organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Oxalylbis(aza­nedi­yl)]bis­­{[amino­(2-pyrid­yl)methyl­ene]ammonium}

aSchool of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei 230061, People's Republic of China
*Correspondence e-mail: dapdong@163.com

(Received 6 March 2009; accepted 11 March 2009; online 19 March 2009)

The title compound, C14H16N8O22+·2ClO4, was prepared by reaction of bis­[amino­(2-pyrid­yl)methyl­ene]oxalohydrazide with perchloric acid. The mol­ecular symmetry is Ci and thus the asymmetric unit comprises one half-mol­ecule. The dihedral angle between the aromatic ring and the plane of the oxamide group is 70.8 (3)°. The perchlorate anions and the cations are connected by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For background to the design and synthesis of polynuclear mol­ecule-based magnetic materials, see: Niel et al. (2008[Niel, V., Milway, V. A., Dawe, L. N. & Thompson, L. K. (2008). Inorg. Chem. 47, 176-189.]); Zhao et al. (2004[Zhao, L., Niel, V., Thompson, L. K. & Xu, Z. Q. (2004). Dalton Trans. pp. 1446-1455.]); Xu et al. (2001[Xu, Z. Q., Thompson, L. K., Black, D. A. & Miller, D. O. (2001). Dalton Trans. pp. 2042-2048.], 2003[Xu, Z. Q., Thompson, L. K., Milway, V. A., Zhao, L. & Miller, D. O. (2003). Inorg. Chem. 42, 2950-2959.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N8O22+·2ClO4

  • Mr = 527.25

  • Monoclinic, P 21 /n

  • a = 5.0751 (11) Å

  • b = 13.725 (3) Å

  • c = 15.162 (3) Å

  • β = 98.605 (3)°

  • V = 1044.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 273 K

  • 0.31 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.914

  • 5016 measured reflections

  • 1824 independent reflections

  • 1455 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.09

  • 1824 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.51 2.975 (3) 115
N1—H1A⋯O5i 0.86 2.58 3.404 (4) 162
N2—H2A⋯O3ii 0.86 2.21 2.970 (3) 147
N4—H4A⋯O1iii 0.86 2.23 2.974 (3) 145
N4—H4B⋯O2iii 0.86 2.05 2.820 (3) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, researchers showed considerable interest in design and synthesis of polynuclear molecule-based magnetic materials, which were prepared by reactions of special organic molecules with transitional metals. (Niel et al., 2008; Xu et al., 2001; Xu et al., 2003); Zhao et al., 2004). Here we report a new compound, [(C14H16N8O2)(ClO4)2].

The asymmetric unit of the title compound comprises a half of the molecule (Fig. 1). In the structure of title compound, the dihedral angle between the aromatic ring and the plane of oxamide group is 70.8 °. Perchlorate anions and cations are connected by intermolecular N—H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For backgroud to the design and synthesis of polynuclear molecule-based magnetic materials, see: Niel et al. (2008); Zhao et al. (2004); Xu et al. (2001, 2003).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. Ligand was prepared by similar procedure reported in the literature (Zhao et al., 2004). For the synthesis of title compoud, a solution of ligand (0.1 mmol), HClO4(0.1 mmol) in 20 ml methanol was refluxed for 1 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd. for C14H16N8O10Cl2: C, 31.89; H, 3.06; N, 21.25. Found: C, 32.15; H, 3.18; N, 21.20.

Refinement top

All hydrogen atoms were geomemetrically positioned (C—H 0.93–0.97 Å, N–H 0.86 Å) and refined as riding, with Uiso(H)=1.2 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the 30% probability displacement ellipsoids and the atom-numbering [symmetry code: 1 - x,1 - y,1 - z].
[Figure 2] Fig. 2. The crystal packing of the title compound generated by intermolecular hydrogen bonds.
[Oxalylbis(azanediyl)]bis{[amino(2-pyridyl)methylene]ammonium} top
Crystal data top
C14H16N8O22+·2ClO4F(000) = 540
Mr = 527.25Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2046 reflections
a = 5.0751 (11) Åθ = 2.7–26.2°
b = 13.725 (3) ŵ = 0.39 mm1
c = 15.162 (3) ÅT = 273 K
β = 98.605 (3)°Block, colourless
V = 1044.2 (4) Å30.31 × 0.25 × 0.22 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1824 independent reflections
Radiation source: fine-focus sealed tube1455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 65
Tmin = 0.882, Tmax = 0.914k = 1316
5016 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
1824 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C14H16N8O22+·2ClO4V = 1044.2 (4) Å3
Mr = 527.25Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.0751 (11) ŵ = 0.39 mm1
b = 13.725 (3) ÅT = 273 K
c = 15.162 (3) Å0.31 × 0.25 × 0.22 mm
β = 98.605 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1455 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.914Rint = 0.078
5016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
1824 reflectionsΔρmin = 0.47 e Å3
154 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7001 (5)0.85329 (16)0.62706 (14)0.0356 (5)
C20.8640 (5)0.90729 (18)0.68880 (16)0.0487 (6)
H21.02290.88190.71830.058*
C30.7835 (7)1.0013 (2)0.70546 (19)0.0654 (8)
H30.88871.04020.74690.078*
C40.5517 (8)1.03584 (19)0.6612 (2)0.0679 (9)
H40.49531.09870.67190.081*
C50.4000 (6)0.97677 (19)0.6001 (2)0.0604 (8)
H50.24091.00130.56980.073*
C60.7662 (4)0.75221 (14)0.60311 (13)0.0326 (5)
C70.4737 (4)0.54717 (15)0.52444 (14)0.0352 (5)
Cl10.54991 (12)0.77141 (5)0.85280 (3)0.0450 (3)
N10.5942 (4)0.71127 (13)0.53978 (12)0.0370 (5)
H1A0.45300.74250.51750.044*
N20.6387 (4)0.61898 (12)0.50903 (11)0.0380 (5)
H2A0.77000.60790.48050.046*
N30.4704 (4)0.88577 (14)0.58226 (14)0.0486 (5)
N40.9765 (4)0.70721 (15)0.64025 (12)0.0445 (5)
H4A1.00820.64890.62400.053*
H4B1.08520.73550.68130.053*
O10.3033 (4)0.55207 (11)0.57270 (12)0.0506 (5)
O20.4275 (4)0.72826 (16)0.77218 (13)0.0710 (6)
O30.4490 (5)0.86811 (15)0.85821 (15)0.0793 (7)
O40.8287 (4)0.77292 (16)0.85160 (15)0.0730 (7)
O50.4956 (6)0.71688 (18)0.92652 (16)0.0973 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (13)0.0310 (11)0.0376 (11)0.0040 (9)0.0085 (10)0.0016 (9)
C20.0529 (16)0.0435 (14)0.0490 (14)0.0095 (11)0.0050 (11)0.0077 (11)
C30.085 (2)0.0450 (16)0.0675 (18)0.0155 (16)0.0163 (17)0.0204 (14)
C40.096 (3)0.0315 (15)0.083 (2)0.0006 (15)0.0361 (19)0.0080 (13)
C50.0628 (19)0.0409 (15)0.080 (2)0.0110 (13)0.0182 (15)0.0084 (13)
C60.0362 (13)0.0330 (11)0.0287 (12)0.0032 (9)0.0049 (9)0.0007 (9)
C70.0380 (13)0.0308 (12)0.0348 (12)0.0014 (9)0.0012 (9)0.0029 (8)
Cl10.0409 (4)0.0542 (4)0.0375 (4)0.0076 (3)0.0019 (3)0.0028 (2)
N10.0371 (11)0.0292 (10)0.0422 (10)0.0005 (7)0.0027 (8)0.0062 (7)
N20.0419 (11)0.0300 (10)0.0419 (10)0.0024 (8)0.0058 (8)0.0090 (8)
N30.0509 (13)0.0354 (11)0.0576 (12)0.0061 (9)0.0020 (10)0.0010 (9)
N40.0430 (12)0.0399 (12)0.0466 (12)0.0047 (9)0.0069 (9)0.0093 (8)
O10.0580 (12)0.0374 (9)0.0614 (11)0.0018 (8)0.0246 (9)0.0084 (8)
O20.0610 (14)0.0874 (16)0.0572 (12)0.0057 (10)0.0150 (9)0.0154 (10)
O30.0885 (16)0.0567 (14)0.0966 (15)0.0244 (12)0.0262 (13)0.0043 (11)
O40.0374 (12)0.0868 (16)0.0894 (16)0.0060 (10)0.0079 (10)0.0147 (11)
O50.130 (2)0.106 (2)0.0648 (14)0.0451 (16)0.0439 (15)0.0363 (13)
Geometric parameters (Å, º) top
C1—N31.335 (3)C7—O11.215 (3)
C1—C21.373 (3)C7—N21.336 (3)
C1—C61.485 (3)C7—C7i1.535 (4)
C2—C31.387 (4)Cl1—O51.406 (2)
C2—H20.9300Cl1—O21.415 (2)
C3—C41.351 (5)Cl1—O41.418 (2)
C3—H30.9300Cl1—O31.429 (2)
C4—C51.377 (5)N1—N21.380 (2)
C4—H40.9300N1—H1A0.8600
C5—N31.338 (3)N2—H2A0.8600
C5—H50.9300N4—H4A0.8600
C6—N41.287 (3)N4—H4B0.8600
C6—N11.322 (3)
N3—C1—C2124.1 (2)O1—C7—C7i121.9 (2)
N3—C1—C6113.56 (19)N2—C7—C7i112.3 (2)
C2—C1—C6122.3 (2)O5—Cl1—O2110.53 (18)
C1—C2—C3117.5 (3)O5—Cl1—O4109.43 (16)
C1—C2—H2121.3O2—Cl1—O4107.75 (14)
C3—C2—H2121.3O5—Cl1—O3109.51 (14)
C4—C3—C2119.6 (3)O2—Cl1—O3108.86 (13)
C4—C3—H3120.2O4—Cl1—O3110.74 (13)
C2—C3—H3120.2C6—N1—N2120.78 (19)
C3—C4—C5119.0 (3)C6—N1—H1A119.6
C3—C4—H4120.5N2—N1—H1A119.6
C5—C4—H4120.5C7—N2—N1118.65 (18)
N3—C5—C4123.1 (3)C7—N2—H2A120.7
N3—C5—H5118.4N1—N2—H2A120.7
C4—C5—H5118.4C1—N3—C5116.6 (2)
N4—C6—N1121.8 (2)C6—N4—H4A120.0
N4—C6—C1123.0 (2)C6—N4—H4B120.0
N1—C6—C1115.2 (2)H4A—N4—H4B120.0
O1—C7—N2125.83 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.862.512.975 (3)115
N1—H1A···O5ii0.862.583.404 (4)162
N2—H2A···O3iii0.862.212.970 (3)147
N4—H4A···O1iv0.862.232.974 (3)145
N4—H4B···O2iv0.862.052.820 (3)148
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H16N8O22+·2ClO4
Mr527.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)5.0751 (11), 13.725 (3), 15.162 (3)
β (°) 98.605 (3)
V3)1044.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.31 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.882, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
5016, 1824, 1455
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.09
No. of reflections1824
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.47

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.5092.975 (3)115.0
N1—H1A···O5i0.862.5783.404 (4)162.0
N2—H2A···O3ii0.862.2092.970 (3)147.0
N4—H4A···O1iii0.862.2282.974 (3)145.0
N4—H4B···O2iii0.862.0522.820 (3)148.0
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (No. 20871039) for financial support.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNiel, V., Milway, V. A., Dawe, L. N. & Thompson, L. K. (2008). Inorg. Chem. 47, 176–189.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. Q., Thompson, L. K., Black, D. A. & Miller, D. O. (2001). Dalton Trans. pp. 2042–2048.  CrossRef Google Scholar
First citationXu, Z. Q., Thompson, L. K., Milway, V. A., Zhao, L. & Miller, D. O. (2003). Inorg. Chem. 42, 2950–2959.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, L., Niel, V., Thompson, L. K. & Xu, Z. Q. (2004). Dalton Trans. pp. 1446–1455.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds