organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R*,2R*,4S*,5R*,6R*,8S*)-4,8-Di­methyl-2,6-di­phenyl­bi­cyclo­[3.3.1]nonane-2,6-diol

aSchool of Chemistry, University of New South Wales, Sydney 2052, Australia
*Correspondence e-mail: m.scudder@unsw.edu.au

(Received 23 February 2009; accepted 17 March 2009; online 28 March 2009)

The racemic title compound, C23H28O2, crystallizes in the space group C2/c as a layered structure in which a centrosymmetric three hydrogen bond sequence links four molecules. Both hydroxy groups are involved in this arrangement, but they differ in that one participates in two hydrogen bonds while the other takes part in only one. Between layers, the aromatic rings take part in edge-face interactions [shortest C—H⋯C distances 3.04, 3.10 and 3.12 Å and angle between normal to planes 86.7(2)°], forming a centrosymmetric dimer. The lattice is further stabilized by C—H⋯π interactions involving both methyl (shortest C⋯C 3.82 and 3.97 Å) and methylene (shortest C⋯C 3.60 Å) groups.

Related literature

Phenyl­ation of endo-4, endo-8-dimethyl­bicyclo­[3.3.1]nonane-2,6- dione (Kim et al., 2002[Kim, S., Bishop, R., Craig, D. C., Dance, I. G. & Scudder, M. L. (2002). J. Org. Chem. 67, 3221-3230.]) occurs selectively on the exo-faces of the V-shaped mol­ecule to yield the title compound. The related 2,6-dimethyl- substituted compound (Nguyen et al., 2001b[Nguyen, V. T., Bishop, R., Craig, D. C. & Scudder, M. L. (2001b). Supramol. Chem. 13, 103-107.]) crystallizes with a hydrogen-bonded ladder structure (Nguyen et al., 2001a[Nguyen, V. T., Ahn, P. D., Bishop, R., Scudder, M. L. & Craig, D. C. (2001a). Eur. J. Org. Chem. pp. 4489-4499.]) that is very different to the pattern reported here.

[Scheme 1]

Experimental

Crystal data
  • C23H28O2

  • Mr = 336.5

  • Monoclinic, C 2/c

  • a = 18.462 (4) Å

  • b = 13.310 (1) Å

  • c = 14.824 (3) Å

  • β = 92.92 (1)°

  • V = 3638 (1) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 294 K

  • 0.30 × 0.15 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3585 measured reflections

  • 3442 independent reflections

  • 2292 reflections with I > 2σ(I)

  • Rint = 0.034

  • 1 standard reflections frequency: 30 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.062

  • S = 1.59

  • 3442 reflections

  • 160 parameters

  • H-atom parameters not refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O1i 1.00 1.97 2.943 (2) 163
O1—H1′O1⋯O2ii 1.00 2.04 2.935 (2) 148
O2—H1O2⋯O1iii 1.00 1.95 2.935 (2) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Manual (Schagen et al., 1989[Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Manual; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: RAELS (Rae, 2000[Rae, A. D. (2000). RAELS. Australian National University, Canberra, Australia.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CrystalMaker (CrystalMaker, 2005[CrystalMaker (2005). CrystalMaker. CrystalMaker Software Limited, Yarnton England. URL: www.CrystalMaker.co.uk.]); software used to prepare material for publication: local programs.

Supporting information


Comment top

Molecules (Fig. 1) are linked by a centrosymmetric triplet of hydrogen bonds utilizing one hydroxy group from each of four molecules (Table 1). The other hydroxy group of each of these molecules participates in an identical hydogen bonding unit, leading to a layer structure in the bc plane (Fig. 2). The hydrogen bonding in this compound is somewhat unusual in that hydroxy group, O1, participates in two hydrogen bonds, whereas O2 only participates in one. The majority of the alicyclic diols studied by us (Kim et al., 2002) have one donor and one acceptor hydrogen bond for each hydroxy group.

The pendant phenyl rings do not participate in the common aromatic offset face-to-face interaction in the crystal structure. Instead, one phenyl ring (C10C15) is the acceptor of two Cmethyl—H···π interactions, one to each surface of the ring (C16—H···π, C23—H···π with shortest H···C distances of 3.97 and 3.82 Å, respectively). The second phenyl ring (C17C22) takes part in a Cmethylene—H···π interaction on one surface (C3—H···π with a shortest H···C distance of 3.60 Å). Its second surface is the acceptor of an edge-to-face interaction utilizing the edge of the C10C15 ring and creating a centrosymmetric dimer between layers (Fig. 3).

Related literature top

Phenylation of endo-4, endo-8-dimethylbicyclo[3.3.1]nonane-2,6- dione (Kim et al., 2002) occurs selectively on the exo-faces of the V-shaped molecule to yield the title compound. The related 2,6-dimethyl- substituted compound (Nguyen et al., 2001b) crystallizes with a hydrogen-bonded ladder structure (Nguyen et al., 2001a) that is very different to the pattern reported here.

Experimental top

A solution of racemic endo-4,endo-8-dimethylbicyclo[3.3.1]nonane-2,6-dione (Kim et al., 2002) (0.79 g, 4.4 mmol) in dry tetrahydrofuran (30 ml) was added dropwise to a stirred solution of excess phenylmagnesium bromide in dry diethyl ether (10 ml) at -10°C. After 12 h at rt, the reaction was subjected to a standard Grignard reaction work-up to yield the title compound (0.67 g, 47%), m.p. 438-440 K (from acetonitrile). Found: C 82.15, H 8.34; C23H28O2 requires C 82.10, H 8.39%. 13C NMR (75.5 MHz, CDCl3) δ: 22.0 (CH3), 32.5 (CH2), 36.2 (CH), 42.4 (CH), 42.6 (CH2), 78.4 (C), 125.5 (CH), 127.0 (CH), 128.2 (CH), 148.3 (C). 1H NMR (300 MHz, CDCl3) δ: 1.18 (t, J=3.0 Hz, 2H), 1.46 (d, J=6.4 Hz, 6H), 1.57 (bs, 2H, exchanged with D2O), 2.18–2.39 (m, 6H), 2.44–2.47 (m, 2H), 7.22–7.27 (m, 2H), 7.31–7.36 (m, 4H), 7.52–7.55 (m, 4H). X-ray quality crystals were obtained from tetrahydrofuran solution.

Refinement top

The hydrogen atoms on the hydroxy groups are disordered over two sites of equal occupancy. This is a requirement of the centrosymmetric hydrogen bonding arrangement found in the lattice. The hydroxy hydrogen atoms were located on a difference map, and were then fixed at a position along the OH vector with O—H = 1.0 Å. Hydrogen atoms attached to C were included at calculated positions (C—H = 1.0 Å). All hydrogen atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Computing details top

Data collection: CAD-4 Manual (Schagen et al., 1989); cell refinement: CAD-4 Manual (Schagen et al., 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2005); software used to prepare material for publication: local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the compound, with ellipsoids drawn at 50% probability level. Only one of the two disordered hydrogen positions is shown for each hydroxy group.
[Figure 2] Fig. 2. A hydrogen bonded layer in the bc plane. Hydrogen bonds are shown by red lines. In Figs. 2 and 3 C is green, O is red.
[Figure 3] Fig. 3. The centrosymmetric dimer links layers by a double edge-face interactions (shown as black arrows).
(1R*,2R*,4S*,5R*,6R*,8S*)- 4,8-Dimethyl-2,6-diphenylbicyclo[3.3.1]nonane-2,6-diol top
Crystal data top
C23H28O2F(000) = 1456.0
Mr = 336.5Dx = 1.23 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 18.462 (4) ÅCell parameters from 10 reflections
b = 13.310 (1) Åθ = 20–23°
c = 14.824 (3) ŵ = 0.59 mm1
β = 92.92 (1)°T = 294 K
V = 3638 (1) Å3Prism, colourless
Z = 80.30 × 0.15 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 70°
ω–2θ scansh = 2222
3585 measured reflectionsk = 016
3442 independent reflectionsl = 180
2292 reflections with I > 2σ(I)1 standard reflections every 30 min
Rint = 0.034 intensity decay: 4%
Refinement top
Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.045H-atom parameters not refined
wR(F2) = 0.062 w = 1/[σ2(F) + 0.0004F2]
S = 1.59(Δ/σ)max = 0.004
3442 reflectionsΔρmax = 0.31 e Å3
160 parametersΔρmin = 0.34 e Å3
Crystal data top
C23H28O2V = 3638 (1) Å3
Mr = 336.5Z = 8
Monoclinic, C2/cCu Kα radiation
a = 18.462 (4) ŵ = 0.59 mm1
b = 13.310 (1) ÅT = 294 K
c = 14.824 (3) Å0.30 × 0.15 × 0.12 mm
β = 92.92 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.034
3585 measured reflections1 standard reflections every 30 min
3442 independent reflections intensity decay: 4%
2292 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.062H-atom parameters not refined
S = 1.59Δρmax = 0.31 e Å3
3442 reflectionsΔρmin = 0.34 e Å3
160 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.27017 (6)0.26370 (9)0.09652 (8)0.0465 (3)
O20.30304 (7)0.58902 (10)0.32886 (8)0.0550 (4)
C10.32906 (9)0.42870 (12)0.08333 (11)0.0350 (4)
C20.33263 (9)0.32328 (12)0.12682 (11)0.0372 (4)
C30.3302 (1)0.3328 (1)0.2293 (1)0.0435 (4)
C40.3858 (1)0.4068 (1)0.2711 (1)0.0469 (5)
C50.38388 (9)0.51069 (14)0.22386 (11)0.0409 (4)
C60.31736 (9)0.58053 (13)0.23431 (11)0.0406 (4)
C70.24945 (9)0.53770 (13)0.18446 (12)0.0426 (4)
C80.25972 (9)0.49329 (13)0.09061 (12)0.0405 (4)
C90.39285 (9)0.49236 (13)0.12283 (12)0.0400 (4)
C100.39953 (8)0.26407 (10)0.09682 (8)0.0401 (4)
C110.42900 (8)0.28028 (12)0.01427 (10)0.0643 (4)
C120.48531 (8)0.22117 (14)0.01466 (10)0.0737 (6)
C130.51343 (9)0.14468 (12)0.03804 (10)0.0615 (6)
C140.48475 (9)0.12773 (11)0.12005 (12)0.0781 (6)
C150.42844 (8)0.18666 (12)0.14924 (10)0.0664 (5)
C160.3837 (1)0.4072 (2)0.3743 (1)0.0667 (6)
C170.33675 (7)0.68703 (11)0.20411 (8)0.0424 (4)
C180.30590 (7)0.73420 (11)0.12855 (9)0.0548 (5)
C190.32341 (9)0.83264 (11)0.10750 (10)0.0642 (6)
C200.37202 (8)0.88615 (12)0.16127 (10)0.0625 (6)
C210.40304 (8)0.84036 (11)0.23640 (11)0.0647 (5)
C220.38568 (8)0.74193 (11)0.25771 (9)0.0542 (5)
C230.1887 (1)0.4463 (2)0.0533 (1)0.0565 (5)
H1O10.26390.26490.02910.0470.5
H1'O10.26140.20680.13860.0470.5
H1O20.28330.65350.35210.0550.5
H1'O20.27230.53200.34860.0550.5
HC10.33670.41970.01750.035
H1C30.33970.26510.25660.043
H2C30.28070.35600.24400.043
HC40.43410.37770.25830.047
HC50.42770.54860.24730.041
H1C70.21310.59320.17750.043
H2C70.22990.48340.22300.043
HC80.26740.55280.05100.041
H1C90.39370.55830.09060.040
H2C90.43940.45590.11460.040
HC110.40940.33570.02550.106
HC120.50560.23470.07480.121
HC130.55400.10220.01710.074
HC140.50460.07220.15940.130
HC150.40840.17280.20940.108
H1C160.42040.45600.40010.067
H2C160.33430.42760.39210.067
H3C160.39510.33840.39810.067
HC180.27020.69670.08820.071
HC190.30020.86490.05240.086
HC200.38460.95700.14600.074
HC210.43870.87830.27650.088
HC220.40910.71020.31300.069
H1C230.19590.41760.00790.056
H2C230.17370.39170.09480.056
H3C230.15010.49900.04860.056
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0467 (7)0.0394 (7)0.0538 (8)0.0053 (6)0.0064 (6)0.0009 (6)
O20.079 (1)0.0515 (8)0.0364 (7)0.0074 (7)0.0167 (6)0.0026 (6)
C10.0390 (9)0.0344 (9)0.0321 (9)0.0031 (7)0.0066 (7)0.0017 (7)
C20.0421 (9)0.0350 (9)0.0347 (9)0.0021 (7)0.0049 (7)0.0004 (7)
C30.056 (1)0.040 (1)0.0345 (9)0.0080 (8)0.0085 (8)0.0048 (8)
C40.057 (1)0.047 (1)0.036 (1)0.0145 (9)0.0012 (8)0.0018 (8)
C50.0410 (9)0.043 (1)0.039 (1)0.0035 (8)0.0019 (7)0.0040 (8)
C60.047 (1)0.041 (1)0.0351 (9)0.0058 (8)0.0078 (7)0.0021 (8)
C70.041 (1)0.0391 (9)0.049 (1)0.0048 (8)0.0104 (8)0.0010 (8)
C80.042 (1)0.0359 (9)0.044 (1)0.0035 (8)0.0024 (7)0.0029 (8)
C90.0383 (9)0.041 (1)0.041 (1)0.0027 (8)0.0072 (7)0.0030 (8)
C100.0461 (6)0.0363 (7)0.0374 (6)0.0049 (5)0.0017 (5)0.0050 (5)
C110.0687 (7)0.0782 (9)0.0472 (7)0.0294 (7)0.0144 (6)0.0092 (5)
C120.0726 (8)0.096 (1)0.0541 (8)0.0348 (8)0.0148 (7)0.0006 (7)
C130.0570 (7)0.0582 (9)0.069 (1)0.0159 (7)0.0054 (6)0.0150 (7)
C140.0783 (9)0.0679 (9)0.090 (1)0.0373 (8)0.0233 (8)0.0189 (7)
C150.0716 (7)0.0639 (8)0.0652 (7)0.0319 (6)0.0168 (6)0.0192 (6)
C160.097 (2)0.066 (2)0.036 (1)0.022 (1)0.010 (1)0.002 (1)
C170.0439 (7)0.0426 (5)0.0411 (7)0.0037 (5)0.0076 (5)0.0070 (4)
C180.0647 (8)0.0496 (5)0.0497 (7)0.0024 (5)0.0012 (5)0.0020 (5)
C190.078 (1)0.0509 (6)0.0642 (8)0.0039 (5)0.0095 (6)0.0075 (6)
C200.070 (1)0.0448 (5)0.074 (1)0.0009 (5)0.0224 (8)0.0018 (5)
C210.070 (1)0.0486 (5)0.075 (1)0.0098 (6)0.0067 (7)0.0079 (5)
C220.0575 (8)0.0477 (5)0.0571 (7)0.0055 (5)0.0001 (5)0.0075 (5)
C230.046 (1)0.048 (1)0.074 (2)0.0075 (9)0.010 (1)0.004 (1)
Geometric parameters (Å, º) top
O1—C21.452 (2)C9—H2C91.000
O1—H1O11.000C10—C111.381 (1)
O1—H1'O11.000C10—C151.381 (1)
O2—C61.444 (2)C11—C121.389 (1)
O2—H1O21.000C11—HC111.000
O2—H1'O21.000C12—C131.369 (1)
C1—C21.544 (2)C12—HC121.000
C1—C81.550 (2)C13—C141.369 (1)
C1—C91.542 (2)C13—HC131.000
C1—HC11.000C14—C151.389 (1)
C2—C31.527 (2)C14—HC141.000
C2—C101.549 (2)C15—HC151.000
C3—C41.531 (3)C16—H1C161.000
C3—H1C31.000C16—H2C161.000
C3—H2C31.000C16—H3C161.000
C4—C51.550 (2)C17—C181.381 (1)
C4—C161.532 (3)C17—C221.381 (1)
C4—HC41.000C18—C191.389 (1)
C5—C61.554 (2)C18—HC181.000
C5—C91.535 (2)C19—C201.369 (1)
C5—HC51.000C19—HC191.000
C6—C71.532 (2)C20—C211.369 (1)
C6—C171.534 (2)C20—HC201.000
C7—C81.532 (2)C21—C221.389 (1)
C7—H1C71.000C21—HC211.000
C7—H2C71.000C22—HC221.000
C8—C231.530 (2)C23—H1C231.000
C8—HC81.000C23—H2C231.000
C9—H1C91.000C23—H3C231.000
C2—O1—H1O1110.4C1—C9—C5109.8 (1)
C2—O1—H1'O1111.8C1—C9—H1C9109.4
H1O1—O1—H1'O1128.5C1—C9—H2C9109.4
C6—O2—H1O2119.3C5—C9—H1C9109.4
C6—O2—H1'O2111.1C5—C9—H2C9109.4
H1O2—O2—H1'O2109.2H1C9—C9—H2C9109.5
C2—C1—C8119.5 (1)C2—C10—C11122.0 (1)
C2—C1—C9109.0 (1)C2—C10—C15120.6 (1)
C2—C1—HC1107.0C11—C10—C15117.2 (1)
C8—C1—C9106.6 (1)C10—C11—C12121.3 (1)
C8—C1—HC1107.0C10—C11—HC11119.3
C9—C1—HC1107.0C12—C11—HC11119.3
O1—C2—C1110.6 (1)C11—C12—C13120.9 (1)
O1—C2—C3106.9 (1)C11—C12—HC12119.6
O1—C2—C10105.4 (1)C13—C12—HC12119.6
C1—C2—C3109.7 (1)C12—C13—C14118.5 (1)
C1—C2—C10111.1 (1)C12—C13—HC13120.8
C3—C2—C10113.1 (1)C14—C13—HC13120.8
C2—C3—C4113.8 (2)C13—C14—C15120.9 (1)
C2—C3—H1C3108.4C13—C14—HC14119.6
C2—C3—H2C3108.4C15—C14—HC14119.6
C4—C3—H1C3108.4C10—C15—C14121.3 (1)
C4—C3—H2C3108.4C10—C15—HC15119.3
H1C3—C3—H2C3109.5C14—C15—HC15119.3
C3—C4—C5113.0 (1)C4—C16—H1C16109.5
C3—C4—C16110.9 (2)C4—C16—H2C16109.5
C3—C4—HC4105.1C4—C16—H3C16109.5
C5—C4—C16116.5 (2)H1C16—C16—H2C16109.5
C5—C4—HC4105.1H1C16—C16—H3C16109.5
C16—C4—HC4105.1H2C16—C16—H3C16109.5
C4—C5—C6119.3 (2)C6—C17—C18124.3 (1)
C4—C5—C9107.4 (1)C6—C17—C22118.4 (1)
C4—C5—HC5107.1C18—C17—C22117.2 (1)
C6—C5—C9108.5 (1)C17—C18—C19121.3 (1)
C6—C5—HC5107.1C17—C18—HC18119.3
C9—C5—HC5107.1C19—C18—HC18119.3
O2—C6—C5109.2 (1)C18—C19—C20120.9 (1)
O2—C6—C7108.1 (1)C18—C19—HC19119.6
O2—C6—C17105.5 (1)C20—C19—HC19119.6
C5—C6—C7111.1 (1)C19—C20—C21118.5 (1)
C5—C6—C17109.0 (1)C19—C20—HC20120.8
C7—C6—C17113.6 (1)C21—C20—HC20120.8
C6—C7—C8116.4 (1)C20—C21—C22120.9 (1)
C6—C7—H1C7107.7C20—C21—HC21119.6
C6—C7—H2C7107.7C22—C21—HC21119.6
C8—C7—H1C7107.7C17—C22—C21121.3 (1)
C8—C7—H2C7107.7C17—C22—HC22119.3
H1C7—C7—H2C7109.5C21—C22—HC22119.3
C1—C8—C7114.7 (1)C8—C23—H1C23109.5
C1—C8—C23116.3 (1)C8—C23—H2C23109.5
C1—C8—HC8104.8C8—C23—H3C23109.5
C7—C8—C23110.0 (2)H1C23—C23—H2C23109.5
C7—C8—HC8104.8H1C23—C23—H3C23109.5
C23—C8—HC8104.8H2C23—C23—H3C23109.5
H1O1—O1—C2—C150.8C4—C5—C9—C162.1 (2)
H1O1—O1—C2—C3170.1C4—C5—C9—H1C9177.9
H1O1—O1—C2—C1069.4C4—C5—C9—H2C958.0
H1'O1—O1—C2—C1159.4C6—C5—C9—C168.1 (2)
H1'O1—O1—C2—C340.1C6—C5—C9—H1C952.0
H1'O1—O1—C2—C1080.5C6—C5—C9—H2C9171.9
H1O2—O2—C6—C5146.9HC5—C5—C9—C1176.7
H1O2—O2—C6—C792.1HC5—C5—C9—H1C963.2
H1O2—O2—C6—C1729.8HC5—C5—C9—H2C956.7
H1'O2—O2—C6—C584.8O2—C6—C7—C8162.2 (1)
H1'O2—O2—C6—C736.2O2—C6—C7—H1C776.8
H1'O2—O2—C6—C17158.1O2—C6—C7—H2C741.2
C8—C1—C2—O152.7 (2)C5—C6—C7—C842.4 (2)
C8—C1—C2—C364.9 (2)C5—C6—C7—H1C7163.4
C8—C1—C2—C10169.3 (1)C5—C6—C7—H2C778.6
C9—C1—C2—O1175.5 (1)C17—C6—C7—C881.0 (2)
C9—C1—C2—C357.9 (2)C17—C6—C7—H1C740.0
C9—C1—C2—C1067.8 (2)C17—C6—C7—H2C7158.0
HC1—C1—C2—O169.0O2—C6—C17—C18130.1 (1)
HC1—C1—C2—C3173.4O2—C6—C17—C2246.7 (1)
HC1—C1—C2—C1047.6C5—C6—C17—C18112.8 (1)
C2—C1—C8—C773.1 (2)C5—C6—C17—C2270.4 (1)
C2—C1—C8—C2357.3 (2)C7—C6—C17—C1811.8 (2)
C2—C1—C8—HC8172.5C7—C6—C17—C22165.0 (1)
C9—C1—C8—C750.9 (2)C6—C7—C8—C142.0 (2)
C9—C1—C8—C23178.7 (1)C6—C7—C8—C23175.4 (1)
C9—C1—C8—HC863.5C6—C7—C8—HC872.4
HC1—C1—C8—C7165.2H1C7—C7—C8—C1163.0
HC1—C1—C8—C2364.4H1C7—C7—C8—C2363.6
HC1—C1—C8—HC850.8H1C7—C7—C8—HC848.6
C2—C1—C9—C565.5 (2)H2C7—C7—C8—C179.0
C2—C1—C9—H1C9174.5H2C7—C7—C8—C2354.4
C2—C1—C9—H2C954.6H2C7—C7—C8—HC8166.6
C8—C1—C9—C564.8 (2)C1—C8—C23—H1C2347.4
C8—C1—C9—H1C955.3C1—C8—C23—H2C2372.6
C8—C1—C9—H2C9175.1C1—C8—C23—H3C23167.4
HC1—C1—C9—C5179.1C7—C8—C23—H1C23180.0
HC1—C1—C9—H1C959.0C7—C8—C23—H2C2360.0
HC1—C1—C9—H2C960.9C7—C8—C23—H3C2360.0
O1—C2—C3—C4171.2 (1)HC8—C8—C23—H1C2367.8
O1—C2—C3—H1C368.1HC8—C8—C23—H2C23172.2
O1—C2—C3—H2C350.6HC8—C8—C23—H3C2352.2
C1—C2—C3—C451.4 (2)C2—C10—C11—C12174.8 (1)
C1—C2—C3—H1C3172.0C2—C10—C11—HC115.2
C1—C2—C3—H2C369.3C15—C10—C11—C120.0 (1)
C10—C2—C3—C473.3 (2)C15—C10—C11—HC11180.0
C10—C2—C3—H1C347.4C2—C10—C15—C14174.9 (1)
C10—C2—C3—H2C3166.1C2—C10—C15—HC155.1
O1—C2—C10—C1190.9 (1)C11—C10—C15—C140.0 (1)
O1—C2—C10—C1583.7 (1)C11—C10—C15—HC15180.0
C1—C2—C10—C1128.9 (2)C10—C11—C12—C130.0 (1)
C1—C2—C10—C15156.5 (1)C10—C11—C12—HC12180.0
C3—C2—C10—C11152.7 (1)HC11—C11—C12—C13180.0
C3—C2—C10—C1532.6 (2)HC11—C11—C12—HC120.0
C2—C3—C4—C550.8 (2)C11—C12—C13—C140.0 (1)
C2—C3—C4—C16176.2 (2)C11—C12—C13—HC13180.0
C2—C3—C4—HC463.2HC12—C12—C13—C14180.0
H1C3—C3—C4—C5171.4HC12—C12—C13—HC130.0
H1C3—C3—C4—C1655.6C12—C13—C14—C150.0 (1)
H1C3—C3—C4—HC457.4C12—C13—C14—HC14180.0
H2C3—C3—C4—C569.9HC13—C13—C14—C15180.0
H2C3—C3—C4—C1663.1HC13—C13—C14—HC140.0
H2C3—C3—C4—HC4176.1C13—C14—C15—C100.0 (1)
C3—C4—C5—C669.4 (2)C13—C14—C15—HC15180.0
C3—C4—C5—C954.4 (2)HC14—C14—C15—C10180.0
C3—C4—C5—HC5169.1HC14—C14—C15—HC150.0
C16—C4—C5—C660.9 (2)C6—C17—C18—C19176.8 (1)
C16—C4—C5—C9175.3 (2)C6—C17—C18—HC183.2
C16—C4—C5—HC560.7C22—C17—C18—C190.0 (1)
HC4—C4—C5—C6176.6C22—C17—C18—HC18180.0
HC4—C4—C5—C959.6C6—C17—C22—C21177.0 (1)
HC4—C4—C5—HC555.1C6—C17—C22—HC223.0
C3—C4—C16—H1C16180.0C18—C17—C22—C210.0 (1)
C3—C4—C16—H2C1660.0C18—C17—C22—HC22180.0
C3—C4—C16—H3C1660.0C17—C18—C19—C200.0 (1)
C5—C4—C16—H1C1648.8C17—C18—C19—HC19180.0
C5—C4—C16—H2C1671.2HC18—C18—C19—C20180.0
C5—C4—C16—H3C16168.8HC18—C18—C19—HC190.0
HC4—C4—C16—H1C1667.0C18—C19—C20—C210.0 (1)
HC4—C4—C16—H2C16173.0C18—C19—C20—HC20180.0
HC4—C4—C16—H3C1653.0HC19—C19—C20—C21180.0
C4—C5—C6—O250.1 (2)HC19—C19—C20—HC200.0
C4—C5—C6—C769.1 (2)C19—C20—C21—C220.0 (1)
C4—C5—C6—C17165.0 (1)C19—C20—C21—HC21180.0
C9—C5—C6—O2173.4 (1)HC20—C20—C21—C22180.0
C9—C5—C6—C754.2 (2)HC20—C20—C21—HC210.0
C9—C5—C6—C1771.8 (2)C20—C21—C22—C170.0 (1)
HC5—C5—C6—O271.4C20—C21—C22—HC22180.0
HC5—C5—C6—C7169.4HC21—C21—C22—C17180.0
HC5—C5—C6—C1743.4HC21—C21—C22—HC220.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1i1.001.972.943 (2)163
O1—H1O1···O2ii1.002.042.935 (2)148
O2—H1O2···O1iii1.001.952.935 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H28O2
Mr336.5
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)18.462 (4), 13.310 (1), 14.824 (3)
β (°) 92.92 (1)
V3)3638 (1)
Z8
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3585, 3442, 2292
Rint0.034
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.062, 1.59
No. of reflections3442
No. of parameters160
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: CAD-4 Manual (Schagen et al., 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2005), local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O1i1.001.972.943 (2)163
O1—H1'O1···O2ii1.002.042.935 (2)148
O2—H1O2···O1iii1.001.952.935 (2)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Australian Research Council.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCrystalMaker (2005). CrystalMaker. CrystalMaker Software Limited, Yarnton England. URL: www.CrystalMaker.co.uk.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, S., Bishop, R., Craig, D. C., Dance, I. G. & Scudder, M. L. (2002). J. Org. Chem. 67, 3221–3230.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNguyen, V. T., Ahn, P. D., Bishop, R., Scudder, M. L. & Craig, D. C. (2001a). Eur. J. Org. Chem. pp. 4489–4499.  CrossRef Google Scholar
First citationNguyen, V. T., Bishop, R., Craig, D. C. & Scudder, M. L. (2001b). Supramol. Chem. 13, 103–107.  Web of Science CrossRef CAS Google Scholar
First citationRae, A. D. (2000). RAELS. Australian National University, Canberra, Australia.  Google Scholar
First citationSchagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds