organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o833-o834

N-(2,4-Di­nitro­phen­yl)-N′-(1-p-tolyl­ethyl­­idene)hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran, and cDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 11 March 2009; accepted 18 March 2009; online 25 March 2009)

In the title mol­ecule, C15H14N4O4, the dihedral angle between the two benzene rings is 2.21 (7)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. The mean planes of the ortho- and para-nitro groups make dihedral angles of 2.17 (17) and 2.05 (16)°, respectively, with the benzene ring to which they are attached. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds generate R22(7), R22(13) and R21(10) ring motifs, linking symmetry-related mol­ecules into extended chains along the b axis. In addition, there are inter­molecular C⋯C [3.332 (2)–3.343 (2) Å] contacts which are shorter than the sum of the van der Waals radii. The crystal structure is further stabilized by inter­molecular C—H⋯π and ππ stacking inter­actions [centroid–centroid distance = 3.8090 (9) Å].

Related literature

For bond-length data, see: (Allen et al. 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Kia, R. & Kargar, H. (2009). Acta Cryst. E65, o246-o247.]); Kia et al. (2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o382.]). For background information on 2,4-dinitro­phenyl­hydrazones, see: Cordis et al. (1998[Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117-123.]); Guillaumont & Nakamura (2000[Guillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85-92.]); Lamberton et al. (1974[Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521-1529.]); Niknam et al. (2005[Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231-2236.]); Raj & Kurup (2006[Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 71, 1251-1260.]); Zegota (1999[Zegota, H. (1999). J. Chromatogr. A, 863, 227-233.]); Zlotorzynska & Lai (1999[Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487-796.]); For the synthetic procedure, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O4

  • Mr = 314.30

  • Monoclinic, P 21 /c

  • a = 7.6948 (1) Å

  • b = 14.9092 (3) Å

  • c = 12.5224 (2) Å

  • β = 91.778 (1)°

  • V = 1435.92 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.984

  • 16826 measured reflections

  • 4211 independent reflections

  • 3206 reflections with I > 2˘I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.143

  • S = 1.08

  • 4211 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4 0.85 (2) 1.96 (2) 2.5966 (18) 131.3 (18)
C4—H4A⋯O4i 0.93 2.51 3.232 (2) 135
C5—H5A⋯O3i 0.93 2.55 3.4409 (19) 161
C9—H9A⋯O3i 0.93 2.41 3.295 (2) 158
C14—H14CCg1ii 0.96 2.68 3.5635 (17) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+1. Cg1 is the centroid of the C8–C13 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,4-Dinitrophenylhydrazones play a more important role as stabilizers for the detection, characterization and protection of carbonyl groups than do phenylhydrazones (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton et al., 1974; Zegota, 1999; Cordis et al., 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). The above information attracted our interest in the title compound and the the crystal structure is reported herein.

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) have normal values and are comparable to the related structures (Fun et al. 2009; Kia et al. 2009). An intramolecular N—H···O hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). Weak intermolecular C—H···O hydrogen bonds generate R22(7), R22(13) and R21(10) ring motifs. These interactions link symmetry related molecules into extended chains along the b axis (Fig. 2). The molecule is approximately planar, with the maximum deviation from the mean plane of the molecule being 0.381 (2) Å for atom C14. The dihedral angle between the two benzene rings is 4.63 (1)°. Some interesting features of the crystal structure are the short intermolecular contacts of O2···O2i [3.0319(170 Å; (i) -x, -y, 2 - z] and O2···N3i [3.0513 (18) Å] and in addition the C2···C3iii [3.332 (2) Å; (iii) 1 - x, -y, 2 - z ], C2···C12iv [3.340 (2) Å; (iv) 1 - x, -y , 1 - z], C7···C13ii [3.343 (2) Å] contacts which are shorter than the sum of the van der Waals radii. The crystal structure is further stabilized by intermolecular C—H···π and π-π interactions [Cg1···Cg2 = 3.8090 (9) Å; Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 benzene rings].

Related literature top

For bond-length data, see: (Allen et al. 1987). For hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2009); Kia et al. (2009). For background information on 2,4-dinitrophenylhydrazones, see: Cordis et al. (1998); Guillaumont & Nakamura (2000); Lamberton et al. (1974); Niknam et al. (2005); Raj & Kurup (2006); Zegota (1999); Zlotorzynska & Lai (1999); For the synthetic procedure, see: Okabe et al. (1993). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C8–C13 benzene ring.

Experimental top

The title compound was synthesized based on the reported procedure (Okabe et al. 1993) except that 4-methyl-acetophenone (1 mmol) was used instead. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in acetone.

Refinement top

The N-bound H atom was located from the difference Fourier map and refined freely; see, Table 1. The remaining H atoms were positined geometrically and constrained with a riding model approximation with C—H = 0.93–0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the c-axis, showing molecules linked by weak intermolecular C—H···O interactions along the b-axis. Intermolecular interactions are shown as dashed lines.
N-(2,4-Dinitrophenyl)-N'-(1-p-tolylethylidene)hydrazine top
Crystal data top
C15H14N4O4F(000) = 656
Mr = 314.30Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5279 reflections
a = 7.6948 (1) Åθ = 2.7–30.0°
b = 14.9092 (3) ŵ = 0.11 mm1
c = 12.5224 (2) ÅT = 100 K
β = 91.778 (1)°Block, red
V = 1435.92 (4) Å30.25 × 0.23 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4211 independent reflections
Radiation source: fine-focus sealed tube3206 reflections with I > 2˘I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.974, Tmax = 0.984k = 2017
16826 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.5547P]
where P = (Fo2 + 2Fc2)/3
4211 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H14N4O4V = 1435.92 (4) Å3
Mr = 314.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6948 (1) ŵ = 0.11 mm1
b = 14.9092 (3) ÅT = 100 K
c = 12.5224 (2) Å0.25 × 0.23 × 0.15 mm
β = 91.778 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3206 reflections with I > 2˘I)
Tmin = 0.974, Tmax = 0.984Rint = 0.030
16826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.42 e Å3
4211 reflectionsΔρmin = 0.26 e Å3
214 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17776 (17)0.87567 (9)1.02191 (10)0.0328 (3)
O20.16471 (16)1.01618 (9)1.06678 (9)0.0279 (3)
O30.45972 (17)1.23529 (8)0.87222 (10)0.0312 (3)
O40.60603 (15)1.20508 (8)0.73223 (9)0.0260 (3)
N10.62455 (17)1.04202 (9)0.66064 (10)0.0176 (3)
N20.67704 (16)0.97591 (9)0.59199 (10)0.0175 (3)
N30.21243 (18)0.95518 (10)1.00792 (10)0.0228 (3)
N40.51408 (17)1.18141 (9)0.80690 (10)0.0210 (3)
C10.47019 (19)1.08784 (10)0.81806 (11)0.0167 (3)
C20.36357 (19)1.06601 (10)0.90212 (11)0.0178 (3)
H2A0.32261.11050.94690.021*
C30.3200 (2)0.97796 (11)0.91782 (11)0.0180 (3)
C40.3812 (2)0.90980 (11)0.85198 (11)0.0191 (3)
H4A0.35280.85030.86530.023*
C50.4829 (2)0.93102 (10)0.76795 (11)0.0177 (3)
H5A0.52210.88540.72410.021*
C60.52995 (19)1.02107 (10)0.74630 (11)0.0159 (3)
C70.74308 (19)1.00482 (10)0.50440 (11)0.0169 (3)
C80.80349 (19)0.93424 (10)0.43032 (11)0.0172 (3)
C90.7621 (2)0.84429 (11)0.44813 (12)0.0208 (3)
H9A0.69650.82920.50660.025*
C100.8168 (2)0.77741 (11)0.38063 (13)0.0247 (4)
H10A0.78690.71820.39430.030*
C110.9165 (2)0.79729 (12)0.29186 (12)0.0223 (3)
C120.9582 (2)0.88663 (12)0.27404 (12)0.0223 (3)
H12A1.02450.90150.21580.027*
C130.9029 (2)0.95450 (11)0.34177 (11)0.0198 (3)
H13A0.93231.01380.32790.024*
C140.7563 (2)1.10272 (11)0.47653 (12)0.0208 (3)
H14A0.64551.13100.48530.031*
H14B0.78991.10880.40370.031*
H14C0.84181.13080.52290.031*
C150.9752 (2)0.72351 (13)0.21878 (14)0.0298 (4)
H15A0.87830.68550.20000.045*
H15B1.06420.68870.25470.045*
H15C1.02050.74940.15520.045*
H1N10.652 (3)1.0963 (15)0.6502 (15)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (8)0.0280 (7)0.0311 (6)0.0030 (6)0.0136 (6)0.0070 (5)
O20.0299 (6)0.0348 (7)0.0195 (5)0.0014 (5)0.0090 (5)0.0053 (5)
O30.0426 (8)0.0173 (6)0.0344 (7)0.0007 (5)0.0135 (6)0.0079 (5)
O40.0302 (6)0.0173 (6)0.0312 (6)0.0028 (5)0.0114 (5)0.0002 (5)
N10.0208 (6)0.0129 (6)0.0196 (6)0.0009 (5)0.0067 (5)0.0008 (5)
N20.0175 (6)0.0168 (6)0.0183 (6)0.0006 (5)0.0035 (5)0.0022 (5)
N30.0218 (7)0.0282 (8)0.0184 (6)0.0000 (6)0.0030 (5)0.0035 (5)
N40.0228 (7)0.0164 (7)0.0240 (6)0.0008 (5)0.0030 (5)0.0022 (5)
C10.0179 (7)0.0147 (7)0.0176 (6)0.0001 (6)0.0008 (5)0.0014 (5)
C20.0180 (7)0.0199 (8)0.0157 (6)0.0028 (6)0.0021 (5)0.0035 (5)
C30.0185 (7)0.0218 (8)0.0139 (6)0.0007 (6)0.0025 (5)0.0014 (5)
C40.0208 (7)0.0174 (7)0.0190 (7)0.0013 (6)0.0001 (6)0.0016 (6)
C50.0217 (8)0.0155 (7)0.0162 (6)0.0007 (6)0.0022 (6)0.0027 (5)
C60.0156 (7)0.0163 (7)0.0158 (6)0.0002 (5)0.0007 (5)0.0013 (5)
C70.0150 (7)0.0181 (7)0.0176 (6)0.0006 (5)0.0005 (5)0.0013 (5)
C80.0152 (7)0.0214 (8)0.0150 (6)0.0017 (6)0.0014 (5)0.0004 (6)
C90.0229 (8)0.0210 (8)0.0190 (7)0.0007 (6)0.0076 (6)0.0005 (6)
C100.0267 (8)0.0218 (8)0.0260 (8)0.0009 (7)0.0058 (7)0.0026 (6)
C110.0188 (7)0.0300 (9)0.0182 (7)0.0033 (6)0.0012 (6)0.0040 (6)
C120.0186 (7)0.0345 (9)0.0140 (6)0.0027 (7)0.0035 (6)0.0017 (6)
C130.0187 (7)0.0237 (8)0.0169 (6)0.0001 (6)0.0015 (6)0.0036 (6)
C140.0238 (8)0.0187 (8)0.0200 (7)0.0005 (6)0.0031 (6)0.0041 (6)
C150.0267 (9)0.0357 (10)0.0270 (8)0.0029 (7)0.0046 (7)0.0097 (7)
Geometric parameters (Å, º) top
O1—N31.2288 (19)C7—C81.487 (2)
O2—N31.2336 (18)C7—C141.505 (2)
O3—N41.2291 (16)C8—C91.398 (2)
O4—N41.2412 (16)C8—C131.3992 (19)
N1—C61.3515 (18)C9—C101.381 (2)
N1—N21.3766 (17)C9—H9A0.9300
N1—H1N10.85 (2)C10—C111.402 (2)
N2—C71.2968 (18)C10—H10A0.9300
N3—C31.4598 (18)C11—C121.390 (2)
N4—C11.443 (2)C11—C151.509 (2)
C1—C21.3931 (19)C12—C131.395 (2)
C1—C61.4267 (19)C12—H12A0.9300
C2—C31.371 (2)C13—H13A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.400 (2)C14—H14B0.9600
C4—C51.368 (2)C14—H14C0.9600
C4—H4A0.9300C15—H15A0.9600
C5—C61.419 (2)C15—H15B0.9600
C5—H5A0.9300C15—H15C0.9600
C6—N1—N2120.39 (13)C9—C8—C13117.79 (13)
C6—N1—H1N1118.9 (13)C9—C8—C7120.15 (12)
N2—N1—H1N1120.7 (13)C13—C8—C7122.06 (14)
C7—N2—N1114.86 (13)C10—C9—C8121.31 (13)
O1—N3—O2123.78 (13)C10—C9—H9A119.3
O1—N3—C3117.74 (13)C8—C9—H9A119.3
O2—N3—C3118.47 (13)C9—C10—C11121.15 (16)
O3—N4—O4121.96 (13)C9—C10—H10A119.4
O3—N4—C1118.81 (12)C11—C10—H10A119.4
O4—N4—C1119.23 (12)C12—C11—C10117.71 (14)
C2—C1—C6121.45 (14)C12—C11—C15121.74 (14)
C2—C1—N4116.36 (13)C10—C11—C15120.55 (16)
C6—C1—N4122.18 (12)C11—C12—C13121.38 (13)
C3—C2—C1118.99 (13)C11—C12—H12A119.3
C3—C2—H2A120.5C13—C12—H12A119.3
C1—C2—H2A120.5C12—C13—C8120.65 (15)
C2—C3—C4121.51 (13)C12—C13—H13A119.7
C2—C3—N3118.74 (13)C8—C13—H13A119.7
C4—C3—N3119.71 (14)C7—C14—H14A109.5
C5—C4—C3119.76 (14)C7—C14—H14B109.5
C5—C4—H4A120.1H14A—C14—H14B109.5
C3—C4—H4A120.1C7—C14—H14C109.5
C4—C5—C6121.41 (13)H14A—C14—H14C109.5
C4—C5—H5A119.3H14B—C14—H14C109.5
C6—C5—H5A119.3C11—C15—H15A109.5
N1—C6—C5121.14 (13)C11—C15—H15B109.5
N1—C6—C1122.05 (14)H15A—C15—H15B109.5
C5—C6—C1116.80 (12)C11—C15—H15C109.5
N2—C7—C8115.51 (13)H15A—C15—H15C109.5
N2—C7—C14123.34 (13)H15B—C15—H15C109.5
C8—C7—C14121.14 (12)
C6—N1—N2—C7169.80 (14)C2—C1—C6—N1175.87 (15)
O3—N4—C1—C21.7 (2)N4—C1—C6—N13.2 (2)
O4—N4—C1—C2178.66 (14)C2—C1—C6—C53.1 (2)
O3—N4—C1—C6179.24 (15)N4—C1—C6—C5177.86 (14)
O4—N4—C1—C60.4 (2)N1—N2—C7—C8178.89 (13)
C6—C1—C2—C32.0 (2)N1—N2—C7—C142.2 (2)
N4—C1—C2—C3178.88 (14)N2—C7—C8—C910.5 (2)
C1—C2—C3—C40.5 (2)C14—C7—C8—C9168.44 (14)
C1—C2—C3—N3178.22 (13)N2—C7—C8—C13169.26 (14)
O1—N3—C3—C2178.53 (15)C14—C7—C8—C1311.8 (2)
O2—N3—C3—C20.0 (2)C13—C8—C9—C100.2 (2)
O1—N3—C3—C40.8 (2)C7—C8—C9—C10179.92 (15)
O2—N3—C3—C4177.71 (15)C8—C9—C10—C110.2 (3)
C2—C3—C4—C51.9 (2)C9—C10—C11—C120.1 (2)
N3—C3—C4—C5179.57 (14)C9—C10—C11—C15179.98 (16)
C3—C4—C5—C60.7 (2)C10—C11—C12—C130.2 (2)
N2—N1—C6—C50.2 (2)C15—C11—C12—C13179.76 (15)
N2—N1—C6—C1178.72 (14)C11—C12—C13—C80.2 (2)
C4—C5—C6—N1177.27 (15)C9—C8—C13—C120.0 (2)
C4—C5—C6—C11.7 (2)C7—C8—C13—C12179.69 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O40.85 (2)1.96 (2)2.5966 (18)131.3 (18)
C4—H4A···O4i0.932.513.232 (2)135
C5—H5A···O3i0.932.553.4409 (19)161
C9—H9A···O3i0.932.413.295 (2)158
C14—H14C···Cg1ii0.962.683.5635 (17)154
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N4O4
Mr314.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6948 (1), 14.9092 (3), 12.5224 (2)
β (°) 91.778 (1)
V3)1435.92 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.974, 0.984
No. of measured, independent and
observed [I > 2˘I)] reflections
16826, 4211, 3206
Rint0.030
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.143, 1.08
No. of reflections4211
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O40.85 (2)1.96 (2)2.5966 (18)131.3 (18)
C4—H4A···O4i0.93002.51003.232 (2)135.00
C5—H5A···O3i0.93002.55003.4409 (19)161.00
C9—H9A···O3i0.93002.41003.295 (2)158.00
C14—H14C···Cg1ii0.962.683.5635 (17)154
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BE thanks Shiraz University for financial support. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117–123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2009). Acta Cryst. E65, o246–o247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521–1529.  CrossRef CAS Google Scholar
First citationNiknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231–2236.  Web of Science CrossRef CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 71, 1251–1260.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZegota, H. (1999). J. Chromatogr. A, 863, 227–233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487–796.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o833-o834
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds