.]); Becker et al. (1999[Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601-5611.]); Dodeigne et al. (2000[Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415-439.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem., 64, 3002-3008.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2007[Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484-o4485.], 2008[Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372-o373.]). For mol­ecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Steiner (1999[Steiner, T. (1999). Chem. Commun. pp. 313-314.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Sikorski et al. (2007[Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484-o4485.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20NO2+·CF3SO3

  • Mr = 539.52

  • Monoclinic, P 21 /c

  • a = 9.4619 (2) Å

  • b = 12.4558 (5) Å

  • c = 20.7903 (7) Å

  • β = 94.559 (3)°

  • V = 2442.50 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.6 × 0.12 × 0.1 mm

Data collection
  • Oxford Diffraction GEMINI R ULTRA Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.887, Tmax = 0.977

  • 42490 measured reflections

  • 4408 independent reflections

  • 3454 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.05

  • 4408 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O33i 0.93 2.58 3.228 (3) 127
C7—H7⋯O34 0.93 2.59 3.431 (3) 151
C8—H8⋯O32 0.93 2.52 3.335 (2) 147
C22—H22⋯O33ii 0.93 2.51 3.271 (3) 140
C28—H28⋯O34iii 0.93 2.52 3.429 (3) 166
C30—H30A⋯O17i 0.96 2.55 3.125 (2) 118
C29—H29⋯Cg2iv 0.93 2.81 3.417 (2) 123
C30—H30ACg4i 0.96 2.83 3.683 (2) 148
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z. Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.

Table 2
ππ Interactions (Å,°)

I J CgICgJ Dihedral angle CgIPerp CgJPerp CgIOffset CgJOffset
1 1v 3.993 (2) 0 3.609 (2) 3.609 (2) 1.709 (2) 1.709 (2)
1 3v 3.668 (2) 2.0 3.583 (2) 3.578 (2) 0.785 (2) 0.807 (2)
2 3v 3.944 (2) 2.4 3.507 (2) 3.577 (2) 1.804 (2) 1.661 (2)
Symmetry codes: (v) -x, -y+2, -z+1. Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There has long been interest in phenyl 10-methylacridinium-9-carboxylates, owing to their distinctive chemiluminogenic features (Rak et al., 1999; Dodeigne et al., 2000; Zomer & Jacquemijns, 2001). Compounds of this kind are oxidized by hydrogen peroxide or other peroxides in alkaline media: the phenoxycarbonyl fragments are removed and the rest of the molecules are converted to electronically excited, light-emitting 10-methyl-9-acridinones. The above-mentioned chemiluminescence is the basis for using of phenyl 10-methylacridinium-9-carboxylates as chemiluminescent indicators, or as chemiluminogenic fragments of the chemiluminescent labels (Dodeigne et al., 2000; Zomer & Jacquemijns, 2001) applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes and DNA fragments (Becker et al., 1999; Adamczyk et al., 2004). As the structure of the phenyl fragment affects the efficiency of chemiluminescence (Zomer & Jacquemijns, 2001), we undertook investigations to enrich our knowledge of this effect. Here, we discuss the crystal structure of phenyl 10-methylacridinium-9-carboxylate substituted by phenyl in the phenyl fragment. The phenyl group, which enlarges the phenoxycarbonyl fragment removed during oxidation, may influence the stability and chemiluminescent efficiency of the compound investigated.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007, 2008). With respective average deviations from planarity of 0.026 (2) Å and 0.006 (2) Å, the acridine and benzene (C18—C23) ring systems in the cation are oriented at 10.6 (1)°. The C18—C23 and C24—C29 benzene ring systems, with respective average deviations from planarity of 0.006 (2) Å and 0.007 (2) Å, are mutually oriented at a dihedral angle of 42.9 (1)°. The carboxy group is twisted at an angle of 82.5 (1)° relative to the acridine skeleton. The mean planes of the acridine moieties are either parallel or are inclined at an angle of 21.1 (1)°.

In the crystal structure, the inversely oriented cations form dimers through multidirectional ππ interactions involving acridine moieties (Table 2, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–H···π (Table 1, Fig. 2) interactions to neighboring cations, and by C–H···O (Table 1, Fig. 2) interactions to neighboring anions. The C–H···O interactions are of the hydrogen-bond type (Steiner, 1999; Bianchi et al., 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the ππ interactions (Hunter & Sanders, 1990). The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Dodeigne et al. (2000); Rak et al. (1999); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2007, 2008). For molecular interactions, see: Bianchi et al. (2004); Hunter & Sanders (1990); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2007). Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.

Experimental top

The compound was synthesized in three steps (Sikorski et al., 2007). First, 9-(chlorocarbonyl)-acridine was produced by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. Then, esterification with biphenyl-4-ol was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The biphenyl-4-yl acridine-9-carboxylate thus obtained was quaternalized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-[(biphenyl-4-yloxy)carbonyl]-10-methylacridinium salt was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether (yield 50%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 241–243 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π and ππ interactions by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x - 1, y, z; (ii) x, -y + 3/2, z + 1/2; (iii) x + 1, -y + 3/2, z + 1/2; (iv) x + 1, y, z; (v) -x, -y+2, -z + 1.]
9-(Biphenyl-4-yloxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C27H20NO2+·CF3SO3F(000) = 1112
Mr = 539.52Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1909 reflections
a = 9.4619 (2) Åθ = 3.0–29.2°
b = 12.4558 (5) ŵ = 0.20 mm1
c = 20.7903 (7) ÅT = 295 K
β = 94.559 (3)°Needle, yellow
V = 2442.50 (14) Å30.6 × 0.12 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
4408 independent reflections
Radiation source: Enhance (Mo) X-ray Source3454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.4002 pixels mm-1θmax = 25.3°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1414
Tmin = 0.887, Tmax = 0.977l = 2424
42490 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3778P]
where P = (Fo2 + 2Fc2)/3
4408 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C27H20NO2+·CF3SO3V = 2442.50 (14) Å3
Mr = 539.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4619 (2) ŵ = 0.20 mm1
b = 12.4558 (5) ÅT = 295 K
c = 20.7903 (7) Å0.6 × 0.12 × 0.1 mm
β = 94.559 (3)°
Data collection top
Oxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
4408 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3454 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.977Rint = 0.033
42490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
4408 reflectionsΔρmin = 0.39 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0826 (2)0.85546 (17)0.66803 (10)0.0559 (5)
H10.17940.84190.67430.067*
C20.0070 (2)0.8721 (2)0.71966 (11)0.0666 (6)
H20.05160.87050.76120.080*
C30.1399 (2)0.8920 (2)0.71009 (11)0.0661 (6)
H30.19130.90250.74590.079*
C40.2082 (2)0.89610 (17)0.65079 (10)0.0556 (5)
H40.30520.90970.64620.067*
C50.1940 (2)0.87413 (17)0.41735 (10)0.0533 (5)
H50.29130.88540.41140.064*
C60.1171 (2)0.86205 (18)0.36536 (11)0.0608 (6)
H60.16320.86520.32420.073*
C70.0303 (2)0.84498 (17)0.37199 (11)0.0589 (5)
H70.08070.83850.33560.071*
C80.0983 (2)0.83809 (16)0.43131 (10)0.0506 (5)
H80.19560.82610.43550.061*
C90.08977 (17)0.84149 (13)0.54978 (9)0.0411 (4)
N100.19839 (14)0.88388 (11)0.53452 (7)0.0409 (4)
C110.01625 (17)0.85832 (14)0.60431 (9)0.0426 (4)
C120.13276 (18)0.87986 (14)0.59538 (9)0.0432 (4)
C130.02305 (17)0.84892 (13)0.48766 (9)0.0407 (4)
C140.12638 (17)0.86960 (13)0.48029 (9)0.0405 (4)
C150.24609 (17)0.81633 (15)0.55824 (9)0.0442 (4)
O160.26663 (11)0.71126 (10)0.55470 (6)0.0468 (3)
O170.33626 (14)0.88239 (12)0.56714 (9)0.0750 (5)
C180.40924 (17)0.67406 (14)0.56630 (9)0.0397 (4)
C190.48541 (18)0.65153 (15)0.51460 (9)0.0453 (4)
H190.44650.66230.47260.054*
C200.62226 (18)0.61225 (15)0.52661 (8)0.0443 (4)
H200.67540.59620.49210.053*
C210.68130 (17)0.59638 (14)0.58923 (8)0.0378 (4)
C220.59895 (19)0.61933 (16)0.63985 (9)0.0472 (4)
H220.63660.60880.68210.057*
C230.46215 (19)0.65756 (16)0.62865 (9)0.0493 (5)
H230.40720.67180.66280.059*
C240.82954 (17)0.55657 (14)0.60215 (8)0.0385 (4)
C250.88247 (19)0.47452 (16)0.56618 (9)0.0497 (5)
H250.82430.44220.53360.060*
C261.0212 (2)0.44002 (18)0.57816 (11)0.0587 (5)
H261.05490.38420.55390.070*
C271.1092 (2)0.48737 (19)0.62543 (11)0.0603 (6)
H271.20290.46490.63270.072*
C281.0580 (2)0.56810 (19)0.66193 (11)0.0607 (6)
H281.11710.60030.69430.073*
C290.91906 (19)0.60188 (16)0.65086 (9)0.0505 (5)
H290.88500.65580.67650.061*
C300.35306 (18)0.90607 (18)0.52817 (11)0.0586 (5)
H30A0.40130.85380.55240.088*
H30B0.38750.90210.48350.088*
H30C0.37030.97660.54450.088*
S310.43886 (5)0.83310 (5)0.31913 (2)0.05338 (17)
O320.42879 (16)0.85116 (15)0.38681 (7)0.0738 (5)
O330.56626 (19)0.87108 (17)0.29520 (8)0.0896 (6)
O340.31337 (17)0.85327 (16)0.27869 (8)0.0865 (6)
C350.4565 (3)0.6904 (2)0.31430 (13)0.0827 (8)
F360.3429 (3)0.64219 (17)0.33492 (13)0.1497 (9)
F370.5652 (2)0.65377 (17)0.35025 (10)0.1352 (8)
F380.4689 (3)0.65853 (16)0.25421 (10)0.1447 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (10)0.0619 (13)0.0621 (13)0.0029 (9)0.0010 (9)0.0086 (10)
C20.0657 (14)0.0780 (16)0.0557 (13)0.0022 (12)0.0015 (11)0.0135 (11)
C30.0630 (13)0.0762 (16)0.0614 (14)0.0035 (11)0.0188 (11)0.0153 (11)
C40.0403 (10)0.0604 (13)0.0681 (14)0.0041 (9)0.0168 (10)0.0122 (10)
C50.0399 (10)0.0544 (12)0.0645 (13)0.0030 (9)0.0023 (9)0.0015 (10)
C60.0603 (13)0.0672 (15)0.0542 (12)0.0026 (11)0.0006 (10)0.0018 (10)
C70.0614 (13)0.0612 (13)0.0559 (13)0.0003 (10)0.0170 (10)0.0024 (10)
C80.0394 (9)0.0508 (12)0.0631 (13)0.0009 (8)0.0135 (9)0.0019 (9)
C90.0294 (8)0.0343 (10)0.0597 (11)0.0011 (7)0.0052 (8)0.0027 (8)
N100.0263 (7)0.0368 (8)0.0598 (10)0.0017 (6)0.0048 (6)0.0044 (7)
C110.0323 (8)0.0389 (10)0.0568 (11)0.0007 (7)0.0045 (8)0.0047 (8)
C120.0357 (9)0.0346 (10)0.0600 (12)0.0001 (7)0.0095 (8)0.0063 (8)
C130.0317 (8)0.0333 (9)0.0577 (11)0.0008 (7)0.0079 (8)0.0023 (8)
C140.0328 (8)0.0312 (9)0.0575 (11)0.0004 (7)0.0048 (8)0.0028 (7)
C150.0292 (9)0.0450 (11)0.0588 (12)0.0014 (8)0.0070 (8)0.0039 (8)
O160.0289 (6)0.0435 (7)0.0673 (8)0.0036 (5)0.0001 (5)0.0044 (6)
O170.0305 (7)0.0491 (9)0.1453 (16)0.0025 (6)0.0065 (8)0.0091 (9)
C180.0279 (8)0.0392 (10)0.0518 (11)0.0032 (7)0.0021 (7)0.0023 (7)
C190.0388 (9)0.0560 (12)0.0401 (10)0.0052 (8)0.0025 (8)0.0003 (8)
C200.0368 (9)0.0562 (12)0.0403 (10)0.0056 (8)0.0063 (8)0.0029 (8)
C210.0356 (9)0.0363 (9)0.0413 (9)0.0008 (7)0.0020 (7)0.0009 (7)
C220.0426 (10)0.0601 (12)0.0383 (10)0.0084 (9)0.0003 (8)0.0004 (8)
C230.0426 (10)0.0609 (12)0.0456 (11)0.0071 (9)0.0108 (8)0.0043 (9)
C240.0335 (8)0.0389 (10)0.0429 (10)0.0022 (7)0.0016 (7)0.0068 (7)
C250.0396 (9)0.0508 (12)0.0589 (12)0.0032 (8)0.0044 (8)0.0043 (9)
C260.0483 (11)0.0570 (13)0.0730 (14)0.0149 (10)0.0175 (10)0.0068 (10)
C270.0351 (10)0.0697 (15)0.0759 (14)0.0100 (10)0.0028 (10)0.0266 (12)
C280.0449 (11)0.0656 (14)0.0683 (14)0.0025 (10)0.0171 (10)0.0106 (11)
C290.0460 (10)0.0477 (11)0.0562 (12)0.0035 (9)0.0062 (9)0.0011 (9)
C300.0273 (9)0.0701 (14)0.0787 (15)0.0081 (9)0.0060 (9)0.0022 (11)
S310.0446 (3)0.0750 (4)0.0403 (3)0.0105 (2)0.0021 (2)0.0059 (2)
O320.0688 (10)0.1071 (13)0.0460 (9)0.0136 (9)0.0071 (7)0.0074 (8)
O330.0748 (11)0.1331 (16)0.0616 (10)0.0285 (11)0.0099 (8)0.0162 (10)
O340.0632 (10)0.1304 (16)0.0636 (10)0.0386 (10)0.0095 (8)0.0109 (10)
C350.094 (2)0.0887 (19)0.0651 (16)0.0174 (16)0.0063 (14)0.0031 (14)
F360.160 (2)0.1052 (16)0.185 (2)0.0438 (14)0.0162 (17)0.0355 (14)
F370.1460 (17)0.1334 (16)0.1238 (16)0.0835 (14)0.0050 (13)0.0290 (12)
F380.231 (3)0.1055 (14)0.0970 (14)0.0430 (15)0.0084 (15)0.0326 (11)
Geometric parameters (Å, º) top
C1—C21.352 (3)C19—C201.388 (2)
C1—C111.421 (3)C19—H190.9300
C1—H10.9300C20—C211.389 (2)
C2—C31.411 (3)C20—H200.9300
C2—H20.9300C21—C221.388 (2)
C3—C41.347 (3)C21—C241.492 (2)
C3—H30.9300C22—C231.382 (3)
C4—C121.418 (3)C22—H220.9300
C4—H40.9300C23—H230.9300
C5—C61.358 (3)C24—C251.384 (3)
C5—C141.411 (3)C24—C291.388 (3)
C5—H50.9300C25—C261.385 (3)
C6—C71.407 (3)C25—H250.9300
C6—H60.9300C26—C271.370 (3)
C7—C81.347 (3)C26—H260.9300
C7—H70.9300C27—C281.371 (3)
C8—C131.425 (3)C27—H270.9300
C8—H80.9300C28—C291.383 (3)
C9—C111.392 (3)C28—H280.9300
C9—C131.395 (3)C29—H290.9300
C9—C151.508 (2)C30—H30A0.9600
N10—C121.365 (2)C30—H30B0.9600
N10—C141.374 (2)C30—H30C0.9600
N10—C301.485 (2)S31—O331.4212 (17)
C11—C121.433 (2)S31—O341.4216 (16)
C13—C141.433 (2)S31—O321.4356 (15)
C15—O171.189 (2)S31—C351.788 (3)
C15—O161.326 (2)C35—F371.305 (3)
O16—C181.4289 (19)C35—F381.325 (3)
C18—C231.368 (3)C35—F361.332 (3)
C18—C191.370 (3)
C2—C1—C11120.93 (19)C18—C19—H19120.9
C2—C1—H1119.5C20—C19—H19120.9
C11—C1—H1119.5C19—C20—C21121.24 (16)
C1—C2—C3119.5 (2)C19—C20—H20119.4
C1—C2—H2120.3C21—C20—H20119.4
C3—C2—H2120.3C22—C21—C20118.23 (15)
C4—C3—C2122.1 (2)C22—C21—C24120.56 (15)
C4—C3—H3118.9C20—C21—C24121.21 (15)
C2—C3—H3118.9C23—C22—C21121.20 (17)
C3—C4—C12120.16 (18)C23—C22—H22119.4
C3—C4—H4119.9C21—C22—H22119.4
C12—C4—H4119.9C18—C23—C22118.63 (17)
C6—C5—C14120.09 (18)C18—C23—H23120.7
C6—C5—H5120.0C22—C23—H23120.7
C14—C5—H5120.0C25—C24—C29117.95 (16)
C5—C6—C7121.9 (2)C25—C24—C21121.59 (16)
C5—C6—H6119.0C29—C24—C21120.46 (16)
C7—C6—H6119.0C24—C25—C26120.71 (19)
C8—C7—C6119.76 (19)C24—C25—H25119.6
C8—C7—H7120.1C26—C25—H25119.6
C6—C7—H7120.1C27—C26—C25120.6 (2)
C7—C8—C13120.91 (18)C27—C26—H26119.7
C7—C8—H8119.5C25—C26—H26119.7
C13—C8—H8119.5C26—C27—C28119.42 (18)
C11—C9—C13121.68 (16)C26—C27—H27120.3
C11—C9—C15119.01 (17)C28—C27—H27120.3
C13—C9—C15119.29 (16)C27—C28—C29120.3 (2)
C12—N10—C14122.46 (14)C27—C28—H28119.9
C12—N10—C30117.50 (15)C29—C28—H28119.9
C14—N10—C30120.04 (16)C28—C29—C24121.01 (19)
C9—C11—C1122.90 (17)C28—C29—H29119.5
C9—C11—C12118.22 (17)C24—C29—H29119.5
C1—C11—C12118.87 (17)N10—C30—H30A109.5
N10—C12—C4121.77 (16)N10—C30—H30B109.5
N10—C12—C11119.83 (15)H30A—C30—H30B109.5
C4—C12—C11118.40 (18)N10—C30—H30C109.5
C9—C13—C8122.43 (16)H30A—C30—H30C109.5
C9—C13—C14118.75 (16)H30B—C30—H30C109.5
C8—C13—C14118.82 (17)O33—S31—O34115.21 (11)
N10—C14—C5122.53 (16)O33—S31—O32114.53 (10)
N10—C14—C13118.99 (16)O34—S31—O32115.76 (10)
C5—C14—C13118.47 (16)O33—S31—C35103.03 (14)
O17—C15—O16125.81 (16)O34—S31—C35102.70 (13)
O17—C15—C9123.99 (17)O32—S31—C35102.97 (12)
O16—C15—C9110.20 (15)F37—C35—F38108.1 (2)
C15—O16—C18116.83 (13)F37—C35—F36106.1 (2)
C23—C18—C19122.49 (16)F38—C35—F36107.6 (3)
C23—C18—O16118.58 (15)F37—C35—S31112.9 (2)
C19—C18—O16118.86 (16)F38—C35—S31111.5 (2)
C18—C19—C20118.19 (17)F36—C35—S31110.4 (2)
C11—C1—C2—C30.4 (3)C13—C9—C15—O1797.2 (2)
C1—C2—C3—C40.7 (4)C11—C9—C15—O1697.79 (19)
C2—C3—C4—C120.3 (3)C13—C9—C15—O1683.2 (2)
C14—C5—C6—C70.1 (3)O17—C15—O16—C183.8 (3)
C5—C6—C7—C81.4 (3)C9—C15—O16—C18175.79 (14)
C6—C7—C8—C130.6 (3)C15—O16—C18—C2384.4 (2)
C13—C9—C11—C1177.44 (17)C15—O16—C18—C1998.6 (2)
C15—C9—C11—C11.6 (3)C23—C18—C19—C201.1 (3)
C13—C9—C11—C122.3 (3)O16—C18—C19—C20178.00 (16)
C15—C9—C11—C12178.69 (16)C18—C19—C20—C210.2 (3)
C2—C1—C11—C9179.9 (2)C19—C20—C21—C221.0 (3)
C2—C1—C11—C120.4 (3)C19—C20—C21—C24178.56 (17)
C14—N10—C12—C4179.19 (17)C20—C21—C22—C230.4 (3)
C30—N10—C12—C40.0 (2)C24—C21—C22—C23179.15 (18)
C14—N10—C12—C111.1 (2)C19—C18—C23—C221.7 (3)
C30—N10—C12—C11179.76 (16)O16—C18—C23—C22178.58 (17)
C3—C4—C12—N10179.76 (19)C21—C22—C23—C180.9 (3)
C3—C4—C12—C110.5 (3)C22—C21—C24—C25137.96 (19)
C9—C11—C12—N100.3 (2)C20—C21—C24—C2542.5 (3)
C1—C11—C12—N10179.44 (16)C22—C21—C24—C2942.4 (3)
C9—C11—C12—C4179.45 (17)C20—C21—C24—C29137.10 (19)
C1—C11—C12—C40.8 (3)C29—C24—C25—C260.8 (3)
C11—C9—C13—C8176.29 (17)C21—C24—C25—C26178.82 (17)
C15—C9—C13—C82.7 (3)C24—C25—C26—C270.7 (3)
C11—C9—C13—C142.9 (2)C25—C26—C27—C281.4 (3)
C15—C9—C13—C14178.10 (15)C26—C27—C28—C290.4 (3)
C7—C8—C13—C9179.55 (18)C27—C28—C29—C241.2 (3)
C7—C8—C13—C141.3 (3)C25—C24—C29—C281.8 (3)
C12—N10—C14—C5179.76 (16)C21—C24—C29—C28177.87 (17)
C30—N10—C14—C50.6 (3)O33—S31—C35—F3761.9 (2)
C12—N10—C14—C130.5 (2)O34—S31—C35—F37178.0 (2)
C30—N10—C14—C13179.62 (16)O32—S31—C35—F3757.4 (2)
C6—C5—C14—N10178.39 (19)O33—S31—C35—F3860.0 (2)
C6—C5—C14—C131.8 (3)O34—S31—C35—F3860.1 (2)
C9—C13—C14—N101.5 (2)O32—S31—C35—F38179.3 (2)
C8—C13—C14—N10177.72 (16)O33—S31—C35—F36179.51 (19)
C9—C13—C14—C5178.30 (16)O34—S31—C35—F3659.5 (2)
C8—C13—C14—C52.5 (2)O32—S31—C35—F3661.1 (2)
C11—C9—C15—O1781.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O33i0.932.583.228 (3)127
C7—H7···O340.932.593.431 (3)151
C8—H8···O320.932.523.335 (2)147
C22—H22···O33ii0.932.513.271 (3)140
C28—H28···O34iii0.932.523.429 (3)166
C30—H30A···O17i0.962.553.125 (2)118
C29—H29···Cg2iv0.932.813.417 (2)123
C30—H30A···Cg4i0.962.833.683 (2)148
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H20NO2+·CF3SO3
Mr539.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.4619 (2), 12.4558 (5), 20.7903 (7)
β (°) 94.559 (3)
V3)2442.50 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.6 × 0.12 × 0.1
Data collection
DiffractometerOxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.887, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
42490, 4408, 3454
Rint0.033
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.05
No. of reflections4408
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O33i0.932.583.228 (3)127
C7—H7···O340.932.593.431 (3)151
C8—H8···O320.932.523.335 (2)147
C22—H22···O33ii0.932.513.271 (3)140
C28—H28···O34iii0.932.523.429 (3)166
C30—H30A···O17i0.962.553.125 (2)118
C29—H29···Cg2iv0.932.813.417 (2)123
C30—H30A···Cg4i0.962.833.683 (2)148
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y, z.
ππ Interactions (Å,°) top
IJCgI···CgJDihedral angleCgIPerpCgJPerpCgIOffsetCgJOffset
11v3.993 (2)03.609 (2)3.609 (2)1.709 (2)1.709 (2)
13v3.668 (2)2.03.583 (2)3.578 (2)0.785 (2)0.807 (2)
23v3.944 (2)2.43.507 (2)3.577 (2)1.804 (2)1.661 (2)
Symmetry codes: (v) -x, -y+2, -z+1.

Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp and CgJPerp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgIOffset and CgJOffset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.
 

Acknowledgements

The financing of this work by State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010 is acknowledged.

References

First citationAdamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett., 14, 2313–2317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBecker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611.  Web of Science CrossRef Google Scholar
First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415–439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem., 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1999). Chem. Commun. pp. 313–314.  Web of Science CrossRef Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o770-o771
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds