organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­oxy­phen­yl)-4,5-di­hydro-1H-imidazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 10 March 2009; accepted 12 March 2009; online 19 March 2009)

In the title mol­ecule, C10H12N2O, the dihedral angle between the benzene and imidazole rings is 14.86 (16)°. The approximately planar arrangement of the mol­ecule results in a distance of 2.54 Å between an ortho-H atom of the benzene ring and the double-bonded N atom of the imidazole ring. In the crystal structure, symmetry-related mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into one-dimensional chains extending along the a axis.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures and syntheses, see: Stibrany et al. (2004[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527-o529.]); Kia et al. (2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.], 2009a[Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o338-o339.],b[Kia, R., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o724.]). For applications, see, for example: Blancafort (1978[Blancafort, P. (1978). Drugs Fut. 3, 592.]); Chan (1993[Chan, S. (1993). Clin. Sci. 85, 671-677.]); Vizi (1986[Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.]); Li et al. (1996[Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153-11162.]); Ueno et al. (1995[Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.]); Corey & Grogan (1999[Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157-160.]). For details on the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O

  • Mr = 176.22

  • Orthorhombic, P n a 21

  • a = 10.0574 (5) Å

  • b = 13.2532 (7) Å

  • c = 6.8321 (3) Å

  • V = 910.67 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.23 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.995

  • 8578 measured reflections

  • 1133 independent reflections

  • 873 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.096

  • S = 1.08

  • 1133 reflections

  • 123 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.93 (3) 1.95 (3) 2.869 (3) 168 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities such as antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li et al., 1996) and anti-inflammatory (Ueno et al., 1995) properties. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). With regards to these important applications of imidazolines, herein we report the crystal structure of the title compound, (I).

In the title compound (I, Fig. 1), bond lengths (Allen et al. 1987) and angles are with the normal ranges and are comparable with the related structures (Stibrany et al. 2004; Kia et al., 2008, 2009a,b). The molecule is approximately planar with a maximum deviation from the mean plane of the molecule for atom N1 being 0.279 (2) Å. The six- and five-membered rings are twisted from each other, forming the dihedral angle of 14.86 (16)°. Atom H5A of the benzene ring is in close proximity to atom N2 atom of the imidazoline ring with a distance of 2.54 Å [N2···H5A]. In the crystal structure, neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds into 1-D extended chains along the a axis (Table 1, Fig. 2).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and syntheses, see: Stibrany et al. (2004); Kia et al. (2008, 2009a,b). For applications, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al., (1995); Corey & Grogan (1999). For details on the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

For related literature, see: Allen et al. (1987).

Experimental top

The synthetic method was based on the previous work (Stibrany et al. 2004), except that 10 mmol of 4-methoxy-cyanobenzene and 40 mmol of ethylenediamine was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.

Refinement top

The N-bound hydrogen atom was located from the difference Fourier map are refined freely, see Table. 1. The rest of the hydrogen atoms were positioned geometrically with a riding approximation model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 & 1.5 Ueq(C). A rotating group model was applied for the methyl group. In the absence of significant anomalous dispersion effects, 943 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the b-axis showing a 1-D extended chain along the a-axis formed by intermolecular N—H···N hydrogen bonds (dashed lines).
2-(4-Methoxyphenyl)-4,5-dihydro-1H-imidazole top
Crystal data top
C10H12N2OF(000) = 376
Mr = 176.22Dx = 1.285 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2309 reflections
a = 10.0574 (5) Åθ = 2.5–30.0°
b = 13.2532 (7) ŵ = 0.09 mm1
c = 6.8321 (3) ÅT = 100 K
V = 910.67 (8) Å3Block, colourless
Z = 40.23 × 0.09 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1133 independent reflections
Radiation source: fine-focus sealed tube873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1312
Tmin = 0.981, Tmax = 0.995k = 1217
8578 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.2936P]
where P = (Fo2 + 2Fc2)/3
1133 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C10H12N2OV = 910.67 (8) Å3
Mr = 176.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.0574 (5) ŵ = 0.09 mm1
b = 13.2532 (7) ÅT = 100 K
c = 6.8321 (3) Å0.23 × 0.09 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1133 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
873 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.995Rint = 0.049
8578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
1133 reflectionsΔρmin = 0.22 e Å3
123 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6844 (2)0.00507 (17)0.4396 (3)0.0302 (6)
N10.6252 (2)0.28654 (19)0.3242 (4)0.0270 (6)
N20.8459 (2)0.25758 (18)0.3284 (4)0.0219 (5)
C10.8179 (3)0.3256 (3)0.4948 (4)0.0234 (7)
H1A0.85550.39350.47020.028*
H1B0.85710.29850.61690.028*
C20.6653 (3)0.3309 (3)0.5111 (4)0.0233 (7)
H2A0.63210.29090.62330.028*
H2B0.63390.40140.52360.028*
C30.7329 (3)0.2397 (2)0.2447 (4)0.0176 (6)
C40.7204 (3)0.1776 (2)0.0662 (4)0.0178 (6)
C50.5988 (3)0.1384 (2)0.0039 (4)0.0184 (6)
H5A0.52080.15120.07840.022*
C60.5902 (3)0.0813 (2)0.1641 (4)0.0227 (7)
H6A0.50670.05510.20440.027*
C70.7032 (3)0.0620 (2)0.2748 (4)0.0218 (7)
C80.8257 (3)0.0985 (2)0.2139 (4)0.0236 (7)
H8A0.90360.08440.28760.028*
C90.8332 (3)0.1557 (3)0.0444 (4)0.0232 (7)
H9A0.91720.18050.00260.028*
C100.7990 (3)0.0211 (3)0.5514 (4)0.0319 (8)
H10A0.77220.06240.66370.048*
H10B0.86090.05940.46940.048*
H10C0.84250.04050.59810.048*
H1N10.537 (3)0.266 (2)0.310 (6)0.043 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0298 (12)0.0350 (14)0.0258 (10)0.0013 (10)0.0007 (10)0.0112 (10)
N10.0167 (13)0.0387 (17)0.0257 (12)0.0020 (12)0.0016 (12)0.0098 (14)
N20.0188 (12)0.0275 (14)0.0194 (10)0.0002 (11)0.0020 (11)0.0019 (12)
C10.0236 (15)0.0274 (18)0.0192 (13)0.0035 (14)0.0023 (14)0.0011 (12)
C20.0231 (14)0.0282 (18)0.0187 (13)0.0005 (14)0.0016 (13)0.0036 (12)
C30.0192 (15)0.0186 (16)0.0150 (11)0.0016 (13)0.0017 (12)0.0053 (12)
C40.0183 (15)0.0192 (16)0.0157 (12)0.0006 (13)0.0003 (12)0.0044 (13)
C50.0160 (14)0.0203 (17)0.0189 (12)0.0011 (12)0.0008 (11)0.0024 (12)
C60.0182 (15)0.0253 (17)0.0247 (13)0.0028 (13)0.0042 (13)0.0030 (14)
C70.0254 (17)0.0239 (18)0.0159 (13)0.0003 (14)0.0004 (12)0.0016 (13)
C80.0220 (16)0.0284 (18)0.0204 (13)0.0007 (13)0.0060 (13)0.0007 (14)
C90.0177 (16)0.0304 (19)0.0215 (14)0.0056 (14)0.0023 (12)0.0023 (13)
C100.039 (2)0.034 (2)0.0227 (16)0.0027 (16)0.0053 (14)0.0100 (15)
Geometric parameters (Å, º) top
O1—C71.368 (3)C4—C91.393 (4)
O1—C101.425 (4)C4—C51.396 (4)
N1—C31.361 (4)C5—C61.377 (4)
N1—C21.463 (4)C5—H5A0.9500
N1—H1N10.94 (3)C6—C71.389 (4)
N2—C31.294 (3)C6—H6A0.9500
N2—C11.478 (4)C7—C81.387 (4)
C1—C21.541 (4)C8—C91.386 (4)
C1—H1A0.9900C8—H8A0.9500
C1—H1B0.9900C9—H9A0.9500
C2—H2A0.9900C10—H10A0.9800
C2—H2B0.9900C10—H10B0.9800
C3—C41.476 (4)C10—H10C0.9800
C7—O1—C10117.6 (2)C5—C4—C3122.2 (3)
C3—N1—C2108.2 (2)C6—C5—C4120.9 (3)
C3—N1—H1N1126 (2)C6—C5—H5A119.6
C2—N1—H1N1118 (3)C4—C5—H5A119.6
C3—N2—C1106.6 (2)C5—C6—C7120.3 (3)
N2—C1—C2105.8 (2)C5—C6—H6A119.9
N2—C1—H1A110.6C7—C6—H6A119.9
C2—C1—H1A110.6O1—C7—C8124.2 (3)
N2—C1—H1B110.6O1—C7—C6115.9 (3)
C2—C1—H1B110.6C8—C7—C6119.9 (2)
H1A—C1—H1B108.7C9—C8—C7119.3 (3)
N1—C2—C1101.1 (2)C9—C8—H8A120.3
N1—C2—H2A111.5C7—C8—H8A120.3
C1—C2—H2A111.5C8—C9—C4121.5 (3)
N1—C2—H2B111.5C8—C9—H9A119.2
C1—C2—H2B111.5C4—C9—H9A119.2
H2A—C2—H2B109.4O1—C10—H10A109.5
N2—C3—N1116.0 (2)O1—C10—H10B109.5
N2—C3—C4122.8 (3)H10A—C10—H10B109.5
N1—C3—C4121.1 (2)O1—C10—H10C109.5
C9—C4—C5118.1 (3)H10A—C10—H10C109.5
C9—C4—C3119.7 (3)H10B—C10—H10C109.5
C3—N2—C1—C28.4 (3)C3—C4—C5—C6179.5 (3)
C3—N1—C2—C114.4 (3)C4—C5—C6—C70.1 (4)
N2—C1—C2—N113.7 (3)C10—O1—C7—C82.3 (4)
C1—N2—C3—N11.0 (3)C10—O1—C7—C6176.7 (3)
C1—N2—C3—C4177.3 (3)C5—C6—C7—O1179.7 (2)
C2—N1—C3—N210.7 (3)C5—C6—C7—C81.3 (4)
C2—N1—C3—C4172.9 (3)O1—C7—C8—C9179.9 (3)
N2—C3—C4—C915.1 (4)C6—C7—C8—C91.2 (4)
N1—C3—C4—C9161.0 (3)C7—C8—C9—C40.2 (4)
N2—C3—C4—C5164.1 (3)C5—C4—C9—C81.4 (4)
N1—C3—C4—C519.8 (4)C3—C4—C9—C8179.4 (3)
C9—C4—C5—C61.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.93 (3)1.95 (3)2.869 (3)168 (3)
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H12N2O
Mr176.22
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)10.0574 (5), 13.2532 (7), 6.8321 (3)
V3)910.67 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.981, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
8578, 1133, 873
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.096, 1.08
No. of reflections1133
No. of parameters123
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.93 (3)1.95 (3)2.869 (3)168 (3)
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

HKF and RK thank the Malaysian government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlancafort, P. (1978). Drugs Fut. 3, 592.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. (1993). Clin. Sci. 85, 671–677.  CAS PubMed Web of Science Google Scholar
First citationCorey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o338–o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUeno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597–603.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVizi, E. S. (1986). Med. Res. Rev. 6, 431–449.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds