organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-phenethyl­benzene­sulfonamide

aNicholas Piramal Research Centre, Nicholas Piramal India Limited, Mumbai 400 063, India, bDepartment of Chemistry, SRM University, Ramapuram, Chennai 600 089, India, cDepartment of Physics, Panimalar Institute of Technology, Chennai 600 095, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 18 March 2009; accepted 24 March 2009; online 31 March 2009)

In the title compound, C14H13Cl2NO2S, the dihedral angle between the phenyl ring and the benzene ring is 69.94 (9)°. Two short intra­molecular C—H⋯O contacts occur and a weak inter­molecular C—H⋯π inter­action is seen in the crystal.

Related literature

For the biological activity of sulfonamides, see: Gadad et al. (2000[Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853-855.]); Misra et al. (1982[Misra, V. S., Saxena, V. K. & Srivastava, R. J. (1982). J. Indian Chem. Soc. 59, 781-781.]); Zani & Vicini (1998[Zani, F. & Vicini, P. (1998). Arch. Pharm. 331, 219-219.]); Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309-309.]); Supuran et al. (1998[Supuran, C. T., Scozzafava, A., Jurca, B. C. & Iiies, M. A. (1998). Eur. J. Med. Chem. 33, 83-83.]); Renzi et al. (2000[Renzi, G., Scozzafava, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 673-673.]); Li et al. (1995[Li, J. J., Anderson, D., Burton, E. G., Cogburn, J. N., Collins, J. T., Garland, D. J., Gregory, S. A., Huang, H. C., Isakson, P. C., Koboldt, C. M., Logusch, E. W., Norton, M. B., Perkins, W. E., Reinhard, E. J., Seibert, K., Veenhuizem, A. W., Zang, Y. & Reitz, D. B. (1995). J. Med. Chem. 38, 4570-4570.]); Yoshino et al. (1992[Yoshino, H., Ueda, N., Niijma, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T., Nagasu, T., Tsukahara, K., Lijima, A. & Kitoh, K. (1992). J. Med. Chem. 35, 2496-2496.]). For related structures, see: Zhang et al. (2006[Zhang, X.-L., Yan, Y.-P., Ding, L. & Luo, L.-T. (2006). Acta Cryst. E62, o5809-o5810.]); Andrighetti-Fröhner et al. (2007[Andrighetti-Fröhner, C. R., Joussef, A. C., Simões, C. M. O., Nunes, R. J. & Bortoluzzi, A. J. (2007). Acta Cryst. E63, o3275-o3276.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO2S

  • Mr = 330.21

  • Orthorhombic, P 21 21 21

  • a = 5.5618 (5) Å

  • b = 10.9915 (8) Å

  • c = 25.045 (2) Å

  • V = 1531.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.936

  • 10930 measured reflections

  • 3511 independent reflections

  • 2955 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.05

  • 3511 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1455 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O2 0.97 2.51 2.953 (3) 108
C14—H14⋯O2 0.93 2.44 2.848 (3) 106
C6—H6⋯Cg1i 0.93 2.96 3.694 (3) 137
Symmetry code: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamides have a variety of biological activities such as antibacterial (Gadad et al., 2000; Misra et al., 1982; Zani & Vicini, 1998), insulin releasing (Maren, 1976), carbonic anhydrase inhibitory (Supuran et al., 1998; Renzi et al., 2000), anti-inflammatory (Li et al., 1995) and antitumor (Yoshino et al., 1992) activities.

The geometric parameters in the title compound, (I), agree with the reported values of similar structure (Zhang et al., 2006; Andrighetti-Fröhner et al., 2007). The dihedral angle between the phenyl ring (C9—C14) and benzene ring (C1—C6) is 69.94 (9)°. The geometry around the S1 atom is distorted from a regular tetrahedron, with the largest deviations observed for O—S—O [O1—S1—O2 118.92 (14)°] and O—S—N [O1—S1—N1 107.87 (14) °] angles. The widening of the angles may be due to repulsive interactions between the two short S=O bonds.

The crystal structure is stabilized by weak intramolecular C—H···O interaction. The C8—H8B···O2 and C14—H14···O2 interactions each generate an S(5) graph set motif, and C8—H8B···O2 and C14—H14···O2 interactions together constitute a pair of bifurcated acceptor bonds, generating an R21(8) motif (Bernstein et al., 1995). The crystal packing is stabilized by a weak C—H···π (Table 1) interaction and a ππ interaction [Cg1···Cg2 (2 - x, 1/2 + y, 1/2 - z) distance of 4.3598 (18) Å; Cg1 and Cg2 are the centroids of rings C1—C6 and C9—C14, respectively].

Related literature top

For the biological activity of sulfonamides, see: Gadad et al. (2000); Misra et al. (1982); Zani & Vicini (1998); Maren (1976); Supuran et al. (1998); Renzi et al. (2000); Li et al. (1995); Yoshino et al. (1992). For related structures, see: Zhang et al. (2006); Andrighetti-Fröhner et al. (2007); For graph-set notation, see: Bernstein et al. (1995). Cg1 is the centroid of the C1–C6 ring.

Experimental top

About 1 g (8 mmol) of 2-phenylethyl amine is dissolved in 20 ml of dichloromethane. 1.3 g (16 mmol) of pyridine is added into the reaction mass. The above mixture is stirred for 5 min. To this, 2.41 g (9.8 mmol) of 2, 4-dichlorobenzene-1-sulfonyl chloride is added and heated to 35 - 40 ° C for 6 hrs. The reaction mass is then cooled to the room temperature and 20 ml of water is added to it. The aquous layer is separated. The organic layer is washed with 10% sodium chloride solution and dried over 2 g of anhydrous sodium sulfate. The excess solvent is removed under vacuum. The crude compound is purified through column chromatography using hexane and ethyl acetate as eluants.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for CH2, and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
2,4-Dichloro-N-phenethylbenzenesulfonamide top
Crystal data top
C14H13Cl2NO2SF(000) = 680
Mr = 330.21Dx = 1.433 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abθ = 1.6–27.6°
a = 5.5618 (5) ŵ = 0.56 mm1
b = 10.9915 (8) ÅT = 295 K
c = 25.045 (2) ÅBlock, white
V = 1531.0 (2) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3511 independent reflections
Radiation source: fine-focus sealed tube2955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.896, Tmax = 0.936k = 813
10930 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3511 reflectionsΔρmax = 0.27 e Å3
181 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1455 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C14H13Cl2NO2SV = 1531.0 (2) Å3
Mr = 330.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5618 (5) ŵ = 0.56 mm1
b = 10.9915 (8) ÅT = 295 K
c = 25.045 (2) Å0.20 × 0.18 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2955 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.936Rint = 0.026
10930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.27 e Å3
S = 1.05Δρmin = 0.24 e Å3
3511 reflectionsAbsolute structure: Flack (1983), 1455 Friedel pairs
181 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77658 (10)0.02339 (6)0.22502 (2)0.04851 (16)
Cl21.21110 (11)0.02059 (7)0.30970 (3)0.06133 (19)
Cl10.8648 (3)0.32987 (9)0.43460 (4)0.1235 (5)
C11.1601 (5)0.2812 (2)0.07918 (9)0.0492 (6)
C21.3486 (6)0.3577 (3)0.08766 (14)0.0721 (9)
H21.46640.33680.11230.087*
C31.3671 (7)0.4658 (4)0.06019 (18)0.0914 (11)
H31.49720.51700.06640.110*
C41.1958 (8)0.4980 (3)0.02405 (14)0.0816 (10)
H41.20910.57070.00530.098*
C51.0062 (7)0.4235 (3)0.01560 (11)0.0727 (9)
H50.88780.44570.00870.087*
C60.9872 (5)0.3153 (3)0.04272 (10)0.0578 (7)
H60.85640.26460.03640.069*
C71.1389 (6)0.1609 (3)0.10805 (10)0.0649 (8)
H7A1.04330.10560.08660.078*
H7B1.29790.12570.11190.078*
C81.0261 (5)0.1724 (2)0.16216 (9)0.0541 (6)
H8A1.12500.22420.18460.065*
H8B0.86900.21000.15880.065*
C90.8116 (4)0.1116 (2)0.28395 (9)0.0413 (5)
C100.9959 (5)0.0905 (2)0.32017 (9)0.0464 (5)
C111.0144 (6)0.1593 (3)0.36615 (11)0.0625 (7)
H111.13900.14600.39020.075*
C120.8444 (8)0.2484 (2)0.37570 (12)0.0683 (9)
C130.6653 (7)0.2725 (3)0.34033 (12)0.0649 (8)
H130.55500.33410.34720.078*
C140.6490 (5)0.2044 (2)0.29421 (11)0.0527 (6)
H140.52770.22090.26970.063*
O10.7876 (4)0.10180 (17)0.23927 (8)0.0660 (5)
O20.5657 (3)0.0685 (2)0.19918 (7)0.0652 (5)
N11.0011 (4)0.05205 (19)0.18713 (7)0.0525 (5)
H11.10750.00320.18130.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (3)0.0475 (3)0.0506 (3)0.0037 (3)0.0090 (2)0.0003 (3)
Cl20.0503 (3)0.0567 (4)0.0770 (4)0.0050 (3)0.0114 (3)0.0147 (3)
Cl10.2342 (16)0.0666 (5)0.0696 (5)0.0090 (8)0.0224 (7)0.0190 (4)
C10.0556 (14)0.0533 (14)0.0387 (11)0.0056 (12)0.0057 (10)0.0047 (10)
C20.0584 (17)0.077 (2)0.081 (2)0.0036 (16)0.0144 (15)0.0071 (16)
C30.071 (2)0.077 (2)0.127 (3)0.027 (2)0.006 (2)0.016 (2)
C40.112 (3)0.0536 (18)0.079 (2)0.0024 (19)0.033 (2)0.0067 (15)
C50.088 (2)0.075 (2)0.0555 (16)0.015 (2)0.0057 (16)0.0062 (14)
C60.0588 (16)0.0628 (17)0.0519 (13)0.0051 (14)0.0074 (12)0.0016 (12)
C70.089 (2)0.0573 (17)0.0487 (14)0.0127 (16)0.0044 (14)0.0025 (12)
C80.0655 (16)0.0460 (14)0.0509 (13)0.0075 (13)0.0051 (12)0.0006 (11)
C90.0406 (11)0.0402 (12)0.0431 (11)0.0074 (9)0.0018 (9)0.0066 (9)
C100.0468 (13)0.0409 (13)0.0514 (12)0.0059 (10)0.0047 (11)0.0113 (10)
C110.083 (2)0.0507 (16)0.0538 (14)0.0166 (15)0.0199 (14)0.0106 (12)
C120.111 (3)0.0363 (14)0.0576 (15)0.0069 (15)0.0049 (18)0.0012 (11)
C130.084 (2)0.0424 (15)0.0684 (17)0.0063 (14)0.0066 (16)0.0037 (13)
C140.0527 (14)0.0469 (14)0.0584 (14)0.0022 (11)0.0003 (11)0.0085 (11)
O10.0804 (14)0.0448 (10)0.0729 (12)0.0147 (10)0.0121 (11)0.0008 (8)
O20.0520 (10)0.0814 (14)0.0622 (11)0.0011 (9)0.0156 (9)0.0014 (10)
N10.0615 (13)0.0455 (12)0.0505 (11)0.0137 (10)0.0049 (10)0.0022 (9)
Geometric parameters (Å, º) top
S1—O11.423 (2)C6—H60.9300
S1—O21.429 (2)C7—C81.499 (4)
S1—N11.600 (2)C7—H7A0.9700
S1—C91.777 (2)C7—H7B0.9700
Cl2—C101.730 (3)C8—N11.470 (3)
Cl1—C121.730 (3)C8—H8A0.9700
C1—C21.361 (4)C8—H8B0.9700
C1—C61.378 (4)C9—C141.387 (3)
C1—C71.512 (4)C9—C101.388 (3)
C2—C31.376 (5)C10—C111.382 (4)
C2—H20.9300C11—C121.382 (5)
C3—C41.361 (5)C11—H110.9300
C3—H30.9300C12—C131.359 (5)
C4—C51.351 (5)C13—C141.379 (4)
C4—H40.9300C13—H130.9300
C5—C61.374 (4)C14—H140.9300
C5—H50.9300N1—H10.8600
O1—S1—O2119.00 (13)H7A—C7—H7B107.8
O1—S1—N1107.80 (12)N1—C8—C7110.4 (2)
O2—S1—N1107.69 (11)N1—C8—H8A109.6
O1—S1—C9108.35 (11)C7—C8—H8A109.6
O2—S1—C9106.06 (11)N1—C8—H8B109.6
N1—S1—C9107.44 (11)C7—C8—H8B109.6
C2—C1—C6118.2 (3)H8A—C8—H8B108.1
C2—C1—C7121.8 (3)C14—C9—C10118.9 (2)
C6—C1—C7120.0 (3)C14—C9—S1118.93 (18)
C1—C2—C3120.9 (3)C10—C9—S1122.15 (19)
C1—C2—H2119.6C11—C10—C9120.5 (3)
C3—C2—H2119.6C11—C10—Cl2117.5 (2)
C4—C3—C2120.3 (3)C9—C10—Cl2122.02 (19)
C4—C3—H3119.8C12—C11—C10118.8 (3)
C2—C3—H3119.8C12—C11—H11120.6
C5—C4—C3119.5 (3)C10—C11—H11120.6
C5—C4—H4120.2C13—C12—C11121.8 (3)
C3—C4—H4120.2C13—C12—Cl1120.2 (3)
C4—C5—C6120.5 (3)C11—C12—Cl1118.0 (3)
C4—C5—H5119.8C12—C13—C14119.2 (3)
C6—C5—H5119.8C12—C13—H13120.4
C5—C6—C1120.6 (3)C14—C13—H13120.4
C5—C6—H6119.7C13—C14—C9120.7 (3)
C1—C6—H6119.7C13—C14—H14119.6
C8—C7—C1113.0 (2)C9—C14—H14119.6
C8—C7—H7A109.0C8—N1—S1120.22 (17)
C1—C7—H7A109.0C8—N1—H1119.9
C8—C7—H7B109.0S1—N1—H1119.9
C1—C7—H7B109.0
C6—C1—C2—C30.6 (5)C14—C9—C10—C111.1 (3)
C7—C1—C2—C3178.7 (3)S1—C9—C10—C11178.63 (19)
C1—C2—C3—C40.2 (6)C14—C9—C10—Cl2178.26 (18)
C2—C3—C4—C50.5 (6)S1—C9—C10—Cl22.0 (3)
C3—C4—C5—C60.8 (5)C9—C10—C11—C120.9 (4)
C4—C5—C6—C10.4 (5)Cl2—C10—C11—C12179.7 (2)
C2—C1—C6—C50.3 (4)C10—C11—C12—C132.3 (5)
C7—C1—C6—C5179.0 (3)C10—C11—C12—Cl1177.8 (2)
C2—C1—C7—C884.4 (4)C11—C12—C13—C141.6 (5)
C6—C1—C7—C896.4 (3)Cl1—C12—C13—C14178.5 (2)
C1—C7—C8—N1177.6 (2)C12—C13—C14—C90.5 (4)
O1—S1—C9—C14130.6 (2)C10—C9—C14—C131.8 (4)
O2—S1—C9—C141.7 (2)S1—C9—C14—C13177.9 (2)
N1—S1—C9—C14113.21 (19)C7—C8—N1—S1146.0 (2)
O1—S1—C9—C1049.2 (2)O1—S1—N1—C8174.72 (19)
O2—S1—C9—C10178.00 (18)O2—S1—N1—C845.2 (2)
N1—S1—C9—C1067.0 (2)C9—S1—N1—C868.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O20.972.512.953 (3)108
C14—H14···O20.932.442.848 (3)106
C6—H6···Cg1i0.932.963.694 (3)137
Symmetry code: (i) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO2S
Mr330.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.5618 (5), 10.9915 (8), 25.045 (2)
V3)1531.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.896, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
10930, 3511, 2955
Rint0.026
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.05
No. of reflections3511
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24
Absolute structureFlack (1983), 1455 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O20.972.512.953 (3)108
C14—H14···O20.932.442.848 (3)106
C6—H6···Cg1i0.932.963.694 (3)137
Symmetry code: (i) x1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge SAIF IIT, Chennai, for the data collection.

References

First citationAndrighetti-Fröhner, C. R., Joussef, A. C., Simões, C. M. O., Nunes, R. J. & Bortoluzzi, A. J. (2007). Acta Cryst. E63, o3275–o3276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853–855.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J. J., Anderson, D., Burton, E. G., Cogburn, J. N., Collins, J. T., Garland, D. J., Gregory, S. A., Huang, H. C., Isakson, P. C., Koboldt, C. M., Logusch, E. W., Norton, M. B., Perkins, W. E., Reinhard, E. J., Seibert, K., Veenhuizem, A. W., Zang, Y. & Reitz, D. B. (1995). J. Med. Chem. 38, 4570–4570.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309–309.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMisra, V. S., Saxena, V. K. & Srivastava, R. J. (1982). J. Indian Chem. Soc. 59, 781–781.  CAS Google Scholar
First citationRenzi, G., Scozzafava, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 673–673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Scozzafava, A., Jurca, B. C. & Iiies, M. A. (1998). Eur. J. Med. Chem. 33, 83–83.  Web of Science CrossRef CAS Google Scholar
First citationYoshino, H., Ueda, N., Niijma, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T., Nagasu, T., Tsukahara, K., Lijima, A. & Kitoh, K. (1992). J. Med. Chem. 35, 2496–2496.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZani, F. & Vicini, P. (1998). Arch. Pharm. 331, 219–219.  CrossRef CAS Google Scholar
First citationZhang, X.-L., Yan, Y.-P., Ding, L. & Luo, L.-T. (2006). Acta Cryst. E62, o5809–o5810.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds