organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-3-nitro­pyridinium hydrogen oxalate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 4 February 2009; accepted 9 March 2009; online 19 March 2009)

In the non-centrosymetric title compound, C5H6N3O2+·C2HO4, the hydrogen oxalate anions form corrugated chains parallel to the c axis, linked by O—H⋯O hydrogen bonds. The 2-amino-3-nitro­pyridinium cations are anchored between theses chains by N—H⋯O and C—H⋯O hydrogen bonds and van der Waals and electrostatic inter­actions, creating a three-dimensional network.

Related literature

For related structures, see: Akriche & Rzaigui (2000[Akriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617-618.], 2009[Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m123.]); Le Fur et al. (1998[Le Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159-163.]); Nicoud et al. (1997[Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35-39.]); For a discussion of hydrogen bonding, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, Vol. 54. New York: Elsevier.], 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2321.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·C2HO4

  • Mr = 229.16

  • Orthorhombic, P n a 21

  • a = 15.268 (4) Å

  • b = 6.921 (3) Å

  • c = 8.807 (2) Å

  • V = 930.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.33 × 0.25 × 0.21 mm

Data collection
  • Enraf–Nonius Turbo CAD-4 diffractometer

  • Absorption correction: none

  • 2228 measured reflections

  • 1190 independent reflections

  • 1003 reflections with I > 2σ(I)

  • Rint = 0.020

  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.06

  • 1190 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.82 2.632 (2) 171
N1—H1⋯O2 0.86 1.85 2.706 (3) 175
N2—H2A⋯O1 0.86 1.99 2.837 (3) 170
N2—H2B⋯O5 0.86 2.09 2.673 (3) 124
N2—H2B⋯O4ii 0.86 2.51 3.188 (3) 136
C3—H3A⋯O5iii 0.93 2.44 3.178 (3) 136
C4—H4⋯O1iv 0.93 2.33 3.258 (3) 174
C5—H5⋯O6v 0.93 2.57 3.262 (3) 132
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The search for new molecular materials for the non-linear optics lies at the basis of our ongoing study of 2-amino-3-nitropyridinium salts. Our strategy is aimed at the production of very cohesive non-centrosymmetric packing of chromophores. We have previously reported two centrosymetric structures of 2-amino-3-nitropyridinium (Akriche & Rzaigui, 2000; Akriche & Rzaigui, 2009). We report here a new non-centrosymmetric structure, 2-amino-3-nitropyridinium hydrogenoxalate.

The asymmetric unit of the title compound consists of one (HC2O4)- anion and one (2-NH2-3-NO2C5H3NH)+ cation (Fig. 1). In the hydrogenoxalate (HC2O4)-, the H atom is located at O3 as is also indicated by elongation of the corresponding C—O distance [O3—C7 is 1.314 (3) Å]. The bond length of C6—C7 is relatively long [1.545 (3) Å] as expected for an oxalate anion. In the 2-amino-3-nitropyridinium cation, nitro and amino groups are ortho to one another, which explains the presence of the intra-cation contact N2—H2B···O5 (Le Fur et al., 1998; Nicoud et al.,1997).

The structure projection in Fig. 2 shows that the oxalate ions are organized in corrugated chains extending along the c axis. The cations are located between these chains and manifest multiple H-bonds. In fact, in this structure there are three categories of H-bond (Table 1), O—H···O, N—H···O and C—H···O. Within each oxalate chain, the (HC2O4)- groups are interconnected by strong O—H···O hydrogen bonds. These chains are themselves interconnected by N—H···O interactions originating from the NH+ and NH2 groups of the cations. It is worth noticing the presence of long C—H···O contacts (Desiraju, 1989; Desiraju, 1995) occurring between cations and between cations and anions. The density of this H-bond scheme constitutes probably the main factor responsible for the formation of a non-centrosymetric material.

Related literature top

For related structures, see: Akriche & Rzaigui (2000, 2009); Le Fur et al. (1998); Nicoud et al. (1997); For a discussion of hydrogen bonding, see: Desiraju (1989, 1995)

Experimental top

An aqueous solution containing 0.004 mol of H2C2O4 in 10 ml of water, was added to 0.004 mol of 2-amino-3-nitropyridine in 20 ml of pure acetic acid. The obtained yellow solution was stirred at 333 K for 10 min and then left to stand at room temperature. Yellow single crystals of the title compound were obtained after some days.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. A perspective view of the packing of the title compound. Hydrogen bonds are represented as dashed lines.
2-Amino-3-nitropyridinium hydrogen oxalate top
Crystal data top
C5H6N3O2+·C2HO4Dx = 1.636 Mg m3
Mr = 229.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 25 reflections
a = 15.268 (4) Åθ = 9–11°
b = 6.921 (3) ŵ = 0.15 mm1
c = 8.807 (2) ÅT = 293 K
V = 930.6 (5) Å3Rectangular prism, yellow
Z = 40.33 × 0.25 × 0.21 mm
F(000) = 472
Data collection top
Enraf–Nonius Turbo CAD-4
diffractometer
Rint = 0.020
Radiation source: Enraf–Nonius FR590θmax = 28.0°, θmin = 2.7°
Graphite monochromatorh = 200
Nonprofiled ω scansk = 79
2228 measured reflectionsl = 110
1190 independent reflections2 standard reflections every 120 min
1003 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.0295P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1190 reflectionsΔρmax = 0.33 e Å3
147 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (6)
Crystal data top
C5H6N3O2+·C2HO4V = 930.6 (5) Å3
Mr = 229.16Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.268 (4) ŵ = 0.15 mm1
b = 6.921 (3) ÅT = 293 K
c = 8.807 (2) Å0.33 × 0.25 × 0.21 mm
Data collection top
Enraf–Nonius Turbo CAD-4
diffractometer
Rint = 0.020
2228 measured reflections2 standard reflections every 120 min
1190 independent reflections intensity decay: 1%
1003 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
1190 reflectionsΔρmin = 0.20 e Å3
147 parameters
Special details top

Geometry. H atoms were treated as riding, with C—H = 0.93 A °, N—H = 0.86 A ° and O—H = 0.82 A °, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18864 (12)0.6389 (3)0.4311 (2)0.0512 (5)
O20.10055 (11)0.5552 (3)0.2423 (2)0.0408 (4)
O30.05130 (11)0.5172 (3)0.6129 (2)0.0391 (4)
H30.00510.50430.65930.059*
O40.03139 (11)0.6833 (3)0.4481 (2)0.0494 (5)
O50.49613 (12)0.5813 (3)0.1226 (3)0.0532 (5)
O60.52023 (11)0.6750 (3)0.1071 (3)0.0545 (5)
N10.23161 (12)0.5903 (3)0.0374 (3)0.0375 (5)
H10.19200.58180.10650.045*
N20.33259 (15)0.6060 (3)0.2291 (3)0.0462 (6)
H2A0.29000.60120.29300.055*
H2B0.38570.61330.26120.055*
N30.47122 (12)0.6244 (3)0.0050 (3)0.0367 (5)
C10.31649 (14)0.6020 (3)0.0827 (3)0.0321 (5)
C20.37793 (14)0.6148 (3)0.0380 (3)0.0318 (5)
C30.35201 (16)0.6188 (4)0.1871 (3)0.0363 (5)
H3A0.39360.63000.26380.044*
C40.26384 (17)0.6061 (4)0.2236 (3)0.0437 (6)
H40.24520.60780.32410.052*
C50.20572 (16)0.5911 (4)0.1078 (3)0.0421 (6)
H50.14630.58110.12980.050*
C60.11677 (14)0.5994 (3)0.3773 (3)0.0303 (5)
C70.03636 (14)0.6065 (3)0.4838 (3)0.0302 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0315 (8)0.0930 (14)0.0292 (9)0.0146 (10)0.0004 (7)0.0040 (10)
O20.0286 (7)0.0684 (11)0.0254 (8)0.0040 (8)0.0007 (7)0.0037 (9)
O30.0300 (8)0.0618 (12)0.0256 (7)0.0005 (8)0.0063 (7)0.0065 (8)
O40.0346 (9)0.0660 (12)0.0475 (11)0.0110 (8)0.0040 (8)0.0115 (10)
O50.0342 (9)0.0727 (13)0.0528 (12)0.0094 (9)0.0082 (9)0.0076 (11)
O60.0330 (9)0.0779 (13)0.0526 (12)0.0118 (9)0.0125 (8)0.0050 (11)
N10.0243 (9)0.0522 (14)0.0361 (12)0.0015 (8)0.0039 (8)0.0004 (9)
N20.0317 (10)0.0773 (18)0.0296 (11)0.0022 (10)0.0002 (8)0.0046 (11)
N30.0259 (9)0.0401 (10)0.0440 (12)0.0007 (8)0.0035 (9)0.0039 (9)
C10.0271 (10)0.0372 (12)0.0319 (12)0.0008 (9)0.0024 (9)0.0020 (9)
C20.0252 (10)0.0356 (11)0.0347 (12)0.0013 (8)0.0024 (9)0.0014 (10)
C30.0352 (12)0.0427 (14)0.0311 (12)0.0002 (10)0.0057 (10)0.0004 (10)
C40.0407 (13)0.0592 (17)0.0311 (13)0.0026 (11)0.0038 (10)0.0018 (11)
C50.0271 (10)0.0585 (16)0.0406 (15)0.0020 (10)0.0049 (10)0.0044 (12)
C60.0279 (10)0.0391 (11)0.0240 (10)0.0029 (9)0.0015 (9)0.0033 (9)
C70.0263 (10)0.0382 (11)0.0261 (11)0.0040 (8)0.0003 (8)0.0026 (9)
Geometric parameters (Å, º) top
O1—C61.226 (3)N2—H2A0.8600
O2—C61.252 (3)N2—H2B0.8600
O3—C71.314 (3)N3—C21.455 (3)
O3—H30.8200C1—C21.420 (3)
O4—C71.205 (3)C2—C31.372 (3)
O5—N31.223 (3)C3—C41.387 (3)
O6—N31.221 (3)C3—H3A0.9300
N1—C51.338 (4)C4—C51.356 (4)
N1—C11.358 (3)C4—H40.9300
N1—H10.8600C5—H50.9300
N2—C11.313 (3)C6—C71.545 (3)
C7—O3—H3109.5C2—C3—C4120.0 (2)
C5—N1—C1124.2 (2)C2—C3—H3A120.0
C5—N1—H1117.9C4—C3—H3A120.0
C1—N1—H1117.9C5—C4—C3117.8 (2)
C1—N2—H2A120.0C5—C4—H4121.1
C1—N2—H2B120.0C3—C4—H4121.1
H2A—N2—H2B120.0N1—C5—C4121.7 (2)
O6—N3—O5123.8 (2)N1—C5—H5119.1
O6—N3—C2117.8 (2)C4—C5—H5119.1
O5—N3—C2118.5 (2)O1—C6—O2126.8 (2)
N2—C1—N1117.9 (2)O1—C6—C7118.0 (2)
N2—C1—C2127.6 (2)O2—C6—C7115.25 (19)
N1—C1—C2114.5 (2)O4—C7—O3125.6 (2)
C3—C2—C1121.8 (2)O4—C7—C6122.5 (2)
C3—C2—N3118.2 (2)O3—C7—C6111.85 (19)
C1—C2—N3120.0 (2)
C5—N1—C1—N2177.8 (3)C1—C2—C3—C41.3 (4)
C5—N1—C1—C20.2 (4)N3—C2—C3—C4178.7 (2)
N2—C1—C2—C3176.6 (3)C2—C3—C4—C50.4 (4)
N1—C1—C2—C31.2 (3)C1—N1—C5—C40.7 (5)
N2—C1—C2—N33.3 (4)C3—C4—C5—N10.6 (4)
N1—C1—C2—N3178.8 (2)O1—C6—C7—O4134.2 (3)
O6—N3—C2—C314.8 (3)O2—C6—C7—O445.0 (3)
O5—N3—C2—C3165.1 (2)O1—C6—C7—O346.9 (3)
O6—N3—C2—C1165.2 (2)O2—C6—C7—O3133.9 (2)
O5—N3—C2—C115.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.822.632 (2)171
N1—H1···O20.861.852.706 (3)175
N2—H2A···O10.861.992.837 (3)170
N2—H2B···O50.862.092.673 (3)124
N2—H2B···O4ii0.862.513.188 (3)136
C3—H3A···O5iii0.932.443.178 (3)136
C4—H4···O1iv0.932.333.258 (3)174
C5—H5···O6v0.932.573.262 (3)132
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1, z1/2; (iv) x, y, z1; (v) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·C2HO4
Mr229.16
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)15.268 (4), 6.921 (3), 8.807 (2)
V3)930.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.33 × 0.25 × 0.21
Data collection
DiffractometerEnraf–Nonius Turbo CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2228, 1190, 1003
Rint0.020
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections1190
No. of parameters147
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.822.632 (2)171.2
N1—H1···O20.861.852.706 (3)175.1
N2—H2A···O10.861.992.837 (3)169.9
N2—H2B···O50.862.092.673 (3)124.2
N2—H2B···O4ii0.862.513.188 (3)136.4
C3—H3A···O5iii0.932.443.178 (3)135.9
C4—H4···O1iv0.932.333.258 (3)173.9
C5—H5···O6v0.932.573.262 (3)131.8
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1, z1/2; (iv) x, y, z1; (v) x1/2, y+3/2, z.
 

References

First citationAkriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617–618.  CAS Google Scholar
First citationAkriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, Vol. 54. New York: Elsevier.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2321.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLe Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35–39.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds