metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m408-m409

Poly[[tri-μ-cyanido-cyanido(1,4,10,13-tetra­oxa-7,16-di­aza­cyclo­octa­deca­ne)barium(II)platinum(II)] hemihydrate]

aDepartment of Chemistry, University of California, Davis, CA 95616, USA
*Correspondence e-mail: mmolmstead@ucdavis.edu

(Received 3 March 2009; accepted 11 March 2009; online 19 March 2009)

The title compound, {[BaPt(CN)4(C12H26N2O4)]·0.5H2O}n, is a two-dimensional coordination polymer in which the sheets are oriented approximately parallel to the ([\overline{1}]01) set of crystal planes. In the crystal structure, disordered water mol­ecules (half occupancy) connect the sheets into a three-dimensional network via inter­molecular O—H⋯O hydrogen bonds. An N—H⋯N inter­action is also present. The shortest Pt⋯Pt contacts are 7.5969 (4) Å by an inversion relationship and 7.6781 (4) Å by translation along the a axis.

Related literature

For [BaPt(CN)4]·4H2O, see: Bergsoe et al. (1962[Bergsoe, P., Hansen, P. G. & Jacobsen, C. F. (1962). Nucl. Instrum. Methods, 17, 325-331.]); Williams et al. (1982[Williams, J. M., Schultz, A. J., Underhill, A. E. & Carneiro, K. (1982). Extended Linear Chain Compounds, Vol. 1, edited by J. S. Miller, pp. 73-117. New York: Plenum Press.]). For the structure of a related salt, see: Olmstead et al. (2005[Olmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048-m1050.]).

[Scheme 1]

Experimental

Crystal data
  • [BaPt(CN)4(C12H26N2O4)]·0.5H2O

  • Mr = 707.87

  • Monoclinic, P 21 /n

  • a = 7.6781 (4) Å

  • b = 14.8881 (9) Å

  • c = 20.2325 (12) Å

  • β = 93.254 (2)°

  • V = 2309.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.78 mm−1

  • T = 93 K

  • 0.18 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.469, Tmax = 0.676 (expected range = 0.435–0.627)

  • 30095 measured reflections

  • 5292 independent reflections

  • 5066 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.032

  • S = 1.03

  • 5292 reflections

  • 276 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ba1—O1 2.7831 (15)
Ba1—O2 2.8062 (15)
Ba1—O3 2.8261 (16)
Ba1—O4 2.7980 (15)
Ba1—N1i 2.814 (2)
Ba1—N3ii 2.8896 (19)
Ba1—N4 2.8431 (19)
Ba1—N5 2.8671 (18)
Ba1—N6 2.9291 (19)
Pt1—C1 1.981 (2)
Pt1—C2 2.003 (2)
Pt1—C3 1.995 (2)
Pt1—C4 1.985 (2)
C1—Pt1—C2 87.61 (9)
C1—Pt1—C3 177.97 (10)
C1—Pt1—C4 89.54 (8)
C3—Pt1—C2 92.50 (8)
C4—Pt1—C2 176.47 (9)
C4—Pt1—C3 90.42 (8)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯N2 0.990 (10) 2.09 (4) 2.934 (5) 142 (5)
O5—H5D⋯N3iv 0.989 (10) 2.179 (14) 3.159 (4) 171 (5)
N6—H6⋯N1i 0.82 (3) 2.60 (3) 3.096 (3) 121 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PovChem (Thiessen, 2000[Thiessen, P. A. (2000). PovChem. http://www.chemicalgraphics.com ]) and POV-RAY (Cason et al., 2004[Cason, C., Froehlich, T., Kopp, N. & Parker, R. (2004). POV-RAY. http://www.povray.org ]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetracyanoplatinate salts have a propensity toward the formation of columnar stacking motifs. Ba[Pt(CN)4], the accidental scintillation detector used by Roentgen (Bergsoe et al., 1962), has this characteristic with a close Pt···Pt distance of 3.321 Å. The compound has optical and electrical properties that are orientation specific with respect to the crystallographic axes (Williams et al., 1982). Even though the stacks of [Pt(CN)4]2- are supported by bridging Ba2+ via the N end of the cyano groups bonded to Pt, partial oxidation of these compounds, similar to that observed by a number of mono cationic salts, does not occur. Evidently, the mutual repulsion of the [Pt(CN)4]2- groups cannot be overcome by the inability of the large Ba2+ coordination sphere to compress in a manner than matches the compression of the Pt chain, a change of ca 20% in the Pt···Pt separation. In this research, crown ethers were used to alter the coordination environment at Ba in order to assess the structural changes that would occur. A earlier report (Olmstead, et al., 2005), focused on the salt [Ba(18-crown-6)(H2O)2][Pt(CN)4], 2.

The asymmetric unit of the title compound, [Ba(diaza-18-crown-6)][Pt(CN)4].0.5 H2O, (1), is shown in Figure 1. Table 1 summarizes the coordination geometry for both Ba and Pt. The Ba2+ is coordinated by the diaza-18-crown-6 with average Ba—O distances of 2.80[2] Å and Ba—N distances of 2.89[4] Å (average deviations from the mean are given in square brackets). The Ba2+ is 0.39 (2) Å out of the N2O4 plane of the crown ether, giving the crown two distinct faces, an endo face and an exo face. The two aza-hydrogen atoms of the crown are in a trans- configuration. The Pt center shows normal square planar coordination geometry. The structure features a coordination polymer (Figure 2) in which barium achieves a total coordination number of nine. Three of the nitrogen ends of the cyano groups of [Pt(CN)4]2-, N1, N3, and N4, are coordinated to Ba1. The fourth cyano group is only involved in hydrogen bonding to the hemihydrate molecule which also participates in a hydrogen bond to N3. The C3—N3—Ba1 angle is more acute, at 135.06 (16)°, than either C1—N1—Ba1 (158.2 (2)°) or C4—N4—Ba1 (174.69 (17)°. One of the Ba—N bonds (N3) occurs on the exo face of the barium, and two (N1 and N4) occur on the endo face. These three bonds have an average length of 2.85[4] Å. The structure of (1) differs from the previously determined structure, (2), of [Ba(18-crown-6)(H2O)2][Pt(CN)4] (Olmstead et al., 2005). In (2), Ba2+ has a coordination number of 10 and the donor set is comprised of six crown ether O, two water O and one cyano N on the exo side and one cyano N on the endo side. In (1), there is no water coordination to Ba. Instead, the water molecule is used in the creation of chains. Another interesting feature of (1) is the occurrence of a 12-atom (Ba—N—C—Pt—C—N)2 square ring motif about a center of inversion, as depicted in Figure 2. This motif does not appear in (2), which is rather more of a criss-cross structure.

There are no short Pt···Pt interactions in (1); the closest is at 7.5969 (4) Å by an inversion relationship, and the next closest is at 7.6781 (4) Å, by translation along the a axis.

Related literature top

For [BaPt(CN)4].4H2O, see: Bergsoe et al. (1962); Williams et al. (1982). For the structure of a related salt, see: Olmstead et al. (2005).

Experimental top

A 61 mg portion of Ba[Pt(CN)4].4H2O (0.12 mmol) and 37 mg (0.14 mmol) of diaza-18-crown-6 were dissolved in methanol. The solution was heated until the compounds dissolved, then cooled until a powder formed. The powder was collected and recrystallized in a minimum of methanol. After recrystallization, the crystals were once again dissolved in warm methanol. This solution was dispensed into 5 mm o.d. tubes, and layered with either water or ethanol. Crystals of the title compound formed after about 24 h. The crystal selected came from the ethanol-layered tube.

Refinement top

The occupancy of the water molecule was originally refined and converged at an occupancy of 0.41 (2). It was subsequently fixed at 0.50 occupancy. H atoms on water molecules were located in a difference Fourier map and refined with a distance constraint of 0.98 (1) Å for the O—H distance and 1.57 (3) Å for the H···H distance. Thermal parameters of the water H atoms were tied to 1.5 times that of the Ueq(O). H atoms on aza groups were freely refined. All other H atoms were treated as riding on their parent C atoms, with C—H distances of 0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), PovChem (Thiessen, 2000) and POV-RAY (Cason et al., 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with thermal ellipsoids shown at the 50% probability level. The water molecule of O5 is at half-occupancy.
[Figure 2] Fig. 2. A view along the a axis direction showing the connection between cations, anions and water molecules. Color codes: Ba, yellow; Pt, orange; O, red; N, blue; C, gray; H, light gray. H-bonds are shown as dashed lines.
Poly[[tri-µ-cyanido-cyanido(1,4,10,13-tetraoxa-7,16- diazacyclooctadecane)barium(II)platinum(II)] hemihydrate] top
Crystal data top
[BaPt(CN)4(C12H26N2O4)]·0.5H2OF(000) = 1340
Mr = 707.87Dx = 2.036 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7683 reflections
a = 7.6781 (4) Åθ = 2.4–33.6°
b = 14.8881 (9) ŵ = 7.78 mm1
c = 20.2325 (12) ÅT = 93 K
β = 93.254 (2)°Prism, colorless
V = 2309.1 (2) Å30.18 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
5292 independent reflections
Radiation source: fine-focus sealed tube5066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.469, Tmax = 0.676l = 2626
30095 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.032H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0143P)2 + 1.2267P]
where P = (Fo2 + 2Fc2)/3
5292 reflections(Δ/σ)max = 0.003
276 parametersΔρmax = 0.72 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
[BaPt(CN)4(C12H26N2O4)]·0.5H2OV = 2309.1 (2) Å3
Mr = 707.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6781 (4) ŵ = 7.78 mm1
b = 14.8881 (9) ÅT = 93 K
c = 20.2325 (12) Å0.18 × 0.10 × 0.06 mm
β = 93.254 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
5292 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5066 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.676Rint = 0.027
30095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0133 restraints
wR(F2) = 0.032H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.72 e Å3
5292 reflectionsΔρmin = 0.42 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.208165 (16)0.303438 (8)0.122058 (6)0.01394 (3)
Pt10.519371 (10)0.670691 (5)0.139759 (4)0.01325 (3)
O10.4491 (2)0.29360 (10)0.22989 (7)0.0214 (3)
O20.4371 (2)0.15673 (10)0.13466 (8)0.0215 (3)
O30.0794 (2)0.28946 (11)0.02904 (8)0.0238 (3)
O40.0661 (2)0.42719 (11)0.12179 (8)0.0243 (3)
O50.9018 (6)1.0164 (3)0.1191 (2)0.0460 (10)0.50
H5C0.809 (6)0.985 (4)0.142 (3)0.069*0.50
H5D0.944 (8)1.063 (3)0.151 (2)0.069*0.50
N10.6016 (3)0.66373 (15)0.00967 (11)0.0382 (6)
N20.6503 (3)0.87107 (13)0.13625 (10)0.0296 (5)
N30.4574 (3)0.67833 (12)0.29213 (9)0.0225 (4)
N40.3748 (3)0.47391 (13)0.13041 (9)0.0249 (4)
N50.1327 (3)0.39373 (13)0.24229 (9)0.0208 (4)
H50.067 (4)0.361 (2)0.2607 (14)0.033 (8)*
N60.1924 (3)0.15917 (12)0.02347 (10)0.0215 (4)
H60.251 (4)0.1801 (17)0.0055 (15)0.031 (8)*
C10.5688 (3)0.66477 (15)0.04481 (12)0.0240 (5)
C20.6033 (3)0.79805 (15)0.13932 (10)0.0200 (4)
C30.4780 (3)0.67493 (13)0.23617 (11)0.0170 (4)
C40.4298 (3)0.54565 (14)0.13458 (10)0.0175 (4)
C50.5553 (3)0.21485 (16)0.23661 (12)0.0287 (5)
H5A0.49290.16780.26050.034*
H5B0.66490.22910.26260.034*
C60.5967 (3)0.18077 (16)0.16941 (13)0.0265 (5)
H6A0.65680.22800.14480.032*
H6B0.67450.12780.17390.032*
C70.4592 (3)0.09987 (15)0.07817 (11)0.0251 (5)
H7A0.52130.04410.09210.030*
H7B0.52890.13130.04560.030*
C80.2811 (3)0.07755 (15)0.04759 (11)0.0262 (5)
H8A0.29260.03520.01040.031*
H8B0.21090.04800.08090.031*
C90.0142 (3)0.14452 (17)0.00443 (13)0.0305 (5)
H9A0.05760.11760.02950.037*
H9B0.01610.10230.04220.037*
C100.0645 (3)0.23237 (17)0.02739 (12)0.0305 (5)
H10A0.01040.26120.05950.037*
H10B0.18110.22200.04950.037*
C110.1347 (3)0.37872 (16)0.01136 (12)0.0268 (5)
H11A0.22670.37640.02490.032*
H11B0.03510.41360.00410.032*
C120.2041 (3)0.42288 (17)0.07133 (12)0.0284 (5)
H12A0.24630.48410.06000.034*
H12B0.30290.38770.08720.034*
C130.1241 (3)0.46060 (16)0.18350 (12)0.0271 (5)
H13A0.20260.41640.20300.033*
H13B0.18930.51740.17600.033*
C140.0335 (3)0.47660 (15)0.23000 (11)0.0257 (5)
H14A0.10960.52210.21060.031*
H14B0.00470.50040.27250.031*
C150.2917 (3)0.40898 (16)0.28449 (11)0.0261 (5)
H15A0.25940.43110.32830.031*
H15B0.36300.45590.26430.031*
C160.3982 (3)0.32446 (15)0.29356 (11)0.0258 (5)
H16A0.50340.33660.32280.031*
H16B0.32860.27750.31460.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01958 (6)0.01186 (6)0.01060 (6)0.00094 (4)0.00280 (4)0.00008 (4)
Pt10.01580 (4)0.01269 (4)0.01157 (4)0.00147 (3)0.00343 (3)0.00084 (3)
O10.0295 (9)0.0185 (8)0.0160 (7)0.0012 (6)0.0015 (6)0.0014 (6)
O20.0250 (8)0.0182 (8)0.0213 (8)0.0018 (6)0.0009 (6)0.0040 (6)
O30.0294 (9)0.0220 (8)0.0196 (8)0.0003 (7)0.0030 (7)0.0013 (6)
O40.0240 (8)0.0266 (9)0.0224 (8)0.0054 (7)0.0017 (6)0.0021 (7)
O50.050 (2)0.040 (2)0.048 (2)0.0111 (19)0.008 (2)0.0052 (19)
N10.0621 (16)0.0335 (12)0.0210 (11)0.0269 (11)0.0185 (11)0.0095 (9)
N20.0400 (12)0.0207 (10)0.0293 (11)0.0052 (9)0.0132 (9)0.0031 (8)
N30.0286 (11)0.0216 (10)0.0176 (10)0.0007 (8)0.0046 (8)0.0011 (7)
N40.0339 (11)0.0202 (10)0.0215 (10)0.0049 (8)0.0087 (8)0.0026 (8)
N50.0300 (10)0.0161 (9)0.0170 (9)0.0001 (8)0.0068 (8)0.0001 (7)
N60.0315 (11)0.0162 (9)0.0171 (9)0.0034 (8)0.0029 (8)0.0001 (7)
C10.0327 (13)0.0184 (11)0.0215 (12)0.0098 (9)0.0072 (10)0.0035 (8)
C20.0231 (11)0.0212 (11)0.0162 (10)0.0025 (9)0.0067 (8)0.0024 (8)
C30.0190 (10)0.0131 (10)0.0189 (11)0.0016 (8)0.0016 (8)0.0003 (8)
C40.0202 (10)0.0205 (11)0.0124 (9)0.0008 (8)0.0057 (8)0.0016 (8)
C50.0322 (13)0.0233 (12)0.0295 (13)0.0052 (10)0.0076 (10)0.0015 (10)
C60.0243 (12)0.0212 (12)0.0338 (14)0.0004 (9)0.0005 (10)0.0029 (10)
C70.0347 (13)0.0181 (11)0.0231 (11)0.0055 (9)0.0069 (10)0.0046 (9)
C80.0403 (14)0.0146 (11)0.0234 (11)0.0002 (10)0.0014 (10)0.0055 (9)
C90.0391 (14)0.0240 (12)0.0275 (13)0.0070 (11)0.0062 (11)0.0067 (10)
C100.0369 (14)0.0306 (13)0.0229 (12)0.0044 (11)0.0086 (10)0.0040 (10)
C110.0267 (12)0.0284 (13)0.0251 (12)0.0018 (10)0.0015 (9)0.0053 (10)
C120.0268 (12)0.0293 (13)0.0289 (12)0.0051 (10)0.0009 (10)0.0056 (10)
C130.0304 (12)0.0226 (12)0.0294 (12)0.0074 (10)0.0107 (10)0.0013 (10)
C140.0368 (13)0.0188 (11)0.0224 (11)0.0043 (10)0.0098 (10)0.0034 (9)
C150.0419 (14)0.0229 (12)0.0137 (10)0.0020 (10)0.0021 (9)0.0047 (9)
C160.0376 (14)0.0245 (12)0.0148 (11)0.0031 (10)0.0035 (10)0.0031 (9)
Geometric parameters (Å, º) top
Ba1—O12.7831 (15)N6—C91.466 (3)
Ba1—O22.8062 (15)N6—H60.82 (3)
Ba1—O32.8261 (16)C5—C61.502 (3)
Ba1—O42.7980 (15)C5—H5A0.9900
Ba1—N1i2.814 (2)C5—H5B0.9900
Ba1—N3ii2.8896 (19)C6—H6A0.9900
Ba1—N42.8431 (19)C6—H6B0.9900
Ba1—N52.8671 (18)C7—C81.506 (3)
Ba1—N62.9291 (19)C7—H7A0.9900
Pt1—Pt1i7.5969 (4)C7—H7B0.9900
Pt1—Pt1iii7.6781 (4)C8—H8A0.9900
Pt1—C11.981 (2)C8—H8B0.9900
Pt1—C22.003 (2)C9—C101.503 (4)
Pt1—C31.995 (2)C9—H9A0.9900
Pt1—C41.985 (2)C9—H9B0.9900
O1—C51.430 (3)C10—H10A0.9900
O1—C161.442 (3)C10—H10B0.9900
O2—C61.424 (3)C11—C121.504 (3)
O2—C71.440 (3)C11—H11A0.9900
O3—C101.433 (3)C11—H11B0.9900
O3—C111.434 (3)C12—H12A0.9900
O4—C121.431 (3)C12—H12B0.9900
O4—C131.438 (3)C13—C141.509 (3)
O5—H5C0.990 (10)C13—H13A0.9900
O5—H5D0.989 (10)C13—H13B0.9900
N1—C11.145 (3)C14—H14A0.9900
N2—C21.148 (3)C14—H14B0.9900
N3—C31.153 (3)C15—C161.506 (3)
N4—C41.150 (3)C15—H15A0.9900
N5—C141.464 (3)C15—H15B0.9900
N5—C151.467 (3)C16—H16A0.9900
N5—H50.81 (3)C16—H16B0.9900
N6—C81.463 (3)
O1—Ba1—O4120.20 (4)N4—C4—Pt1178.3 (2)
O1—Ba1—O260.18 (4)O1—C5—C6109.86 (19)
O4—Ba1—O2168.59 (5)O1—C5—H5A109.7
O1—Ba1—N1i106.86 (6)C6—C5—H5A109.7
O4—Ba1—N1i108.01 (6)O1—C5—H5B109.7
O2—Ba1—N1i81.80 (6)C6—C5—H5B109.7
O1—Ba1—O3167.83 (5)H5A—C5—H5B108.2
O4—Ba1—O359.19 (5)O2—C6—C5108.1 (2)
O2—Ba1—O3117.70 (5)O2—C6—H6A110.1
N1i—Ba1—O384.06 (6)C5—C6—H6A110.1
O1—Ba1—N473.94 (5)O2—C6—H6B110.1
O4—Ba1—N475.43 (5)C5—C6—H6B110.1
O2—Ba1—N4114.32 (5)H6A—C6—H6B108.4
N1i—Ba1—N468.93 (6)O2—C7—C8108.08 (18)
O3—Ba1—N4115.93 (5)O2—C7—H7A110.1
O1—Ba1—N561.12 (5)C8—C7—H7A110.1
O4—Ba1—N560.30 (5)O2—C7—H7B110.1
O2—Ba1—N5116.33 (5)C8—C7—H7B110.1
N1i—Ba1—N5138.01 (6)H7A—C7—H7B108.4
O3—Ba1—N5114.31 (5)N6—C8—C7110.40 (19)
N4—Ba1—N569.08 (5)N6—C8—H8A109.6
O1—Ba1—N3ii77.91 (5)C7—C8—H8A109.6
O4—Ba1—N3ii93.95 (5)N6—C8—H8B109.6
O2—Ba1—N3ii74.83 (5)C7—C8—H8B109.6
N1i—Ba1—N3ii149.73 (6)H8A—C8—H8B108.1
O3—Ba1—N3ii89.94 (5)N6—C9—C10109.8 (2)
N4—Ba1—N3ii138.73 (5)N6—C9—H9A109.7
N5—Ba1—N3ii71.06 (5)C10—C9—H9A109.7
O1—Ba1—N6119.68 (5)N6—C9—H9B109.7
O4—Ba1—N6118.65 (5)C10—C9—H9B109.7
O2—Ba1—N659.51 (5)H9A—C9—H9B108.2
N1i—Ba1—N665.19 (6)O3—C10—C9108.59 (19)
O3—Ba1—N659.47 (5)O3—C10—H10A110.0
N4—Ba1—N6134.12 (5)C9—C10—H10A110.0
N5—Ba1—N6156.79 (6)O3—C10—H10B110.0
N3ii—Ba1—N686.21 (5)C9—C10—H10B110.0
C1—Pt1—C287.61 (9)H10A—C10—H10B108.4
C1—Pt1—C3177.97 (10)O3—C11—C12108.50 (19)
C1—Pt1—C489.54 (8)O3—C11—H11A110.0
C3—Pt1—C292.50 (8)C12—C11—H11A110.0
C4—Pt1—C2176.47 (9)O3—C11—H11B110.0
C4—Pt1—C390.42 (8)C12—C11—H11B110.0
C5—O1—C16110.98 (17)H11A—C11—H11B108.4
C5—O1—Ba1117.88 (12)O4—C12—C11108.26 (19)
C16—O1—Ba1118.79 (13)O4—C12—H12A110.0
C6—O2—C7113.74 (17)C11—C12—H12A110.0
C6—O2—Ba1111.50 (12)O4—C12—H12B110.0
C7—O2—Ba1119.14 (13)C11—C12—H12B110.0
C10—O3—C11112.75 (17)H12A—C12—H12B108.4
C10—O3—Ba1118.66 (13)O4—C13—C14108.62 (18)
C11—O3—Ba1107.88 (13)O4—C13—H13A110.0
C12—O4—C13112.47 (17)C14—C13—H13A110.0
C12—O4—Ba1119.92 (13)O4—C13—H13B110.0
C13—O4—Ba1119.74 (13)C14—C13—H13B110.0
H5C—O5—H5D104 (3)H13A—C13—H13B108.3
C1—N1—Ba1i158.2 (2)N5—C14—C13111.34 (19)
C3—N3—Ba1iv135.06 (16)N5—C14—H14A109.4
C4—N4—Ba1174.69 (17)C13—C14—H14A109.4
C14—N5—C15112.09 (18)N5—C14—H14B109.4
C14—N5—Ba1112.29 (13)C13—C14—H14B109.4
C15—N5—Ba1111.39 (13)H14A—C14—H14B108.0
C14—N5—H5105 (2)N5—C15—C16111.70 (18)
C15—N5—H5110 (2)N5—C15—H15A109.3
Ba1—N5—H5106 (2)C16—C15—H15A109.3
C8—N6—C9114.29 (18)N5—C15—H15B109.3
C8—N6—Ba1112.42 (13)C16—C15—H15B109.3
C9—N6—Ba1111.89 (14)H15A—C15—H15B107.9
C8—N6—H6107 (2)O1—C16—C15109.27 (18)
C9—N6—H6109 (2)O1—C16—H16A109.8
Ba1—N6—H6101.8 (19)C15—C16—H16A109.8
N1—C1—Pt1177.6 (2)O1—C16—H16B109.8
N2—C2—Pt1177.15 (19)C15—C16—H16B109.8
N3—C3—Pt1178.6 (2)H16A—C16—H16B108.3
O4—Ba1—O1—C5162.79 (15)N6—Ba1—O4—C13142.47 (15)
O2—Ba1—O1—C54.04 (14)O1—Ba1—N5—C14146.68 (17)
N1i—Ba1—O1—C573.83 (16)O4—Ba1—N5—C1420.73 (14)
O3—Ba1—O1—C579.3 (3)O2—Ba1—N5—C14171.63 (14)
N4—Ba1—O1—C5135.26 (16)N1i—Ba1—N5—C1463.44 (19)
N5—Ba1—O1—C5150.13 (17)O3—Ba1—N5—C1445.94 (16)
N3ii—Ba1—O1—C575.26 (15)N4—Ba1—N5—C1464.00 (15)
N6—Ba1—O1—C53.21 (17)N3ii—Ba1—N5—C14126.96 (16)
O4—Ba1—O1—C1623.94 (15)N6—Ba1—N5—C14114.77 (18)
O2—Ba1—O1—C16142.89 (15)O1—Ba1—N5—C1520.02 (13)
N1i—Ba1—O1—C16147.32 (14)O4—Ba1—N5—C15147.39 (16)
O3—Ba1—O1—C1659.6 (3)O2—Ba1—N5—C1544.97 (15)
N4—Ba1—O1—C1685.89 (14)N1i—Ba1—N5—C1563.22 (18)
N5—Ba1—O1—C1611.28 (14)O3—Ba1—N5—C15172.60 (13)
N3ii—Ba1—O1—C1663.59 (14)N4—Ba1—N5—C1562.66 (14)
N6—Ba1—O1—C16142.06 (14)N3ii—Ba1—N5—C15106.38 (15)
O1—Ba1—O2—C628.85 (14)N6—Ba1—N5—C15118.57 (17)
O4—Ba1—O2—C6124.0 (2)O1—Ba1—N6—C816.47 (17)
N1i—Ba1—O2—C686.00 (15)O4—Ba1—N6—C8149.75 (14)
O3—Ba1—O2—C6164.83 (14)O2—Ba1—N6—C817.30 (14)
N4—Ba1—O2—C623.63 (15)N1i—Ba1—N6—C8112.45 (17)
N5—Ba1—O2—C654.05 (15)O3—Ba1—N6—C8149.49 (17)
N3ii—Ba1—O2—C6113.42 (15)N4—Ba1—N6—C8112.74 (15)
N6—Ba1—O2—C6151.98 (16)N5—Ba1—N6—C868.9 (2)
O1—Ba1—O2—C7164.49 (16)N3ii—Ba1—N6—C857.32 (15)
O4—Ba1—O2—C7100.3 (3)O1—Ba1—N6—C9146.66 (14)
N1i—Ba1—O2—C749.64 (15)O4—Ba1—N6—C919.55 (17)
O3—Ba1—O2—C729.19 (16)O2—Ba1—N6—C9147.49 (17)
N4—Ba1—O2—C7112.01 (15)N1i—Ba1—N6—C9117.35 (17)
N5—Ba1—O2—C7170.31 (14)O3—Ba1—N6—C919.29 (14)
N3ii—Ba1—O2—C7110.94 (15)N4—Ba1—N6—C9117.06 (16)
N6—Ba1—O2—C716.34 (14)N5—Ba1—N6—C961.3 (2)
O1—Ba1—O3—C10104.1 (2)N3ii—Ba1—N6—C972.88 (15)
O4—Ba1—O3—C10165.23 (17)C16—O1—C5—C6176.36 (19)
O2—Ba1—O3—C1027.36 (16)Ba1—O1—C5—C634.5 (2)
N1i—Ba1—O3—C1050.13 (16)C7—O2—C6—C5163.08 (18)
N4—Ba1—O3—C10113.22 (15)Ba1—O2—C6—C558.8 (2)
N5—Ba1—O3—C10169.25 (15)O1—C5—C6—O262.2 (2)
N3ii—Ba1—O3—C10100.14 (16)C6—O2—C7—C8178.29 (19)
N6—Ba1—O3—C1014.51 (15)Ba1—O2—C7—C847.0 (2)
O1—Ba1—O3—C11126.2 (2)C9—N6—C8—C7177.3 (2)
O4—Ba1—O3—C1135.48 (12)Ba1—N6—C8—C748.3 (2)
O2—Ba1—O3—C11157.11 (12)O2—C7—C8—N662.9 (2)
N1i—Ba1—O3—C1179.61 (13)C8—N6—C9—C10179.8 (2)
N4—Ba1—O3—C1116.52 (14)Ba1—N6—C9—C1050.6 (2)
N5—Ba1—O3—C1161.00 (14)C11—O3—C10—C9173.3 (2)
N3ii—Ba1—O3—C11130.11 (13)Ba1—O3—C10—C945.8 (2)
N6—Ba1—O3—C11144.25 (14)N6—C9—C10—O364.2 (3)
O1—Ba1—O4—C12170.45 (14)C10—O3—C11—C12161.05 (19)
O2—Ba1—O4—C1281.9 (3)Ba1—O3—C11—C1265.97 (19)
N1i—Ba1—O4—C1266.73 (16)C13—O4—C12—C11174.38 (19)
O3—Ba1—O4—C124.57 (14)Ba1—O4—C12—C1125.4 (2)
N4—Ba1—O4—C12128.36 (16)O3—C11—C12—O461.3 (2)
N5—Ba1—O4—C12157.69 (17)C12—O4—C13—C14171.16 (19)
N3ii—Ba1—O4—C1292.14 (15)Ba1—O4—C13—C1439.8 (2)
N6—Ba1—O4—C124.31 (17)C15—N5—C14—C13176.85 (18)
O1—Ba1—O4—C1323.67 (17)Ba1—N5—C14—C1350.6 (2)
O2—Ba1—O4—C1364.9 (3)O4—C13—C14—N559.8 (2)
N1i—Ba1—O4—C13146.49 (15)C14—N5—C15—C16176.63 (19)
O3—Ba1—O4—C13142.21 (16)Ba1—N5—C15—C1649.9 (2)
N4—Ba1—O4—C1384.86 (15)C5—O1—C16—C15178.20 (19)
N5—Ba1—O4—C1310.91 (15)Ba1—O1—C16—C1540.3 (2)
N3ii—Ba1—O4—C1354.64 (16)N5—C15—C16—O160.5 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···N20.99 (1)2.09 (4)2.934 (5)142 (5)
O5—H5D···N3v0.99 (1)2.18 (1)3.159 (4)171 (5)
N6—H6···N1i0.82 (3)2.60 (3)3.096 (3)121 (2)
Symmetry codes: (i) x+1, y+1, z; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[BaPt(CN)4(C12H26N2O4)]·0.5H2O
Mr707.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)7.6781 (4), 14.8881 (9), 20.2325 (12)
β (°) 93.254 (2)
V3)2309.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.78
Crystal size (mm)0.18 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.469, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
30095, 5292, 5066
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.032, 1.03
No. of reflections5292
No. of parameters276
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PovChem (Thiessen, 2000) and POV-RAY (Cason et al., 2004).

Selected geometric parameters (Å, º) top
Ba1—O12.7831 (15)Ba1—N62.9291 (19)
Ba1—O22.8062 (15)Pt1—Pt1i7.5969 (4)
Ba1—O32.8261 (16)Pt1—Pt1iii7.6781 (4)
Ba1—O42.7980 (15)Pt1—C11.981 (2)
Ba1—N1i2.814 (2)Pt1—C22.003 (2)
Ba1—N3ii2.8896 (19)Pt1—C31.995 (2)
Ba1—N42.8431 (19)Pt1—C41.985 (2)
Ba1—N52.8671 (18)
C1—Pt1—C287.61 (9)C3—Pt1—C292.50 (8)
C1—Pt1—C3177.97 (10)C4—Pt1—C2176.47 (9)
C1—Pt1—C489.54 (8)C4—Pt1—C390.42 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···N20.990 (10)2.09 (4)2.934 (5)142 (5)
O5—H5D···N3iv0.989 (10)2.179 (14)3.159 (4)171 (5)
N6—H6···N1i0.82 (3)2.60 (3)3.096 (3)121 (2)
Symmetry codes: (i) x+1, y+1, z; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the University of California, Davis, for the purchase of the X-ray diffractometer.

References

First citationBergsoe, P., Hansen, P. G. & Jacobsen, C. F. (1962). Nucl. Instrum. Methods, 17, 325–331.  CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C., Froehlich, T., Kopp, N. & Parker, R. (2004). POV-RAY. http://www.povray.org  Google Scholar
First citationOlmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiessen, P. A. (2000). PovChem. http://www.chemicalgraphics.com  Google Scholar
First citationWilliams, J. M., Schultz, A. J., Underhill, A. E. & Carneiro, K. (1982). Extended Linear Chain Compounds, Vol. 1, edited by J. S. Miller, pp. 73–117. New York: Plenum Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m408-m409
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds