metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m394-m395

Poly[hemi(ethyl­enedi­ammonium) [di-μ-oxalato-indium(III)] dihydrate]

aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Non-ferrous Metals of the Ministry of Education, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: rosesunqz@yahoo.com.cn

(Received 22 February 2009; accepted 7 March 2009; online 14 March 2009)

In title compound, {(C2H10N2)0.5[In(C2O4)2]·2H2O}n, the unique InIII ion is coordinated by eight O atoms from four oxalate ligands in a distorted square-anti­prismatic environment. The doubly bis-chelating oxalate ligands act as bridging ligands connecting symmetry-related InIII ions and forming a three-dimensional open framework structure. Ethyl­enediammonium cations and water mol­ecules occupy the voids within the structure. The unique ethyl­enediammonium cation and one water mol­ecule both lie on a twofold rotation axis. One of the other two water mol­ecules residing on general crystallographic sites was refined as disordered with half occupancy. In the crystal structure, cations and water mol­ecules are linked to the anionic framework via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For background information on open-framework materials, see: Fang et al. (2004[Fang, Q. R., Zhu, G. S., Shi, X., Wu, G., Tian, G., Wang, R. W. & Qiu, S. L. (2004). J. Solid State Chem. 177, 1060-1066.]); Li et al. (2008[Li, Y. W., Wang, Y. H., Li, Y. G. & Wang, E. B. (2008). J. Solid State Chem. 181, 1485-1491.]); Serre et al. (2006[Serre, C., Millange, F., Devic, T., Audebrand, N. & Van Beek, W. (2006). Mater. Res. Bull. 41, 1550-1557.]); Sun et al. (2006[Sun, D. F., Collins, D. J., Ke, Y., Zuo, J. L. & Zhou, H. C. (2006). Chem. Eur. J. 12, 3768-3776.]). For related materials containing the oxalate ligand, see: Audebrand et al. (2001[Audebrand, N., Vaillant, M. L., Auffréidc, J. P. & Louër, D. (2001). Solid State Sci. 3, 483-494.], 2004[Audebrand, N., Jeanneau, E., Bataille, T., Raite, S. & Louër, D. (2004). Solid State Sci. 6, 579-591.]); Kokunov et al. (2004[Kokunov, Y. V., Gorbunova, Y. E. & Detkov, D. G. (2004). Russ. J. Inorg. Chem. 49, 1000-1006.]); Stock et al. (2000[Stock, N., Stucky, G. D. & Cheetham, A. K. (2000). Chem. Commun. pp. 2277-2278.]); Chakrabarti & Natarajan (2002[Chakrabarti, S. & Natarajan, S. (2002). J. Chem. Soc. Dalton Trans. pp. 4156-4161.]); Evans & Lin (2001[Evans, O. R. & Lin, W. (2001). Cryst. Growth Des. 1, 9-11.]); Vaidhyanathan et al. (2001[Vaidhyanathan, R., Natatajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699-706.]); Gavilan et al. (2007[Gavilan, E., Audebrand, N. & Jeanneau, E. (2007). Solid State Sci. 9, 985-999.]); Bataille et al. (2000[Bataille, T., Louër, M., Auffrédic, J. P. & Louër, D. (2000). J. Solid State Chem. 150, 81-95.]); Trombe et al. (2001[Trombe, J. C., Thomas, P. & Cabarrecq, C. B. (2001). Solid State Sci. 3, 309-319.]); Yuan et al. (2004[Yuan, Y. P., Song, J. L. & Mao, J. G. (2004). Inorg. Chem. Commun. 7, 24-26.]). For indium oxaltes, see: Audebrand et al. (2003[Audebrand, N., Raite, S. & Louër, D. (2003). Solid State Sci. 5, 783-794.]); Bulc et al. (1983[Bulc, N., Golič, L. & Šiftar, J. (1983). Acta Cryst. C39, 176-178.]); Bulc & Golič (1983[Bulc, N. & Golič, L. (1983). Acta Cryst. C39, 174-176.]); Chen et al. (2003[Chen, Zh. X., Zhou, Y. M., Weng, L. H., Zhang, H. Y. & Zhao, D. Y. (2003). J. Solid State Chem. 173, 435-441.]); Huang & Lii (1998[Huang, Y.-F. & Lii, K.-W. (1998). J. Chem. Soc. Dalton Trans. pp. 4085-4086.]); Jeanneau et al. (2003[Jeanneau, E., Audebrand, N., Le Floch, M., Bureau, B. & Louër, D. (2003). J. Solid State Chem. 170, 330-338.]); Yang et al. (2005[Yang, S., Li, G., Tian, S., Liao, F. & Lin, J. (2005). J. Solid State Chem. 178, 3703-3707.]); For the bond-valence method, see: Brown (1996[Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.]). For bond distances and angles for bridging bidentate oxalate groups, see: Hann (1957[Hann, T. (1957). Z. Kristallogr. 109, 438-466.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H10N2)0.5[In(C2O4)2]·2H2O

  • Mr = 357.95

  • Orthorhombic, F d d 2

  • a = 15.8498 (4) Å

  • b = 31.1643 (8) Å

  • c = 8.6618 (2) Å

  • V = 4278.48 (18) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 293 K

  • 0.40 × 0.38 × 0.38 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.426, Tmax = 0.467 (expected range = 0.387–0.424)

  • 7189 measured reflections

  • 1679 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.06

  • 1679 reflections

  • 160 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 668 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯OW1i 0.89 2.35 2.880 (8) 118
N1—H1B⋯O7ii 0.89 2.47 2.956 (5) 115
N1—H1B⋯OW3 0.89 2.21 2.825 (8) 126
N1—H1C⋯O4i 0.89 2.44 3.140 (6) 136
N1—H1C⋯O5iii 0.89 2.38 3.166 (5) 147
OW1—HW1A⋯O2iv 0.85 2.04 2.889 (5) 180
OW2—HW2B⋯O1iii 0.85 2.46 3.241 (15) 153
OW2—HW2A⋯O3 0.85 2.39 3.12 (3) 145
OW3—HW3B⋯O8v 0.85 2.19 2.870 (6) 137
OW3—HW3A⋯O7 0.85 2.26 2.971 (7) 141
OW3—HW3A⋯O3ii 0.85 2.40 2.962 (6) 124
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 4}}, -y+{\script{3\over 4}}, z-{\script{1\over 4}}]; (iii) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (v) [x-{\script{1\over 4}}, -y+{\script{3\over 4}}, z-{\script{3\over 4}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of open-framework materials has emerged as an important area of research because of their potential applications in separation processes, ion exchange and catalysis. In the past few years, there has been considerable effort in designing open-framework structures formed by metal organic carboxylates because of its interesting structural features and the quality for apt design (Fang et al., 2004; Li et al., 2008; Serre et al., 2006; Sun et al., 2006) of which the oxalate ligand plays a major role in the assembly of metal-organic porous frameworks. Many metal oxalate structures are reported such as tin (Audebrand et al., 2001; Kokunov et al., 2004; Stock et al., 2000), zinc (Chakrabarti & Natarajan, 2002; Rvans & Lin, 2001; Vaidhyanathan et al., 2001), zirconium (Audebrand et al., 2004; Gavilan et al., 2007), rare earth (Bataille et al., 2000; Trombe et al., 2001; Yuan et al., 2004). The structures of these compounds vary from monomers, dimmers, chains, layered honeycomb networks to three dimensional frameworks. In this paper, we selected indium and synthesized the three-dimensional indium oxalate compound [(C2N2H10)0.5In(C2O4)2.2H2O]n (Fig. 1). Although many indium oxalates have been reported (Audebrand et al., 2003; Bulc et al., 1983; Chen et al., 2003; Huang & Lii, 1998; Jeanneau et al., 2003; Yang et al., 2005), relatively a few of them are three dimensional open frameworks (Chen et al., 2003; Huang & Lii, 1998; Yang et al., 2005).

In the title structure, the In ion is coordinated by eight O atoms from four tetradentate oxalate groups, forming a distorted square antiprismatic arrangement (Fig. 2) in which atoms O1, O2, O5A and O6A (Symmetry code A: -x, 0.5 - y, 1/2 + z) are approximately in the same plane with a deviation of ca. 0.01 Å, while the other plane (formed by atoms O3, O4, O7B and O8B; Symmetry code B: x - 1/4, 0.75 - y, 1/4 + z) is significantly distorted, with a deviation of ca. 0.24 Å. The eight In—O bond distances vary between 2.168 (3) and 2.423 (3) Å (average 2.279 Å), which agrees well with the value 2.265 Å calculated for an eightfold coordinated indium atom with the bond valence method using the program VALENCE (Brown, 1996).

The indium ions are linked by the oxygen atoms of oxalate, giving rise to a three-dimensional interdependent porous framework (Fig. 3). The protonated ethylenediammonium and water molecules occupy the voids, interacting with oxalate anions through N—H···O and O—H···O hydrogen bonds. Without water molecules and cations, the framework exhibits voids possessing approximate dimensions of 6.9×14.5 Å along the crystallographic c axis and an analysis of the void shows that ca 44% of the space is empty. Thus, the ethylenediammonium and water molecules assigned to these cavities act as not only charge-compensating cations but also organic templates. The bond distances and angles for the bridging bidentate oxalate groups are in good agreement with the mean values reported by Hann (1957) for oxalate compounds, i.e., 1.24 and 1.52 Å, 118 and 123° for the C1—O1 and C1—C2 bond lengths and O1—C1—C2 and O1—C1—O5 angles, respectively.

Related literature top

For background information on open-framework materials, see: Fang et al. (2004); Li et al. (2008); Serre et al. (2006); Sun et al. (2006). For related materials containing the oxalate ligand, see: Audebrand et al. (2001, 2004); Kokunov et al. (2004); Stock et al. (2000); Chakrabarti & Natarajan (2002); Rvans & Lin (2001); Vaidhyanathan et al. (2001); Gavilan et al. (2007); Bataille et al. (2000); Trombe et al. (2001); Yuan et al. (2004). For indium oxaltes, see: Audebrand et al. (2003); Bulc et al. (1983); Bulc & Golič (1983); Chen et al. (2003); Huang & Lii (1998); Jeanneau et al. (2003); Yang et al. (2005); For the bond-valence method, see: Brown (1996). For bond distances and angles for bridging bidentate oxalate groups, see: Hann (1957).

Experimental top

A mixture of Ti(SO4)2 (0.2 g, 0.84 mmol), H2C2O4.2H2O (1.0 g, 7.93 mmol), InCl3.4H2O (2 ml, 0.5 mol/L) and H2N(CH2)2NH2 (0.2 ml, CR) in H2O (5.0 ml) was sealed in a 20 ml stainless-steal reactor with Teflon liner and heated at 393 K for 2 days under autogenously pressure. Colorless crystals were isolated after the reaction solution was cooled gradually and washed with water.

Refinement top

H atoms bonded to C and N atoms were inlcuded in calcluated positions with C-H = 0.97 and N-H = 0.89Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). The H atoms bonded to O atoms were either included in calculated positions [O-H = 0.85Å] based on 'as found' locations or based on the most efficient H-bonding location and with Uiso(H)= 1.0-1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The distorted square antiprismatic environment of Indium. Symmetry codes A: -x, 0.5 - y, 1/2 + z; B: x - 1/4, 0.75 - y, 1/4 + z.
[Figure 3] Fig. 3. Part of the crystal structure viewed crystal along the c axis, the ethylenediammonium and water molecules reside in the voids.
Poly[hemi(ethylenediammonium) [di-µ-oxalato-indium(III)] dihydrate] top
Crystal data top
(C2H10N2)0.5[In(C2O4)2]·2H2OF(000) = 2800
Mr = 357.95Dx = 2.223 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 7228 reflections
a = 15.8498 (4) Åθ = 2.6–27.9°
b = 31.1643 (8) ŵ = 2.26 mm1
c = 8.6618 (2) ÅT = 293 K
V = 4278.48 (18) Å3Block, colourless
Z = 160.4 × 0.38 × 0.38 mm
Data collection top
Bruker SMART CCD
diffractometer
1679 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.426, Tmax = 0.467k = 3636
7189 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0322P)2 + 7.4478P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.45 e Å3
1679 reflectionsΔρmin = 0.71 e Å3
160 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.00087 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 668 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (3)
Crystal data top
(C2H10N2)0.5[In(C2O4)2]·2H2OV = 4278.48 (18) Å3
Mr = 357.95Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 15.8498 (4) ŵ = 2.26 mm1
b = 31.1643 (8) ÅT = 293 K
c = 8.6618 (2) Å0.4 × 0.38 × 0.38 mm
Data collection top
Bruker SMART CCD
diffractometer
1679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1673 reflections with I > 2σ(I)
Tmin = 0.426, Tmax = 0.467Rint = 0.025
7189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.45 e Å3
S = 1.06Δρmin = 0.71 e Å3
1679 reflectionsAbsolute structure: Flack (1983), 668 Friedel pairs
160 parametersAbsolute structure parameter: 0.00 (3)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.013694 (15)0.314689 (7)0.33266 (6)0.01510 (11)
O10.06449 (17)0.27864 (9)0.1683 (4)0.0277 (6)
O20.10165 (19)0.26861 (9)0.1750 (4)0.0290 (7)
O30.04152 (19)0.35822 (9)0.1416 (3)0.0241 (6)
O40.14920 (17)0.34173 (8)0.3713 (3)0.0220 (6)
C10.0334 (2)0.25113 (11)0.0817 (7)0.0194 (7)
C20.0620 (2)0.24552 (11)0.0823 (7)0.0204 (7)
C30.1128 (2)0.37559 (10)0.1357 (4)0.0165 (7)
C40.1740 (2)0.36645 (11)0.2696 (5)0.0180 (8)
O50.07692 (18)0.22769 (9)0.0061 (3)0.0259 (7)
O60.09025 (18)0.21856 (9)0.0112 (4)0.0302 (7)
O70.13838 (16)0.39927 (8)0.0302 (3)0.0223 (6)
O80.24530 (18)0.38498 (9)0.2625 (4)0.0231 (6)
C50.2294 (3)0.2715 (2)0.2277 (8)0.0535 (16)
H5C0.16870.26760.22750.064*
H5A0.24440.28640.13320.064*
N10.2527 (3)0.29883 (17)0.3608 (6)0.0502 (12)
H1A0.30350.29130.39490.075*
H1B0.25340.32620.33160.075*
H1C0.21500.29540.43600.075*
OW10.25000.25000.3570 (7)0.0504 (16)
HW1A0.29380.24450.30400.050*
OW20.0119 (6)0.3117 (3)0.173 (3)0.069 (2)0.50
HW2B0.01880.28480.18470.083*0.50
HW2A0.00100.31730.07930.083*0.50
OW30.1418 (3)0.36723 (19)0.2928 (7)0.1000 (17)
HW3B0.11230.37880.36320.120*
HW3A0.15420.38570.22440.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.01446 (16)0.01545 (14)0.01540 (15)0.00012 (8)0.00093 (14)0.00069 (11)
O10.0185 (13)0.0268 (13)0.0378 (17)0.0013 (11)0.0018 (14)0.0157 (13)
O20.0224 (15)0.0289 (15)0.0358 (17)0.0008 (12)0.0078 (14)0.0104 (13)
O30.0187 (14)0.0299 (14)0.0237 (15)0.0058 (12)0.0031 (12)0.0086 (11)
O40.0264 (15)0.0220 (12)0.0176 (15)0.0037 (10)0.0021 (11)0.0065 (10)
C10.0209 (18)0.0154 (15)0.0218 (17)0.0017 (14)0.001 (2)0.0002 (16)
C20.0220 (19)0.0194 (16)0.0199 (17)0.0002 (14)0.000 (2)0.0018 (17)
C30.0177 (19)0.0139 (15)0.0179 (17)0.0038 (13)0.0005 (15)0.0001 (14)
C40.019 (2)0.0132 (15)0.0214 (17)0.0010 (14)0.0015 (16)0.0011 (14)
O50.0193 (15)0.0251 (13)0.0333 (17)0.0004 (11)0.0037 (13)0.0135 (13)
O60.0213 (15)0.0324 (15)0.0369 (19)0.0024 (12)0.0032 (14)0.0131 (14)
O70.0224 (13)0.0229 (12)0.0217 (14)0.0042 (10)0.0032 (11)0.0066 (10)
O80.0180 (13)0.0273 (15)0.0239 (15)0.0057 (11)0.0039 (13)0.0084 (12)
C50.031 (3)0.080 (4)0.049 (4)0.020 (2)0.006 (3)0.016 (3)
N10.028 (2)0.074 (3)0.049 (3)0.006 (2)0.011 (2)0.001 (2)
OW10.026 (2)0.086 (4)0.039 (4)0.024 (2)0.0000.000
OW20.084 (4)0.067 (4)0.055 (4)0.013 (4)0.002 (5)0.006 (4)
OW30.083 (3)0.146 (4)0.072 (3)0.016 (3)0.030 (3)0.045 (3)
Geometric parameters (Å, º) top
In1—O5i2.168 (3)C4—O81.270 (5)
In1—O32.185 (3)O5—In1iii2.168 (3)
In1—O12.196 (3)O6—In1iii2.370 (3)
In1—O8ii2.230 (3)O7—In1iv2.327 (3)
In1—O7ii2.327 (3)O8—In1iv2.230 (3)
In1—O42.331 (3)C5—N11.480 (8)
In1—O6i2.370 (3)C5—C5v1.492 (12)
In1—O22.423 (3)C5—H5C0.9700
O1—C11.242 (5)C5—H5A0.9700
O2—C21.248 (6)N1—H1A0.8900
O3—C31.253 (5)N1—H1B0.8900
O4—C41.235 (5)N1—H1C0.8900
C1—O51.260 (6)OW1—HW1A0.8500
C1—C21.522 (6)OW2—HW2B0.8502
C2—O61.250 (6)OW2—HW2A0.8500
C3—O71.243 (4)OW3—HW3B0.8498
C3—C41.539 (5)OW3—HW3A0.8500
O5i—In1—O3140.63 (11)C4—O4—In1114.7 (2)
O5i—In1—O1111.52 (10)O1—C1—O5123.2 (4)
O3—In1—O186.60 (12)O1—C1—C2118.2 (4)
O5i—In1—O8ii92.22 (11)O5—C1—C2118.7 (4)
O3—In1—O8ii96.82 (11)O2—C2—O6128.6 (4)
O1—In1—O8ii137.63 (10)O2—C2—C1115.8 (4)
O5i—In1—O7ii144.54 (11)O6—C2—C1115.5 (4)
O3—In1—O7ii74.02 (11)O7—C3—O3125.5 (4)
O1—In1—O7ii68.82 (10)O7—C3—C4117.2 (3)
O8ii—In1—O7ii71.65 (10)O3—C3—C4117.3 (3)
O5i—In1—O472.66 (9)O4—C4—O8127.0 (4)
O3—In1—O472.43 (9)O4—C4—C3116.8 (3)
O1—In1—O4142.91 (10)O8—C4—C3116.1 (3)
O8ii—In1—O476.46 (10)C1—O5—In1iii119.2 (3)
O7ii—In1—O4129.79 (9)C2—O6—In1iii114.5 (3)
O5i—In1—O6i71.78 (10)C3—O7—In1iv115.0 (2)
O3—In1—O6i147.56 (11)C4—O8—In1iv118.0 (3)
O1—In1—O6i75.75 (11)N1—C5—C5v114.0 (4)
O8ii—In1—O6i79.52 (11)N1—C5—H5C108.7
O7ii—In1—O6i74.28 (10)C5v—C5—H5C108.7
O4—In1—O6i135.78 (10)N1—C5—H5A108.7
O5i—In1—O274.70 (10)C5v—C5—H5A108.7
O3—In1—O279.93 (11)H5C—C5—H5A107.6
O1—In1—O269.90 (11)C5—N1—H1A109.5
O8ii—In1—O2152.36 (10)C5—N1—H1B109.5
O7ii—In1—O2131.86 (10)H1A—N1—H1B109.5
O4—In1—O276.41 (9)C5—N1—H1C109.5
O6i—In1—O2117.54 (10)H1A—N1—H1C109.5
C1—O1—In1121.4 (3)H1B—N1—H1C109.5
C2—O2—In1114.5 (3)HW2B—OW2—HW2A109.8
C3—O3—In1118.7 (2)HW3B—OW3—HW3A109.8
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/4, y+3/4, z+1/4; (iii) x, y+1/2, z1/2; (iv) x+1/4, y+3/4, z1/4; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···OW1vi0.892.352.880 (8)118
N1—H1B···O7iv0.892.472.956 (5)115
N1—H1B···OW30.892.212.825 (8)126
N1—H1C···O4vi0.892.443.140 (6)136
N1—H1C···O5iii0.892.383.166 (5)147
OW1—HW1A···O2v0.852.042.889 (5)180
OW2—HW2B···O1iii0.852.463.241 (15)153
OW2—HW2A···O30.852.393.12 (3)145
OW3—HW3B···O8vii0.852.192.870 (6)137
OW3—HW3A···O70.852.262.971 (7)141
OW3—HW3A···O3iv0.852.402.962 (6)124
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x+1/4, y+3/4, z1/4; (v) x+1/2, y+1/2, z; (vi) x, y, z1; (vii) x1/4, y+3/4, z3/4.

Experimental details

Crystal data
Chemical formula(C2H10N2)0.5[In(C2O4)2]·2H2O
Mr357.95
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)15.8498 (4), 31.1643 (8), 8.6618 (2)
V3)4278.48 (18)
Z16
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.4 × 0.38 × 0.38
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.426, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
7189, 1679, 1673
Rint0.025
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.06
No. of reflections1679
No. of parameters160
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.71
Absolute structureFlack (1983), 668 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···OW1i0.892.352.880 (8)118.2
N1—H1B···O7ii0.892.472.956 (5)114.9
N1—H1B···OW30.892.212.825 (8)125.9
N1—H1C···O4i0.892.443.140 (6)135.7
N1—H1C···O5iii0.892.383.166 (5)147.1
OW1—HW1A···O2iv0.852.042.889 (5)179.5
OW2—HW2B···O1iii0.852.463.241 (15)152.8
OW2—HW2A···O30.852.393.12 (3)145.2
OW3—HW3B···O8v0.852.192.870 (6)137.4
OW3—HW3A···O70.852.262.971 (7)141.3
OW3—HW3A···O3ii0.852.402.962 (6)123.7
Symmetry codes: (i) x, y, z1; (ii) x+1/4, y+3/4, z1/4; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z; (v) x1/4, y+3/4, z3/4.
 

Acknowledgements

The authors acknowledge financial support from the Innovation Program for College Students of Central South University (grant No. 081053308).

References

First citationAudebrand, N., Jeanneau, E., Bataille, T., Raite, S. & Louër, D. (2004). Solid State Sci. 6, 579–591.  Web of Science CSD CrossRef CAS Google Scholar
First citationAudebrand, N., Raite, S. & Louër, D. (2003). Solid State Sci. 5, 783–794.  Web of Science CSD CrossRef CAS Google Scholar
First citationAudebrand, N., Vaillant, M. L., Auffréidc, J. P. & Louër, D. (2001). Solid State Sci. 3, 483–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationBataille, T., Louër, M., Auffrédic, J. P. & Louër, D. (2000). J. Solid State Chem. 150, 81–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, I. D. (1996). J. Appl. Cryst. 29, 479–480.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulc, N. & Golič, L. (1983). Acta Cryst. C39, 174–176.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBulc, N., Golič, L. & Šiftar, J. (1983). Acta Cryst. C39, 176–178.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChakrabarti, S. & Natarajan, S. (2002). J. Chem. Soc. Dalton Trans. pp. 4156–4161.  Web of Science CSD CrossRef Google Scholar
First citationChen, Zh. X., Zhou, Y. M., Weng, L. H., Zhang, H. Y. & Zhao, D. Y. (2003). J. Solid State Chem. 173, 435–441.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2001). Cryst. Growth Des. 1, 9–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationFang, Q. R., Zhu, G. S., Shi, X., Wu, G., Tian, G., Wang, R. W. & Qiu, S. L. (2004). J. Solid State Chem. 177, 1060–1066.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGavilan, E., Audebrand, N. & Jeanneau, E. (2007). Solid State Sci. 9, 985–999.  Web of Science CSD CrossRef CAS Google Scholar
First citationHann, T. (1957). Z. Kristallogr. 109, 438–466.  Google Scholar
First citationHuang, Y.-F. & Lii, K.-W. (1998). J. Chem. Soc. Dalton Trans. pp. 4085–4086.  Web of Science CSD CrossRef Google Scholar
First citationJeanneau, E., Audebrand, N., Le Floch, M., Bureau, B. & Louër, D. (2003). J. Solid State Chem. 170, 330–338.  Web of Science CSD CrossRef CAS Google Scholar
First citationKokunov, Y. V., Gorbunova, Y. E. & Detkov, D. G. (2004). Russ. J. Inorg. Chem. 49, 1000–1006.  Google Scholar
First citationLi, Y. W., Wang, Y. H., Li, Y. G. & Wang, E. B. (2008). J. Solid State Chem. 181, 1485–1491.  Web of Science CSD CrossRef CAS Google Scholar
First citationSerre, C., Millange, F., Devic, T., Audebrand, N. & Van Beek, W. (2006). Mater. Res. Bull. 41, 1550–1557.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N., Stucky, G. D. & Cheetham, A. K. (2000). Chem. Commun. pp. 2277–2278.  Web of Science CSD CrossRef Google Scholar
First citationSun, D. F., Collins, D. J., Ke, Y., Zuo, J. L. & Zhou, H. C. (2006). Chem. Eur. J. 12, 3768–3776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTrombe, J. C., Thomas, P. & Cabarrecq, C. B. (2001). Solid State Sci. 3, 309–319.  Web of Science CSD CrossRef CAS Google Scholar
First citationVaidhyanathan, R., Natatajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.  Web of Science CSD CrossRef Google Scholar
First citationYang, S., Li, G., Tian, S., Liao, F. & Lin, J. (2005). J. Solid State Chem. 178, 3703–3707.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, Y. P., Song, J. L. & Mao, J. G. (2004). Inorg. Chem. Commun. 7, 24–26.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m394-m395
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds