organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Anilino­thio­carbonyl-4-hy­droxy­chromen-2-one

aDepartment of Physics, University of Jammu, Jammu Tawi 180 006, India, bSchool of Applied Physics and Mathematics, Shri Mata Vaishno Devi University, Jammu 182 121, India, and cDepartment of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202 002, India
*Correspondence e-mail: rk_paper@rediffmail.com

(Received 3 January 2009; accepted 26 March 2009; online 31 March 2009)

The geometrical parameters of the title compound, C16H11NO3S, are in the usual ranges. The two aromatic residues are not coplanar and are twisted by a dihedral angle of 66.63 (6)°. The crystal structure is stabilized by N—H⋯O and O—H⋯S inter­actions.

Related literature

For literature on coumarins, see: Campbell (1959[Campbell, N. (1959). Chemistry of Carbon Compounds, edited by E. H. Rodd, Vol. 6, Part 4B, p. 875. Amsterdam: Elsevier. ]); Murray et al. (1982[Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins - Occurance Chemistry and Biochemistry. New York: Wiley & Sons.]); Wolska et al. (1990[Wolska, I., Borowiak, T. & Gawron, M. (1990). Acta Cryst. C46, 2146-2148.]); Harvey (1999[Harvey, A. L. (1999). Trends Pharmacol. Sci. 20, 196-198.]); Matern et al. (1999[Matern, U., Luer, P. & Kreusch, D. (1999). Biosynthesis of Coumarins. In Comprehensive Natural Products Chemistry, Vol 1, pp. 623-637. Amsterdam: Elsevier.]); Yang et al. (1992[Yang, Y. Z., Ranz, A., Pan, H. Z., Zhang, Z. H., Lin, X. B. & Meshnick, S. R. (1992). Med. Hyg. 46, 15-20.]); Tsai et al. (2000[Tsai, I. L., Lin, W. Y., Teng, C. M., Ishikawa, T., Doung, S. L., Huang, M. W., Chen, Y. C. & Chen, I. S. (2000). Planta Med. 66, 616-618]).

[Scheme 1]

Experimental

Crystal data
  • C16H11NO3S

  • Mr = 297.33

  • Monoclinic, P 21 /c

  • a = 14.8059 (9) Å

  • b = 5.5245 (4) Å

  • c = 17.4438 (12) Å

  • β = 109.091 (7)°

  • V = 1348.34 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 11450 measured reflections

  • 4408 independent reflections

  • 2320 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.01

  • 4408 reflections

  • 235 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.96 (2) 1.77 (2) 2.5923 (19) 141 (2)
O3—H3A⋯S1 1.05 (2) 1.81 (3) 2.8163 (15) 159 (2)

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coumarins belong to a group of compounds known as benzopyrones, all of which consist of a benzene ring joined to a pyrone moiety.

Coumarins are found to have a wide spectrum of biological activity, e.g. antithronbotic effect, vascodilating effect on vessel, tonic influence on capillary blood vessels, reduction of blood pressure, antispastic and photosensitizing effect (Wolska et al., 1990).

Interestingly, coumarins exhibit inhibitory effect on DNA gyrase, which may be linked to anti-HIV (human immuno deficiency virus) activity (Matern et al., 1999).

Coumarins are also found to exhibit anti-malarial activity (Yang et al., 1992).

Recently Collinin, isolated from Zathoxylum Schinifolium, has been found to exhibit anti-HBV (hepatitis B virus) activity (Tsai et al., 2000).

Owing to the general importance of these coumarin analogues we report herein the synthesis and crystal structure of a new coumarin 3-anilinothiocarbonyl-4-hydroxychromen-2-one, (I).

The geometrical parameters (i.e. bond distances and angles) of (I) are in the usual ranges. The two aromatic residues are not coplanar and are twisted by a dihedral angle of 66.63 (6)°. The crystal structure is stabilized by X—H···A interactions.

Related literature top

For literature on coumarins, see: Campbell (1959); Murray et al. (1982); Wolska et al. (1990); Harvey (1999); Matern et al. (1999); Yang et al. (1992); Tsai et al. (2000).

Experimental top

Scheme1: The mixture of 4-hydroxy coumarin, phenylisothiocyanate was taken in THF.The base Na2CO3 was also added to it. The reaction mixture was refluxed on water bath for three hours. Progress of the reaction was monitored by TLC. After completion the reaction mixture was poured into water and worked up with ether and then in ethyl acetate. The ether layer showed the presence of three compounds from which the title compound (I) was separated by column chromatography followed by crystallization from chloroform-methanol as white crystalline solid. Melting point: 421–423 K.

Refinement top

All H atoms were located from difference Fourier map and refined isotopically with distance restraints 0.86–1.05 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
[Figure 2] Fig. 2. Depiction of X—H···A interactions in the title compound(I)
[Figure 3] Fig. 3. The synthesis of the title compound.
3-Anilinothiocarbonyl-4-hydroxychromen-2-one top
Crystal data top
C16H11NO3SF(000) = 616
Mr = 297.33Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.8059 (9) ÅCell parameters from 2320 reflections
b = 5.5245 (4) Åθ = 2.9–32.3°
c = 17.4438 (12) ŵ = 0.25 mm1
β = 109.091 (7)°T = 293 K
V = 1348.34 (16) Å3Rectangular, yellow
Z = 40.30 × 0.24 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2320 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 32.3°, θmin = 2.9°
ω–2θ scansh = 2021
11450 measured reflectionsk = 85
4408 independent reflectionsl = 2526
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0645P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.24 e Å3
4408 reflectionsΔρmin = 0.23 e Å3
235 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0079 (18)
Crystal data top
C16H11NO3SV = 1348.34 (16) Å3
Mr = 297.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8059 (9) ŵ = 0.25 mm1
b = 5.5245 (4) ÅT = 293 K
c = 17.4438 (12) Å0.30 × 0.24 × 0.18 mm
β = 109.091 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2320 reflections with I > 2σ(I)
11450 measured reflectionsRint = 0.036
4408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134All H-atom parameters refined
S = 1.01Δρmax = 0.24 e Å3
4408 reflectionsΔρmin = 0.23 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H30.2431 (14)0.089 (4)0.0463 (12)0.058 (6)*
H10.1035 (12)0.344 (4)0.1367 (11)0.044 (5)*
H40.1108 (14)0.346 (4)0.0190 (11)0.053 (6)*
H20.2420 (15)0.255 (4)0.0323 (13)0.060 (6)*
H1A0.2933 (15)0.272 (4)0.2272 (13)0.066 (7)*
H140.6547 (16)0.057 (4)0.4609 (13)0.074 (6)*
H120.4091 (17)0.402 (5)0.3868 (13)0.080 (8)*
H150.5906 (18)0.239 (5)0.3553 (16)0.095 (9)*
H160.4290 (17)0.200 (5)0.2686 (16)0.084 (8)*
H130.5615 (19)0.365 (5)0.4674 (16)0.099 (9)*
H3A0.127 (2)0.298 (5)0.2783 (16)0.102 (9)*
S10.24977 (3)0.22219 (9)0.33460 (3)0.05005 (18)
C80.14300 (10)0.0442 (3)0.20025 (9)0.0319 (3)
O10.04858 (8)0.2950 (2)0.08806 (7)0.0400 (3)
O20.19660 (8)0.3959 (2)0.14831 (7)0.0497 (3)
C100.23535 (11)0.0021 (3)0.26441 (9)0.0349 (4)
O30.06066 (9)0.2954 (2)0.23189 (8)0.0470 (3)
C60.02392 (11)0.0583 (3)0.12239 (9)0.0329 (4)
C70.06394 (11)0.1047 (3)0.18839 (9)0.0338 (4)
N10.30848 (10)0.1395 (3)0.26561 (9)0.0452 (4)
C50.02859 (11)0.1432 (3)0.07446 (9)0.0333 (4)
C10.10418 (12)0.2061 (3)0.10584 (12)0.0423 (4)
C40.10991 (12)0.2023 (4)0.01022 (11)0.0420 (4)
C90.13442 (12)0.2508 (3)0.14694 (10)0.0351 (4)
C110.40436 (12)0.1113 (4)0.32054 (11)0.0449 (4)
C20.18535 (13)0.1526 (4)0.04245 (12)0.0494 (5)
C30.18805 (13)0.0511 (4)0.00491 (11)0.0484 (5)
C160.45938 (15)0.0776 (4)0.31041 (15)0.0619 (6)
C120.44115 (17)0.2784 (5)0.37918 (17)0.0725 (7)
C150.55294 (16)0.0988 (5)0.36243 (18)0.0735 (7)
C140.58922 (15)0.0672 (5)0.42249 (17)0.0769 (8)
C130.53483 (19)0.2533 (5)0.4308 (2)0.0947 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0422 (3)0.0555 (3)0.0476 (3)0.0063 (2)0.00809 (19)0.0194 (2)
C80.0336 (8)0.0328 (8)0.0296 (8)0.0035 (7)0.0105 (6)0.0054 (7)
O10.0368 (6)0.0394 (7)0.0388 (6)0.0011 (5)0.0053 (5)0.0093 (5)
O20.0435 (7)0.0478 (8)0.0498 (7)0.0107 (6)0.0044 (5)0.0145 (6)
C100.0351 (8)0.0355 (9)0.0351 (8)0.0044 (7)0.0128 (6)0.0023 (7)
O30.0429 (7)0.0470 (8)0.0490 (7)0.0045 (6)0.0122 (6)0.0170 (6)
C60.0341 (8)0.0331 (9)0.0323 (8)0.0012 (7)0.0119 (6)0.0017 (7)
C70.0366 (8)0.0337 (9)0.0335 (8)0.0050 (7)0.0149 (6)0.0015 (7)
N10.0335 (7)0.0466 (9)0.0490 (9)0.0002 (7)0.0047 (6)0.0124 (8)
C50.0334 (8)0.0325 (9)0.0344 (8)0.0012 (7)0.0113 (6)0.0034 (7)
C10.0434 (10)0.0391 (10)0.0451 (10)0.0058 (8)0.0154 (8)0.0049 (9)
C40.0413 (9)0.0444 (11)0.0373 (9)0.0086 (8)0.0087 (7)0.0007 (8)
C90.0342 (8)0.0365 (9)0.0338 (8)0.0028 (7)0.0099 (6)0.0032 (7)
C110.0334 (8)0.0442 (11)0.0521 (11)0.0010 (8)0.0072 (8)0.0101 (9)
C20.0370 (9)0.0545 (13)0.0525 (11)0.0086 (9)0.0088 (8)0.0123 (10)
C30.0347 (9)0.0594 (13)0.0439 (10)0.0065 (9)0.0030 (8)0.0094 (9)
C160.0458 (11)0.0608 (14)0.0740 (15)0.0072 (11)0.0124 (10)0.0046 (12)
C120.0509 (12)0.0590 (15)0.0860 (17)0.0148 (11)0.0073 (11)0.0140 (13)
C150.0425 (11)0.0662 (16)0.110 (2)0.0167 (12)0.0226 (12)0.0133 (15)
C140.0402 (11)0.0640 (16)0.103 (2)0.0036 (11)0.0091 (12)0.0183 (15)
C130.0616 (15)0.0752 (18)0.105 (2)0.0106 (14)0.0302 (15)0.0220 (16)
Geometric parameters (Å, º) top
S1—C101.6889 (17)C1—H10.929 (19)
S1—H3A1.81 (3)C4—C31.381 (3)
C8—C71.390 (2)C4—H40.94 (2)
C8—C91.452 (2)C11—C121.353 (3)
C8—C101.479 (2)C11—C161.370 (3)
O1—C91.3696 (19)C2—C31.389 (3)
O1—C51.3737 (19)C2—H20.98 (2)
O2—C91.215 (2)C3—H30.919 (19)
C10—N11.330 (2)C16—C151.391 (3)
O3—C71.308 (2)C16—H160.99 (3)
O3—H3A1.05 (3)C12—C131.392 (3)
C6—C51.381 (2)C12—H120.86 (3)
C6—C11.392 (2)C15—C141.363 (4)
C6—C71.450 (2)C15—H150.98 (3)
N1—C111.438 (2)C14—C131.343 (4)
N1—H1A0.97 (2)C14—H140.98 (2)
C5—C41.389 (2)C13—H130.88 (3)
C1—C21.373 (3)
C10—S1—H3A84.7 (8)O2—C9—O1114.13 (14)
C7—C8—C9118.50 (14)O2—C9—C8126.81 (15)
C7—C8—C10122.40 (14)O1—C9—C8119.06 (14)
C9—C8—C10119.10 (14)C12—C11—C16120.52 (19)
C9—O1—C5122.43 (13)C12—C11—N1119.68 (18)
N1—C10—C8117.17 (15)C16—C11—N1119.71 (18)
N1—C10—S1120.18 (12)C1—C2—C3120.06 (18)
C8—C10—S1122.65 (12)C1—C2—H2119.6 (13)
C7—O3—H3A104.8 (15)C3—C2—H2120.3 (12)
C5—C6—C1118.51 (15)C4—C3—C2121.14 (17)
C5—C6—C7118.51 (14)C4—C3—H3119.0 (13)
C1—C6—C7122.98 (16)C2—C3—H3119.9 (13)
O3—C7—C8125.40 (14)C11—C16—C15119.2 (2)
O3—C7—C6114.13 (14)C11—C16—H16118.0 (14)
C8—C7—C6120.45 (15)C15—C16—H16122.7 (15)
C10—N1—C11124.58 (16)C11—C12—C13119.4 (2)
C10—N1—H1A115.4 (13)C11—C12—H12123.2 (15)
C11—N1—H1A120.0 (13)C13—C12—H12117.4 (15)
O1—C5—C6120.90 (14)C14—C15—C16120.2 (2)
O1—C5—C4116.65 (15)C14—C15—H15121.9 (15)
C6—C5—C4122.44 (15)C16—C15—H15117.9 (15)
C2—C1—C6120.24 (19)C13—C14—C15119.9 (2)
C2—C1—H1118.9 (11)C13—C14—H14117.6 (13)
C6—C1—H1120.8 (11)C15—C14—H14122.5 (13)
C3—C4—C5117.60 (18)C14—C13—C12120.8 (3)
C3—C4—H4123.0 (12)C14—C13—H13118.1 (18)
C5—C4—H4119.3 (12)C12—C13—H13120.9 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.96 (2)1.77 (2)2.5923 (19)141 (2)
O3—H3A···S11.05 (2)1.81 (3)2.8163 (15)159 (2)

Experimental details

Crystal data
Chemical formulaC16H11NO3S
Mr297.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.8059 (9), 5.5245 (4), 17.4438 (12)
β (°) 109.091 (7)
V3)1348.34 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11450, 4408, 2320
Rint0.036
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.01
No. of reflections4408
No. of parameters235
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.96 (2)1.77 (2)2.5923 (19)141 (2)
O3—H3A···S11.05 (2)1.81 (3)2.8163 (15)159 (2)
 

Acknowledgements

The authors are thankful to the Department of Science and Technology of the Government of India for funding under research project SR/S2/CMP-47/2003.

References

First citationCampbell, N. (1959). Chemistry of Carbon Compounds, edited by E. H. Rodd, Vol. 6, Part 4B, p. 875. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarvey, A. L. (1999). Trends Pharmacol. Sci. 20, 196–198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatern, U., Luer, P. & Kreusch, D. (1999). Biosynthesis of Coumarins. In Comprehensive Natural Products Chemistry, Vol 1, pp. 623–637. Amsterdam: Elsevier.  Google Scholar
First citationMurray, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins – Occurance Chemistry and Biochemistry. New York: Wiley & Sons.  Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, I. L., Lin, W. Y., Teng, C. M., Ishikawa, T., Doung, S. L., Huang, M. W., Chen, Y. C. & Chen, I. S. (2000). Planta Med. 66, 616–618  Google Scholar
First citationWolska, I., Borowiak, T. & Gawron, M. (1990). Acta Cryst. C46, 2146–2148.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYang, Y. Z., Ranz, A., Pan, H. Z., Zhang, Z. H., Lin, X. B. & Meshnick, S. R. (1992). Med. Hyg. 46, 15–20.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds