organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,3,4-Trimeth­­oxy-6-methyl­benzyl­­idene­amino)phenol

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wcywfu@163.com

(Received 8 February 2009; accepted 5 March 2009; online 11 March 2009)

The asymmetric unit of the title compound, C17H19NO4, contains two independent mol­ecules in which the dihedral angles between the two benzene rings are 83.1 (2) and 88.5 (2)°. Each mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds, forming two independent one-dimensional chains running along the b-axis direction.

Related literature

For the preparation, properties and applications of Schiff bases, see: Yu et al. (2007[Yu, T.-Z., Zhang, K., Yuling Zhao, Y.-L., Yang, C.-H., Zhang, H., Fan, D.-W. & Dong, W.-K. (2007). Inorg. Chem. Commun. 10, 401-403.]). For a related structure, see: Wang (2009[Wang, C.-Y. (2009). Acta Cryst. E65, o56.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO4

  • Mr = 301.33

  • Orthorhombic, P b c a

  • a = 20.045 (2) Å

  • b = 13.2042 (19) Å

  • c = 24.253 (3) Å

  • V = 6419.2 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.42 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.964

  • 25460 measured reflections

  • 5654 independent reflections

  • 2589 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.206

  • S = 1.12

  • 5654 reflections

  • 405 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1i 0.82 2.16 2.866 (5) 144
O8—H8⋯N2ii 0.82 1.99 2.777 (5) 161
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The preparation, properties and applications of Schiff bases are important in the development of coordination chemistry (see e.g. Yu et al., 2007). In this paper, the structure of the title compound, (I), is reported. The asymmetric unit of (I) is shown in Fig. 1. The bond lengths and angles of the title compound agree with those in the related compound (E)—N-(2,3,4-Trimethoxy-6-methylbenzylidene)naphthalen-1-amine (Wang, 2008), as representative example. The asymmetric unit of the title compound consists of two independent molecules, in which the dihedral angles between the two benzene rings in each are 83.1 (2)° [for rings C2-C7 and C12-C17] and 88.5 (2)° [for rings C19-C24 and C29-C34]. The molecules adopt a trans configuration about the central C=N bond. In the crystal structure, molecules are linked by intermolecular O—H···N hydrogen bonds to form two independent one-dimensional chains running along the b axis direction (Fig. 2 and Table 1).

Related literature top

For the preparation, properties and applications of Schiff bases, see: Yu et al. (2007).For a related structure, see: Wang (2009).

Experimental top

A mixture of 4-aminophenol (0.545 g, 5 mmol) and 2,3,4-trimethoxy-6-methylbenzaldehyde (1.04 g, 5 mmol) in ethyl alcohol (30 ml) was refluxed for 2 h. After cooling the precipitate was filtered and dried. The crude product of 20 mg was dissolved in 20 ml of ethyl alcohol by heating on a magnetic stirrer. The solution was filtered to remove impurities, and then left at room temperature. After a week single crystals of (I) suitable for structure determination were obtained.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å; O-H = 0.82Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C or O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.
4-(2,3,4-Trimethoxy-6-methylbenzylideneamino)phenol top
Crystal data top
C17H19NO4F(000) = 2560
Mr = 301.33Dx = 1.247 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3411 reflections
a = 20.045 (2) Åθ = 2.5–20.5°
b = 13.2042 (19) ŵ = 0.09 mm1
c = 24.253 (3) ÅT = 298 K
V = 6419.2 (14) Å3Block, light yellow
Z = 160.49 × 0.48 × 0.42 mm
Data collection top
Bruker SMART CCD
diffractometer
5654 independent reflections
Radiation source: fine-focus sealed tube2589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1923
Tmin = 0.958, Tmax = 0.964k = 1515
25460 measured reflectionsl = 2822
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + 11.5471P]
where P = (Fo2 + 2Fc2)/3
5654 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H19NO4V = 6419.2 (14) Å3
Mr = 301.33Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 20.045 (2) ŵ = 0.09 mm1
b = 13.2042 (19) ÅT = 298 K
c = 24.253 (3) Å0.49 × 0.48 × 0.42 mm
Data collection top
Bruker SMART CCD
diffractometer
5654 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2589 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.964Rint = 0.092
25460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + 11.5471P]
where P = (Fo2 + 2Fc2)/3
5654 reflectionsΔρmax = 0.21 e Å3
405 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09178 (18)0.5134 (3)0.75088 (16)0.0456 (10)
N20.16453 (19)1.0602 (3)0.98602 (16)0.0473 (10)
O10.18197 (15)0.3410 (2)0.65385 (12)0.0514 (9)
O20.21163 (16)0.1364 (2)0.67521 (14)0.0556 (9)
O30.20521 (18)0.0660 (3)0.77778 (15)0.0695 (11)
O40.03160 (18)0.9210 (3)0.71702 (15)0.0705 (11)
H40.00890.92950.71510.106*
O50.05416 (18)0.9042 (3)0.89798 (14)0.0650 (10)
O60.01757 (18)0.6985 (3)0.91633 (14)0.0644 (10)
O70.03635 (17)0.6176 (2)1.01429 (15)0.0601 (10)
O80.20925 (18)1.4749 (3)0.99430 (17)0.0764 (12)
H80.24821.48850.98710.115*
C10.1457 (2)0.4734 (4)0.73373 (18)0.0447 (12)
H10.17410.51090.71140.054*
C20.1638 (2)0.3693 (4)0.74853 (18)0.0397 (11)
C30.1825 (2)0.3028 (4)0.70673 (18)0.0394 (11)
C40.1949 (2)0.2018 (4)0.71691 (19)0.0456 (12)
C50.1922 (2)0.1671 (4)0.7710 (2)0.0484 (13)
C60.1770 (2)0.2326 (4)0.8130 (2)0.0564 (14)
H60.17680.20890.84920.068*
C70.1621 (2)0.3331 (4)0.80274 (19)0.0498 (13)
C80.2416 (3)0.3325 (5)0.6226 (2)0.0737 (17)
H8A0.27940.34020.64660.111*
H8B0.24250.38430.59490.111*
H8C0.24330.26720.60530.111*
C90.1551 (3)0.0923 (5)0.6491 (3)0.0854 (19)
H9A0.13230.04920.67480.128*
H9B0.16930.05310.61790.128*
H9C0.12550.14500.63700.128*
C100.1876 (4)0.0206 (5)0.8287 (3)0.103 (2)
H10A0.21470.04850.85760.155*
H10B0.19470.05120.82660.155*
H10C0.14140.03390.83640.155*
C110.1440 (3)0.4002 (5)0.8507 (2)0.0784 (19)
H11A0.09650.40020.85560.118*
H11B0.15900.46800.84360.118*
H11C0.16500.37530.88360.118*
C120.0783 (2)0.6174 (4)0.73988 (19)0.0427 (12)
C130.1269 (2)0.6905 (4)0.7358 (2)0.0564 (14)
H130.17160.67200.73820.068*
C140.1104 (3)0.7909 (4)0.7282 (2)0.0598 (15)
H140.14410.83920.72590.072*
C150.0449 (3)0.8208 (4)0.7239 (2)0.0525 (13)
C160.0032 (2)0.7480 (4)0.7281 (2)0.0600 (15)
H160.04790.76630.72530.072*
C170.0131 (2)0.6478 (4)0.7362 (2)0.0565 (14)
H170.02070.60000.73930.068*
C180.1073 (2)1.0219 (4)0.97645 (19)0.0497 (13)
H180.07441.06260.96110.060*
C190.0916 (2)0.9151 (3)0.98894 (19)0.0431 (12)
C200.0615 (2)0.8572 (4)0.94810 (19)0.0437 (12)
C210.0456 (2)0.7570 (4)0.9569 (2)0.0441 (12)
C220.0562 (2)0.7160 (4)1.0086 (2)0.0455 (12)
C230.0853 (2)0.7717 (4)1.0497 (2)0.0499 (13)
H230.09210.74261.08420.060*
C240.1049 (2)0.8722 (4)1.0404 (2)0.0472 (12)
C250.0055 (3)0.8951 (6)0.8685 (3)0.103 (2)
H25A0.00300.83760.84440.154*
H25B0.01260.95530.84710.154*
H25C0.04190.88640.89380.154*
C260.0659 (3)0.6435 (5)0.8855 (3)0.100 (2)
H26A0.09440.69000.86630.150*
H26B0.04370.60050.85930.150*
H26C0.09210.60270.91000.150*
C270.0461 (3)0.5706 (4)1.0661 (2)0.0809 (19)
H27A0.09290.56951.07470.121*
H27B0.02940.50251.06480.121*
H27C0.02260.60791.09400.121*
C280.1402 (3)0.9258 (4)1.0866 (2)0.0735 (17)
H28A0.18760.91871.08200.110*
H28B0.12700.89661.12120.110*
H28C0.12860.99631.08610.110*
C290.1736 (2)1.1670 (3)0.98294 (18)0.0427 (12)
C300.2359 (2)1.2045 (4)0.9702 (2)0.0481 (13)
H300.26981.16020.96010.058*
C310.2483 (2)1.3071 (4)0.9724 (2)0.0507 (13)
H310.29011.33170.96250.061*
C320.1995 (2)1.3735 (4)0.9891 (2)0.0481 (12)
C330.1365 (2)1.3370 (4)1.0002 (2)0.0570 (14)
H330.10251.38151.00960.068*
C340.1242 (2)1.2354 (4)0.9973 (2)0.0526 (13)
H340.08161.21161.00520.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.043 (2)0.043 (3)0.051 (2)0.0044 (19)0.0004 (19)0.006 (2)
N20.047 (2)0.040 (3)0.055 (3)0.0077 (19)0.004 (2)0.001 (2)
O10.054 (2)0.058 (2)0.042 (2)0.0144 (17)0.0005 (16)0.0045 (17)
O20.061 (2)0.049 (2)0.057 (2)0.0103 (18)0.0036 (18)0.0065 (18)
O30.077 (3)0.059 (3)0.072 (3)0.017 (2)0.014 (2)0.020 (2)
O40.068 (2)0.040 (2)0.103 (3)0.0017 (18)0.023 (2)0.006 (2)
O50.073 (3)0.070 (3)0.052 (2)0.020 (2)0.0142 (19)0.0144 (19)
O60.071 (3)0.064 (3)0.058 (2)0.011 (2)0.0055 (19)0.015 (2)
O70.073 (2)0.038 (2)0.069 (2)0.0106 (18)0.0024 (19)0.0068 (19)
O80.069 (3)0.038 (2)0.122 (4)0.0053 (19)0.000 (2)0.004 (2)
C10.045 (3)0.047 (3)0.042 (3)0.005 (2)0.003 (2)0.002 (2)
C20.035 (2)0.049 (3)0.036 (3)0.007 (2)0.002 (2)0.000 (2)
C30.036 (3)0.045 (3)0.038 (3)0.005 (2)0.003 (2)0.002 (2)
C40.042 (3)0.049 (3)0.046 (3)0.007 (2)0.004 (2)0.001 (3)
C50.046 (3)0.045 (3)0.054 (3)0.015 (2)0.002 (2)0.010 (3)
C60.057 (3)0.069 (4)0.043 (3)0.014 (3)0.003 (2)0.016 (3)
C70.050 (3)0.061 (4)0.038 (3)0.013 (3)0.001 (2)0.003 (3)
C80.067 (4)0.097 (5)0.057 (3)0.013 (3)0.016 (3)0.017 (3)
C90.095 (5)0.078 (5)0.084 (5)0.012 (4)0.007 (4)0.029 (4)
C100.140 (6)0.072 (5)0.098 (5)0.018 (4)0.027 (5)0.042 (4)
C110.096 (5)0.096 (5)0.043 (3)0.034 (4)0.002 (3)0.006 (3)
C120.040 (3)0.040 (3)0.048 (3)0.003 (2)0.003 (2)0.005 (2)
C130.041 (3)0.050 (4)0.078 (4)0.002 (3)0.014 (3)0.007 (3)
C140.051 (3)0.046 (3)0.082 (4)0.008 (3)0.017 (3)0.003 (3)
C150.053 (3)0.039 (3)0.066 (3)0.003 (3)0.013 (3)0.001 (3)
C160.043 (3)0.047 (3)0.091 (4)0.005 (3)0.001 (3)0.002 (3)
C170.039 (3)0.041 (3)0.090 (4)0.001 (2)0.003 (3)0.000 (3)
C180.051 (3)0.045 (3)0.054 (3)0.004 (2)0.002 (2)0.002 (3)
C190.042 (3)0.036 (3)0.051 (3)0.003 (2)0.000 (2)0.004 (2)
C200.044 (3)0.046 (3)0.041 (3)0.004 (2)0.001 (2)0.003 (2)
C210.042 (3)0.042 (3)0.048 (3)0.009 (2)0.004 (2)0.007 (3)
C220.043 (3)0.039 (3)0.054 (3)0.005 (2)0.004 (2)0.003 (3)
C230.055 (3)0.048 (3)0.046 (3)0.004 (3)0.006 (2)0.003 (3)
C240.052 (3)0.043 (3)0.046 (3)0.007 (2)0.005 (2)0.001 (3)
C250.099 (5)0.119 (6)0.090 (5)0.004 (4)0.043 (4)0.030 (5)
C260.126 (6)0.093 (5)0.082 (5)0.013 (4)0.028 (4)0.038 (4)
C270.113 (5)0.049 (4)0.081 (4)0.013 (3)0.001 (4)0.019 (3)
C280.108 (5)0.059 (4)0.054 (3)0.024 (3)0.015 (3)0.002 (3)
C290.046 (3)0.038 (3)0.044 (3)0.005 (2)0.002 (2)0.002 (2)
C300.043 (3)0.040 (3)0.061 (3)0.001 (2)0.003 (2)0.002 (2)
C310.043 (3)0.045 (3)0.063 (3)0.010 (2)0.000 (3)0.003 (3)
C320.051 (3)0.033 (3)0.060 (3)0.004 (2)0.007 (3)0.003 (2)
C330.050 (3)0.043 (3)0.078 (4)0.003 (3)0.005 (3)0.004 (3)
C340.041 (3)0.048 (3)0.068 (4)0.005 (2)0.006 (2)0.001 (3)
Geometric parameters (Å, º) top
N1—C11.272 (5)C12—C171.370 (6)
N1—C121.426 (6)C12—C131.375 (6)
N2—C181.274 (5)C13—C141.379 (7)
N2—C291.424 (6)C13—H130.9300
O1—C31.378 (5)C14—C151.375 (7)
O1—C81.420 (5)C14—H140.9300
O2—C41.371 (5)C15—C161.366 (6)
O2—C91.423 (6)C16—C171.376 (7)
O3—C51.371 (6)C16—H160.9300
O3—C101.417 (6)C17—H170.9300
O4—C151.360 (5)C18—C191.477 (6)
O4—H40.8200C18—H180.9300
O5—C201.373 (5)C19—C201.390 (6)
O5—C251.398 (6)C19—C241.396 (6)
O6—C211.371 (5)C20—C211.378 (6)
O6—C261.424 (6)C21—C221.382 (6)
O7—C221.367 (5)C22—C231.368 (6)
O7—C271.415 (6)C23—C241.403 (6)
O8—C321.360 (5)C23—H230.9300
O8—H80.8200C24—C281.503 (6)
C1—C21.466 (6)C25—H25A0.9600
C1—H10.9300C25—H25B0.9600
C2—C31.392 (6)C25—H25C0.9600
C2—C71.399 (6)C26—H26A0.9600
C3—C41.380 (6)C26—H26B0.9600
C4—C51.389 (6)C26—H26C0.9600
C5—C61.371 (7)C27—H27A0.9600
C6—C71.383 (7)C27—H27B0.9600
C6—H60.9300C27—H27C0.9600
C7—C111.507 (7)C28—H28A0.9600
C8—H8A0.9600C28—H28B0.9600
C8—H8B0.9600C28—H28C0.9600
C8—H8C0.9600C29—C301.379 (6)
C9—H9A0.9600C29—C341.385 (6)
C9—H9B0.9600C30—C311.379 (6)
C9—H9C0.9600C30—H300.9300
C10—H10A0.9600C31—C321.375 (6)
C10—H10B0.9600C31—H310.9300
C10—H10C0.9600C32—C331.377 (6)
C11—H11A0.9600C33—C341.367 (7)
C11—H11B0.9600C33—H330.9300
C11—H11C0.9600C34—H340.9300
C1—N1—C12120.0 (4)C15—C16—H16119.4
C18—N2—C29119.8 (4)C17—C16—H16119.4
C3—O1—C8117.5 (4)C12—C17—C16121.2 (5)
C4—O2—C9113.0 (4)C12—C17—H17119.4
C5—O3—C10118.0 (4)C16—C17—H17119.4
C15—O4—H4109.5N2—C18—C19122.2 (5)
C20—O5—C25120.4 (4)N2—C18—H18118.9
C21—O6—C26112.7 (4)C19—C18—H18118.9
C22—O7—C27117.8 (4)C20—C19—C24119.8 (4)
C32—O8—H8109.5C20—C19—C18118.2 (4)
N1—C1—C2121.3 (4)C24—C19—C18122.0 (4)
N1—C1—H1119.4O5—C20—C21123.2 (4)
C2—C1—H1119.4O5—C20—C19115.4 (4)
C3—C2—C7118.4 (4)C21—C20—C19121.2 (4)
C3—C2—C1118.6 (4)O6—C21—C20121.6 (4)
C7—C2—C1123.0 (4)O6—C21—C22119.7 (4)
O1—C3—C4121.4 (4)C20—C21—C22118.7 (4)
O1—C3—C2116.4 (4)O7—C22—C23124.2 (5)
C4—C3—C2121.9 (4)O7—C22—C21114.7 (4)
O2—C4—C3121.4 (4)C23—C22—C21121.1 (4)
O2—C4—C5119.9 (4)C22—C23—C24120.7 (5)
C3—C4—C5118.7 (4)C22—C23—H23119.7
O3—C5—C6124.5 (5)C24—C23—H23119.7
O3—C5—C4115.3 (5)C19—C24—C23118.3 (4)
C6—C5—C4120.3 (5)C19—C24—C28124.4 (4)
C5—C6—C7121.2 (5)C23—C24—C28117.2 (4)
C5—C6—H6119.4O5—C25—H25A109.5
C7—C6—H6119.4O5—C25—H25B109.5
C6—C7—C2119.5 (4)H25A—C25—H25B109.5
C6—C7—C11118.5 (5)O5—C25—H25C109.5
C2—C7—C11122.0 (5)H25A—C25—H25C109.5
O1—C8—H8A109.5H25B—C25—H25C109.5
O1—C8—H8B109.5O6—C26—H26A109.5
H8A—C8—H8B109.5O6—C26—H26B109.5
O1—C8—H8C109.5H26A—C26—H26B109.5
H8A—C8—H8C109.5O6—C26—H26C109.5
H8B—C8—H8C109.5H26A—C26—H26C109.5
O2—C9—H9A109.5H26B—C26—H26C109.5
O2—C9—H9B109.5O7—C27—H27A109.5
H9A—C9—H9B109.5O7—C27—H27B109.5
O2—C9—H9C109.5H27A—C27—H27B109.5
H9A—C9—H9C109.5O7—C27—H27C109.5
H9B—C9—H9C109.5H27A—C27—H27C109.5
O3—C10—H10A109.5H27B—C27—H27C109.5
O3—C10—H10B109.5C24—C28—H28A109.5
H10A—C10—H10B109.5C24—C28—H28B109.5
O3—C10—H10C109.5H28A—C28—H28B109.5
H10A—C10—H10C109.5C24—C28—H28C109.5
H10B—C10—H10C109.5H28A—C28—H28C109.5
C7—C11—H11A109.5H28B—C28—H28C109.5
C7—C11—H11B109.5C30—C29—C34118.0 (4)
H11A—C11—H11B109.5C30—C29—N2118.9 (4)
C7—C11—H11C109.5C34—C29—N2122.8 (4)
H11A—C11—H11C109.5C31—C30—C29120.6 (5)
H11B—C11—H11C109.5C31—C30—H30119.7
C17—C12—C13117.7 (5)C29—C30—H30119.7
C17—C12—N1118.4 (4)C32—C31—C30120.5 (5)
C13—C12—N1123.8 (4)C32—C31—H31119.7
C12—C13—C14121.0 (5)C30—C31—H31119.7
C12—C13—H13119.5O8—C32—C31123.5 (5)
C14—C13—H13119.5O8—C32—C33117.3 (5)
C15—C14—C13121.0 (5)C31—C32—C33119.2 (5)
C15—C14—H14119.5C34—C33—C32120.0 (5)
C13—C14—H14119.5C34—C33—H33120.0
O4—C15—C16123.8 (5)C32—C33—H33120.0
O4—C15—C14118.4 (5)C33—C34—C29121.6 (5)
C16—C15—C14117.8 (5)C33—C34—H34119.2
C15—C16—C17121.2 (5)C29—C34—H34119.2
C12—N1—C1—C2174.5 (4)C29—N2—C18—C19168.3 (4)
N1—C1—C2—C3129.8 (5)N2—C18—C19—C20130.8 (5)
N1—C1—C2—C749.3 (7)N2—C18—C19—C2450.4 (7)
C8—O1—C3—C460.4 (6)C25—O5—C20—C2148.7 (7)
C8—O1—C3—C2125.4 (5)C25—O5—C20—C19136.6 (5)
C7—C2—C3—O1178.6 (4)C24—C19—C20—O5176.1 (4)
C1—C2—C3—O10.5 (6)C18—C19—C20—O55.0 (6)
C7—C2—C3—C44.4 (7)C24—C19—C20—C211.4 (7)
C1—C2—C3—C4174.6 (4)C18—C19—C20—C21179.8 (4)
C9—O2—C4—C387.7 (6)C26—O6—C21—C2093.7 (6)
C9—O2—C4—C594.2 (5)C26—O6—C21—C2288.7 (6)
O1—C3—C4—O24.4 (7)O5—C20—C21—O63.8 (7)
C2—C3—C4—O2178.2 (4)C19—C20—C21—O6178.2 (4)
O1—C3—C4—C5177.5 (4)O5—C20—C21—C22178.5 (4)
C2—C3—C4—C53.6 (7)C19—C20—C21—C224.1 (7)
C10—O3—C5—C615.0 (8)C27—O7—C22—C230.4 (7)
C10—O3—C5—C4164.8 (5)C27—O7—C22—C21179.6 (4)
O2—C4—C5—O31.7 (6)O6—C21—C22—O70.5 (6)
C3—C4—C5—O3179.9 (4)C20—C21—C22—O7177.2 (4)
O2—C4—C5—C6178.5 (4)O6—C21—C22—C23178.7 (4)
C3—C4—C5—C60.3 (7)C20—C21—C22—C233.5 (7)
O3—C5—C6—C7177.7 (5)O7—C22—C23—C24179.3 (4)
C4—C5—C6—C72.1 (8)C21—C22—C23—C240.1 (7)
C5—C6—C7—C21.2 (7)C20—C19—C24—C232.0 (7)
C5—C6—C7—C11178.3 (5)C18—C19—C24—C23176.8 (4)
C3—C2—C7—C62.0 (7)C20—C19—C24—C28176.9 (5)
C1—C2—C7—C6177.0 (4)C18—C19—C24—C284.3 (8)
C3—C2—C7—C11178.6 (4)C22—C23—C24—C192.7 (7)
C1—C2—C7—C112.4 (7)C22—C23—C24—C28176.4 (5)
C1—N1—C12—C17152.0 (5)C18—N2—C29—C30153.0 (5)
C1—N1—C12—C1331.9 (7)C18—N2—C29—C3433.4 (7)
C17—C12—C13—C140.1 (8)C34—C29—C30—C310.6 (7)
N1—C12—C13—C14176.3 (5)N2—C29—C30—C31173.3 (4)
C12—C13—C14—C150.6 (8)C29—C30—C31—C322.2 (8)
C13—C14—C15—O4179.3 (5)C30—C31—C32—O8177.2 (5)
C13—C14—C15—C160.7 (8)C30—C31—C32—C334.2 (8)
O4—C15—C16—C17178.6 (5)O8—C32—C33—C34178.0 (5)
C14—C15—C16—C170.0 (8)C31—C32—C33—C343.4 (8)
C13—C12—C17—C160.8 (8)C32—C33—C34—C290.5 (8)
N1—C12—C17—C16177.2 (5)C30—C29—C34—C331.5 (7)
C15—C16—C17—C120.7 (9)N2—C29—C34—C33172.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N1i0.822.162.866 (5)144
O8—H8···N2ii0.821.992.777 (5)161
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H19NO4
Mr301.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)20.045 (2), 13.2042 (19), 24.253 (3)
V3)6419.2 (14)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.48 × 0.42
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
25460, 5654, 2589
Rint0.092
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.206, 1.12
No. of reflections5654
No. of parameters405
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 11.5471P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N1i0.822.162.866 (5)144
O8—H8···N2ii0.821.992.777 (5)161
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). Acta Cryst. E65, o56.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, T.-Z., Zhang, K., Yuling Zhao, Y.-L., Yang, C.-H., Zhang, H., Fan, D.-W. & Dong, W.-K. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds