metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m433-m434

A chiral three-dimensional network in poly[μ-4,4′-bi­pyridine-di-μ-formato-cadmium(II)]

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 24 December 2008; accepted 18 March 2009; online 25 March 2009)

In the title compound, [Cd(HCOO)2(C10H8N2)]n, the CdII ion, located on a position with 2.22 site symmetry, is surrounded by two 4,4′-bipyridine ligands and four formate ligands in a distorted octahedral CdN2O4 coordination. The 4,4′-bipyridine ligands bridge the metal ions, forming one-dimensional chains along different directions, which are further connected by formate ligands into a topologically (1010.124.14)(10)3 three-dimensional network.

Related literature

For the design and synthesis of coordination polymer complexes and their potential applications, see: Barbour (2006[Barbour, L. J. (2006). Chem. Commun. pp. 1163-1168.]); Biradha (2003[Biradha, K. (2003). CrystEngComm, 5, 374-384.]); Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]); Hosseini (2005[Hosseini, M. W. (2005). Acc. Chem. Res. 38, 313-323.]); O'Keeffe & Yaghi (2001[O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Papaefstathiou & MacGillivray (2003[Papaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169-184.]); Venkataraman et al. (1995[Venkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600-11601.]). For the 4,4′-bipyridine (4BPY) bridging ligand, see: Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Sharma (2001[Sharma, C. V. K. (2001). J. Chem. Educ. 78, 617-618.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]). For one-dimensional zigzag networks using 2,2′-bpy as the ancillary ligand, see: Park et al. (2001[Park, H. W., Sung, S. M., Min, K. S., Bang, H. & Suh, M. P. (2001). Eur. J. Inorg. Chem. pp. 2857-2863.]). For the doubly inter­penetrated square grid network {[Zn(bipy)2(H2O)2][SiF6]}n, see: Subramanian & Zaworotko (1995[Subramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127-2129.]). For a three-dimensional network with large channels constructed through square grid networks of 4BPY and Zn(II) linked by SiF6 anions, see: Gable et al. (1990[Gable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677-1678.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(CHO2)2(C10H8N2)]

  • Mr = 358.62

  • Tetragonal, I 41 22

  • a = 8.2269 (12) Å

  • c = 18.103 (4) Å

  • V = 1225.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 293 K

  • 0.33 × 0.33 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.554, Tmax = 0.698

  • 1106 measured reflections

  • 711 independent reflections

  • 681 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.13

  • 711 reflections

  • 46 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 263 Friedel pairs

  • Flack parameter: 0.02 (7)

Table 1
Selected geometric parameters (Å, °)

Cd1—N1 2.306 (3)
Cd1—N1i 2.306 (3)
Cd1—O1ii 2.3264 (18)
Cd1—O1i 2.3264 (18)
Cd1—O1iii 2.3264 (18)
Cd1—O1 2.3264 (18)
Symmetry codes: (i) -x, -y+1, z; (ii) [y-{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of coordination polymer complexes, which is an emerging area of research with several potential applications in areas such as catalysis, conductivity, porosity, chirality, luminescence, magnetism, spin-transition and non-linear optics, are of considerable interest from the viewpoint of crystal engineering (Barbour, 2006; Biradha, 2003; Brammer, 2004; Hosseini, 2005; O'Keeffe, 2001; Papaefstathiou, 2003; Venkataraman, 1995). The structures and properties of coordination polymers can be controlled by choosing appropriate bridging ligands and metal ions. Many types of bridging ligand have been reported, of which the most extensively studied bidentate ligands are probably 4,4'-bipyridine (4BPY) (Hagrman, 1999; Moulton, 2001; Sharma, 2001; Zaworotko, 2001). The ligand 4,4'-bipyridine is an ideal connector between the transition metal atoms for the propagation of coordination networks and shown to form a variety of networks ranging from one-dimensional to three-dimensional with several transition metal salts, such as the one-dimensional zigzag networks by using of 2,2'-bpy as the ancillary ligand (Park, 2001), the doubly interpenetrated square grid networks {[Zn(bipy)2(H2O)2][SiF6]}n (Gable, 1990) and a three-dimensional network with large channels which is constructed through square grid networks of 4BPY and Zn(II) linked by SiF6 anions (Subramanian, 1995). In this contribution, we here report a novel chiral three-dimensional crystal structure built from CdII ions and mixed-ligand including 4BPY ligands and formic acid ligands.

Compound 1 consists of CdII ions, 4,4'-bipyridine (4BPY) ligands and formato anions. As illustrated in Figure 1, the CdII ions are all disposed in a N2O4 octahedron coordination environment with the equatorial coordination from four formate ligands (O1, O1#2, O1#5, O1#12) [symmetry codes: #2 = 1 - x, -y, z; #5 = -x, 1 - y, z; #12 = 1 - x, -y, z] and the apical sites occupied by two N atoms from two 4BPY ligands (N1, N1#5) [symmetry code: #5 = -x, 1 - y, z]. The average bond lengths of Cd—O and Cd—N are 2.326 (3) Å and 2.306 (4) Å, respectively. There are two kinds of formate ligands in this sturcture, one kind of them connect metal ions into right-handed helical chains along a axis (Figure 2) and the others connecte the helical chains along two different orientations [011] and [011], which generate a three-dimensional network. In the resulting structure, 4BPY ligands further link the CdII ions along [110] and [110] directions,respectively, to generate a (1010.124.14)(10)3 topological three-dimensional network (Figure 3). Moreover, the 4BPY ligand displays obvious distortion and the dihedral angel between the two pyridine rings is approximately 46.2°.

Related literature top

For the design and synthesis of coordination polymer complexes and their potential applications, see: Barbour (2006); Biradha (2003); Brammer (2004); Hosseini (2005); O'Keeffe & Yaghi (2001); Papaefstathiou et al. (2003); Venkataraman et al. (1995). For the 4,4'-bipyridine (4BPY) bridging ligand, see: Hagrman et al. (1999); Moulton & Zaworotko (2001); Sharma (2001); Zaworotko (2001). For one-dimensional zigzag networks using 2,2'-bpy as the ancillary ligand, see: Park et al. (2001). For the doubly interpenetrated square grid network {[Zn(bipy)2(H2O)2][SiF6]}n, see: Subramanian & Zaworotko, (1995). For a three-dimensionalnetwork with large channels constructed through square grid networks of 4BPY and Zn(II) linked by SiF6 anions, see: Gable et al. (1990).

Experimental top

4,4'-bpy (0.153 g, 1.0 mmol) and CdCO3 (0.177 g, 1.0 mmol) were orderly added in 10 ml H2O. Under continous stirring, 5.5 ml HCOOH (2 M) solution was subsequently added in the resulting mixture yielding clear solution. After filtration, the filtrate was maintained for slow evaporation at 40°C constant temperature for 3 days. Light yellow granule-liked crystals were obtained in a yield of ca 23.7% based on CdCO3.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the complex molecule of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 60% probability level [Symmetry codes: #1 = -x + 1/2, -y + 1/2, -z + 3/2; #2 = -x + 1, -y, z; #3 = x + 1/2, -y + 1, z + 1/4; #4 = -x + 1/2, y - 1, z + 1/4; #5 = -x, -y + 1, z; #6 = x, -y + 2/3, -z + 5/4; #7 = x - 1, y + 1, z; #8 = x + 1/2, -y, z + 1/4; #9 = x, -y + 1/2, z - 1/4; #10 = x + 1, y - 1, z; #11 = x + 1, -y + 1/2, z - 1/4; #12 = 1 - x, -y, z].
[Figure 2] Fig. 2. Right-handed one-dimensional helical chains along a axis.
[Figure 3] Fig. 3. Topological representation of the three-dimensional structure.
poly[µ-4,4'-bipyridine-di-µ-formato-cadmium(II)] top
Crystal data top
[Cd(CHO2)2(C10H8N2)]Dx = 1.944 Mg m3
Mr = 358.62Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4122Cell parameters from 1106 reflections
Hall symbol: I 4bw 2bwθ = 3.2–27.5°
a = 8.2269 (12) ŵ = 1.79 mm1
c = 18.103 (4) ÅT = 293 K
V = 1225.2 (4) Å3Granule, yellow
Z = 40.33 × 0.33 × 0.20 mm
F(000) = 704
Data collection top
Rigaku R-AXIS RAPID
diffractometer
711 independent reflections
Radiation source: fine-focus sealed tube681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 101
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 101
Tmin = 0.554, Tmax = 0.698l = 231
1106 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.018P)2 + 0.9631P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
711 reflectionsΔρmax = 0.21 e Å3
46 parametersΔρmin = 0.43 e Å3
0 restraintsAbsolute structure: Flack (1983), 263 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
[Cd(CHO2)2(C10H8N2)]Z = 4
Mr = 358.62Mo Kα radiation
Tetragonal, I4122µ = 1.79 mm1
a = 8.2269 (12) ÅT = 293 K
c = 18.103 (4) Å0.33 × 0.33 × 0.20 mm
V = 1225.2 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
711 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
681 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.698Rint = 0.025
1106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.21 e Å3
S = 1.13Δρmin = 0.43 e Å3
711 reflectionsAbsolute structure: Flack (1983), 263 Friedel pairs
46 parametersAbsolute structure parameter: 0.02 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.75000.02047 (10)
O10.1521 (3)0.6479 (3)0.66505 (10)0.0380 (4)
N10.1982 (2)0.3018 (2)0.75000.0284 (6)
C10.0885 (5)0.75000.62500.0354 (9)
H1A0.02820.75000.62500.042*
C20.3461 (3)0.3320 (3)0.72483 (18)0.0431 (7)
H20.36800.43500.70620.052*
C30.4696 (3)0.2183 (3)0.7249 (2)0.0432 (8)
H30.57310.24540.70830.052*
C40.4359 (3)0.0641 (3)0.75000.0269 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01803 (12)0.01803 (12)0.02535 (16)0.00289 (14)0.0000.000
O10.0320 (11)0.0393 (12)0.0428 (10)0.0038 (8)0.0064 (10)0.0191 (10)
N10.0214 (8)0.0214 (8)0.0425 (15)0.0042 (10)0.0017 (10)0.0017 (10)
C10.0238 (19)0.047 (2)0.0354 (19)0.0000.0000.0116 (18)
C20.0256 (13)0.0257 (13)0.078 (2)0.0063 (9)0.0064 (14)0.0173 (14)
C30.0197 (14)0.0333 (14)0.077 (2)0.0050 (11)0.0072 (12)0.0180 (14)
C40.0228 (9)0.0228 (9)0.0352 (16)0.0083 (13)0.0012 (12)0.0012 (12)
Geometric parameters (Å, º) top
Cd1—N12.306 (3)C1—O1iv1.227 (3)
Cd1—N1i2.306 (3)C1—H1A0.9600
Cd1—O1ii2.3264 (18)C2—C31.381 (4)
Cd1—O1i2.3264 (18)C2—H20.9300
Cd1—O1iii2.3264 (18)C3—C41.376 (3)
Cd1—O12.3264 (18)C3—H30.9300
O1—C11.227 (3)C4—C3iii1.376 (3)
N1—C21.323 (3)C4—C4v1.492 (7)
N1—C2iii1.323 (3)
N1—Cd1—N1i180.0C2—N1—C2iii117.6 (3)
N1—Cd1—O1ii90.61 (6)C2—N1—Cd1121.20 (16)
N1i—Cd1—O1ii89.39 (6)C2iii—N1—Cd1121.20 (16)
N1—Cd1—O1i90.61 (6)O1—C1—O1iv129.5 (4)
N1i—Cd1—O1i89.39 (6)O1—C1—H1A115.3
O1ii—Cd1—O1i178.78 (12)O1iv—C1—H1A115.3
N1—Cd1—O1iii89.39 (6)N1—C2—C3123.4 (3)
N1i—Cd1—O1iii90.61 (6)N1—C2—H2118.3
O1ii—Cd1—O1iii97.24 (10)C3—C2—H2118.3
O1i—Cd1—O1iii82.77 (10)C4—C3—C2118.4 (3)
N1—Cd1—O189.39 (6)C4—C3—H3120.8
N1i—Cd1—O190.61 (6)C2—C3—H3120.8
O1ii—Cd1—O182.77 (10)C3iii—C4—C3118.7 (3)
O1i—Cd1—O197.24 (10)C3iii—C4—C4v120.63 (16)
O1iii—Cd1—O1178.78 (12)C3—C4—C4v120.63 (16)
C1—O1—Cd1121.3 (2)
Symmetry codes: (i) x, y+1, z; (ii) y1/2, x+1/2, z+3/2; (iii) y+1/2, x+1/2, z+3/2; (iv) x, y+3/2, z+5/4; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(CHO2)2(C10H8N2)]
Mr358.62
Crystal system, space groupTetragonal, I4122
Temperature (K)293
a, c (Å)8.2269 (12), 18.103 (4)
V3)1225.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.33 × 0.33 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.554, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
1106, 711, 681
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.13
No. of reflections711
No. of parameters46
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.43
Absolute structureFlack (1983), 263 Friedel pairs
Absolute structure parameter0.02 (7)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N12.306 (3)Cd1—O1i2.3264 (18)
Cd1—N1i2.306 (3)Cd1—O1iii2.3264 (18)
Cd1—O1ii2.3264 (18)Cd1—O12.3264 (18)
N1—Cd1—N1i180.0O1ii—Cd1—O1iii97.24 (10)
N1—Cd1—O1ii90.61 (6)O1i—Cd1—O1iii82.77 (10)
N1i—Cd1—O1ii89.39 (6)N1—Cd1—O189.39 (6)
N1—Cd1—O1i90.61 (6)N1i—Cd1—O190.61 (6)
N1i—Cd1—O1i89.39 (6)O1ii—Cd1—O182.77 (10)
O1ii—Cd1—O1i178.78 (12)O1i—Cd1—O197.24 (10)
N1—Cd1—O1iii89.39 (6)O1iii—Cd1—O1178.78 (12)
N1i—Cd1—O1iii90.61 (6)
Symmetry codes: (i) x, y+1, z; (ii) y1/2, x+1/2, z+3/2; (iii) y+1/2, x+1/2, z+3/2.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project for Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationBarbour, L. J. (2006). Chem. Commun. pp. 1163–1168.  Web of Science CrossRef Google Scholar
First citationBiradha, K. (2003). CrystEngComm, 5, 374–384.  Web of Science CrossRef CAS Google Scholar
First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677–1678.  CrossRef Web of Science Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHosseini, M. W. (2005). Acc. Chem. Res. 38, 313–323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationO'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science PubMed Google Scholar
First citationPapaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169–184.  Web of Science CrossRef CAS Google Scholar
First citationPark, H. W., Sung, S. M., Min, K. S., Bang, H. & Suh, M. P. (2001). Eur. J. Inorg. Chem. pp. 2857–2863.  CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSharma, C. V. K. (2001). J. Chem. Educ. 78, 617–618.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127–2129.  CSD CrossRef CAS Web of Science Google Scholar
First citationVenkataraman, D., Gardner, G. B., Lee, S. & Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600–11601.  CrossRef CAS Web of Science Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m433-m434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds