organic compounds
2-(4-Methoxyphenyl)-4,5-dihydro-1H-imidazole
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my
In the title molecule, C10H12N2O, the dihedral angle between the benzene and imidazole rings is 14.86 (16)°. The approximately planar arrangement of the molecule results in a distance of 2.54 Å between an ortho-H atom of the benzene ring and the double-bonded N atom of the imidazole ring. In the symmetry-related molecules are linked by intermolecular N—H⋯N hydrogen bonds into one-dimensional chains extending along the a axis.
Related literature
For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and syntheses, see: Stibrany et al. (2004); Kia et al. (2008, 2009a,b). For applications, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey & Grogan (1999). For details on the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809009106/lh2787sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809009106/lh2787Isup2.hkl
The synthetic method was based on the previous work (Stibrany et al. 2004), except that 10 mmol of 4-methoxy-cyanobenzene and 40 mmol of ethylenediamine was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.
The N-bound hydrogen atom was located from the difference Fourier map are refined freely, see Table. 1. The rest of the hydrogen atoms were positioned geometrically with a riding approximation model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 & 1.5 Ueq(C). A rotating group model was applied for the methyl group. In the absence of significant
effects, 943 Friedel pairs were merged before the final refinement.Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C10H12N2O | F(000) = 376 |
Mr = 176.22 | Dx = 1.285 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2309 reflections |
a = 10.0574 (5) Å | θ = 2.5–30.0° |
b = 13.2532 (7) Å | µ = 0.09 mm−1 |
c = 6.8321 (3) Å | T = 100 K |
V = 910.67 (8) Å3 | Block, colourless |
Z = 4 | 0.23 × 0.09 × 0.06 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1133 independent reflections |
Radiation source: fine-focus sealed tube | 873 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→12 |
Tmin = 0.981, Tmax = 0.995 | k = −12→17 |
8578 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0375P)2 + 0.2936P] where P = (Fo2 + 2Fc2)/3 |
1133 reflections | (Δ/σ)max < 0.001 |
123 parameters | Δρmax = 0.22 e Å−3 |
1 restraint | Δρmin = −0.22 e Å−3 |
C10H12N2O | V = 910.67 (8) Å3 |
Mr = 176.22 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 10.0574 (5) Å | µ = 0.09 mm−1 |
b = 13.2532 (7) Å | T = 100 K |
c = 6.8321 (3) Å | 0.23 × 0.09 × 0.06 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1133 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 873 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.995 | Rint = 0.049 |
8578 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 1 restraint |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.22 e Å−3 |
1133 reflections | Δρmin = −0.22 e Å−3 |
123 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6844 (2) | 0.00507 (17) | −0.4396 (3) | 0.0302 (6) | |
N1 | 0.6252 (2) | 0.28654 (19) | 0.3242 (4) | 0.0270 (6) | |
N2 | 0.8459 (2) | 0.25758 (18) | 0.3284 (4) | 0.0219 (5) | |
C1 | 0.8179 (3) | 0.3256 (3) | 0.4948 (4) | 0.0234 (7) | |
H1A | 0.8555 | 0.3935 | 0.4702 | 0.028* | |
H1B | 0.8571 | 0.2985 | 0.6169 | 0.028* | |
C2 | 0.6653 (3) | 0.3309 (3) | 0.5111 (4) | 0.0233 (7) | |
H2A | 0.6321 | 0.2909 | 0.6233 | 0.028* | |
H2B | 0.6339 | 0.4014 | 0.5236 | 0.028* | |
C3 | 0.7329 (3) | 0.2397 (2) | 0.2447 (4) | 0.0176 (6) | |
C4 | 0.7204 (3) | 0.1776 (2) | 0.0662 (4) | 0.0178 (6) | |
C5 | 0.5988 (3) | 0.1384 (2) | 0.0039 (4) | 0.0184 (6) | |
H5A | 0.5208 | 0.1512 | 0.0784 | 0.022* | |
C6 | 0.5902 (3) | 0.0813 (2) | −0.1641 (4) | 0.0227 (7) | |
H6A | 0.5067 | 0.0551 | −0.2044 | 0.027* | |
C7 | 0.7032 (3) | 0.0620 (2) | −0.2748 (4) | 0.0218 (7) | |
C8 | 0.8257 (3) | 0.0985 (2) | −0.2139 (4) | 0.0236 (7) | |
H8A | 0.9036 | 0.0844 | −0.2876 | 0.028* | |
C9 | 0.8332 (3) | 0.1557 (3) | −0.0444 (4) | 0.0232 (7) | |
H9A | 0.9172 | 0.1805 | −0.0026 | 0.028* | |
C10 | 0.7990 (3) | −0.0211 (3) | −0.5514 (4) | 0.0319 (8) | |
H10A | 0.7722 | −0.0624 | −0.6637 | 0.048* | |
H10B | 0.8609 | −0.0594 | −0.4694 | 0.048* | |
H10C | 0.8425 | 0.0405 | −0.5981 | 0.048* | |
H1N1 | 0.537 (3) | 0.266 (2) | 0.310 (6) | 0.043 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0298 (12) | 0.0350 (14) | 0.0258 (10) | −0.0013 (10) | 0.0007 (10) | −0.0112 (10) |
N1 | 0.0167 (13) | 0.0387 (17) | 0.0257 (12) | 0.0020 (12) | −0.0016 (12) | −0.0098 (14) |
N2 | 0.0188 (12) | 0.0275 (14) | 0.0194 (10) | −0.0002 (11) | −0.0020 (11) | −0.0019 (12) |
C1 | 0.0236 (15) | 0.0274 (18) | 0.0192 (13) | −0.0035 (14) | −0.0023 (14) | 0.0011 (12) |
C2 | 0.0231 (14) | 0.0282 (18) | 0.0187 (13) | −0.0005 (14) | −0.0016 (13) | −0.0036 (12) |
C3 | 0.0192 (15) | 0.0186 (16) | 0.0150 (11) | −0.0016 (13) | −0.0017 (12) | 0.0053 (12) |
C4 | 0.0183 (15) | 0.0192 (16) | 0.0157 (12) | −0.0006 (13) | −0.0003 (12) | 0.0044 (13) |
C5 | 0.0160 (14) | 0.0203 (17) | 0.0189 (12) | 0.0011 (12) | −0.0008 (11) | 0.0024 (12) |
C6 | 0.0182 (15) | 0.0253 (17) | 0.0247 (13) | −0.0028 (13) | −0.0042 (13) | 0.0030 (14) |
C7 | 0.0254 (17) | 0.0239 (18) | 0.0159 (13) | −0.0003 (14) | −0.0004 (12) | −0.0016 (13) |
C8 | 0.0220 (16) | 0.0284 (18) | 0.0204 (13) | 0.0007 (13) | 0.0060 (13) | −0.0007 (14) |
C9 | 0.0177 (16) | 0.0304 (19) | 0.0215 (14) | −0.0056 (14) | −0.0023 (12) | 0.0023 (13) |
C10 | 0.039 (2) | 0.034 (2) | 0.0227 (16) | 0.0027 (16) | 0.0053 (14) | −0.0100 (15) |
O1—C7 | 1.368 (3) | C4—C9 | 1.393 (4) |
O1—C10 | 1.425 (4) | C4—C5 | 1.396 (4) |
N1—C3 | 1.361 (4) | C5—C6 | 1.377 (4) |
N1—C2 | 1.463 (4) | C5—H5A | 0.9500 |
N1—H1N1 | 0.94 (3) | C6—C7 | 1.389 (4) |
N2—C3 | 1.294 (3) | C6—H6A | 0.9500 |
N2—C1 | 1.478 (4) | C7—C8 | 1.387 (4) |
C1—C2 | 1.541 (4) | C8—C9 | 1.386 (4) |
C1—H1A | 0.9900 | C8—H8A | 0.9500 |
C1—H1B | 0.9900 | C9—H9A | 0.9500 |
C2—H2A | 0.9900 | C10—H10A | 0.9800 |
C2—H2B | 0.9900 | C10—H10B | 0.9800 |
C3—C4 | 1.476 (4) | C10—H10C | 0.9800 |
C7—O1—C10 | 117.6 (2) | C5—C4—C3 | 122.2 (3) |
C3—N1—C2 | 108.2 (2) | C6—C5—C4 | 120.9 (3) |
C3—N1—H1N1 | 126 (2) | C6—C5—H5A | 119.6 |
C2—N1—H1N1 | 118 (3) | C4—C5—H5A | 119.6 |
C3—N2—C1 | 106.6 (2) | C5—C6—C7 | 120.3 (3) |
N2—C1—C2 | 105.8 (2) | C5—C6—H6A | 119.9 |
N2—C1—H1A | 110.6 | C7—C6—H6A | 119.9 |
C2—C1—H1A | 110.6 | O1—C7—C8 | 124.2 (3) |
N2—C1—H1B | 110.6 | O1—C7—C6 | 115.9 (3) |
C2—C1—H1B | 110.6 | C8—C7—C6 | 119.9 (2) |
H1A—C1—H1B | 108.7 | C9—C8—C7 | 119.3 (3) |
N1—C2—C1 | 101.1 (2) | C9—C8—H8A | 120.3 |
N1—C2—H2A | 111.5 | C7—C8—H8A | 120.3 |
C1—C2—H2A | 111.5 | C8—C9—C4 | 121.5 (3) |
N1—C2—H2B | 111.5 | C8—C9—H9A | 119.2 |
C1—C2—H2B | 111.5 | C4—C9—H9A | 119.2 |
H2A—C2—H2B | 109.4 | O1—C10—H10A | 109.5 |
N2—C3—N1 | 116.0 (2) | O1—C10—H10B | 109.5 |
N2—C3—C4 | 122.8 (3) | H10A—C10—H10B | 109.5 |
N1—C3—C4 | 121.1 (2) | O1—C10—H10C | 109.5 |
C9—C4—C5 | 118.1 (3) | H10A—C10—H10C | 109.5 |
C9—C4—C3 | 119.7 (3) | H10B—C10—H10C | 109.5 |
C3—N2—C1—C2 | 8.4 (3) | C3—C4—C5—C6 | 179.5 (3) |
C3—N1—C2—C1 | 14.4 (3) | C4—C5—C6—C7 | −0.1 (4) |
N2—C1—C2—N1 | −13.7 (3) | C10—O1—C7—C8 | 2.3 (4) |
C1—N2—C3—N1 | 1.0 (3) | C10—O1—C7—C6 | −176.7 (3) |
C1—N2—C3—C4 | 177.3 (3) | C5—C6—C7—O1 | −179.7 (2) |
C2—N1—C3—N2 | −10.7 (3) | C5—C6—C7—C8 | 1.3 (4) |
C2—N1—C3—C4 | 172.9 (3) | O1—C7—C8—C9 | 179.9 (3) |
N2—C3—C4—C9 | −15.1 (4) | C6—C7—C8—C9 | −1.2 (4) |
N1—C3—C4—C9 | 161.0 (3) | C7—C8—C9—C4 | −0.2 (4) |
N2—C3—C4—C5 | 164.1 (3) | C5—C4—C9—C8 | 1.4 (4) |
N1—C3—C4—C5 | −19.8 (4) | C3—C4—C9—C8 | −179.4 (3) |
C9—C4—C5—C6 | −1.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···N2i | 0.93 (3) | 1.95 (3) | 2.869 (3) | 168 (3) |
Symmetry code: (i) x−1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C10H12N2O |
Mr | 176.22 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 10.0574 (5), 13.2532 (7), 6.8321 (3) |
V (Å3) | 910.67 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.23 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.981, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8578, 1133, 873 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.096, 1.08 |
No. of reflections | 1133 |
No. of parameters | 123 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.22 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···N2i | 0.93 (3) | 1.95 (3) | 2.869 (3) | 168 (3) |
Symmetry code: (i) x−1/2, −y+1/2, z. |
Acknowledgements
HKF and RK thank the Malaysian government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blancafort, P. (1978). Drugs Fut. 3, 592. CrossRef Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, S. (1993). Clin. Sci. 85, 671–677. CAS PubMed Web of Science Google Scholar
Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157–160. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o338–o339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o724. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597–603. CrossRef CAS PubMed Web of Science Google Scholar
Vizi, E. S. (1986). Med. Res. Rev. 6, 431–449. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities such as antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li et al., 1996) and anti-inflammatory (Ueno et al., 1995) properties. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). With regards to these important applications of imidazolines, herein we report the crystal structure of the title compound, (I).
In the title compound (I, Fig. 1), bond lengths (Allen et al. 1987) and angles are with the normal ranges and are comparable with the related structures (Stibrany et al. 2004; Kia et al., 2008, 2009a,b). The molecule is approximately planar with a maximum deviation from the mean plane of the molecule for atom N1 being 0.279 (2) Å. The six- and five-membered rings are twisted from each other, forming the dihedral angle of 14.86 (16)°. Atom H5A of the benzene ring is in close proximity to atom N2 atom of the imidazoline ring with a distance of 2.54 Å [N2···H5A]. In the crystal structure, neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds into 1-D extended chains along the a axis (Table 1, Fig. 2).