organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4,6-Tri­methyl­phen­yl)-1,10-phenanthroline

aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, and bState Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zhangyongp@lzu.edu.cn

(Received 13 March 2009; accepted 24 March 2009; online 1 April 2009)

In the title mol­ecule, C21H18N2, the mean plane of the benzene ring of the mesityl group forms a dihedral angle of 82.69 (4)° with that of the phenanthroline ring system. The crystal structure is stabilized by ππ stacking inter­actions between the phenanthroline system and the benzene ring of the mesityl group of a symmetry-related mol­ecule, with centroid–centroid distances of 3.7776 (14) and 3.7155 (13) Å.

Related literature

For background information on phenanthroline derivatives, see: Schmittel et al. (2001[Schmittel, M., Michel, C., Liu, S.-X., Schildbach, D. & Fenske, D. (2001). Eur. J. Inorg. Chem. pp. 1155-1166.]); Garas & Vagg (2000[Garas, A. M. S. & Vagg, R. S. (2000). J. Heterocycl. Chem. 37, 151-158.]). For information on phenanthroline ligands as used in coordination chemistry, see: Sauvage (1990[Sauvage, J. P. (1990). Acc. Chem. Res. 23, 319-327.]). For the synthetic procedure, see: Schmittel & Ganz (1997[Schmittel, M. & Ganz, A. (1997). Chem. Commun. pp. 999-1000.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2

  • Mr = 298.37

  • Monoclinic, P 21 /c

  • a = 14.5778 (19) Å

  • b = 8.9877 (11) Å

  • c = 13.5790 (11) Å

  • β = 112.166 (4)°

  • V = 1647.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.35 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.987

  • 9474 measured reflections

  • 3511 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.181

  • S = 1.06

  • 3511 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phenanthroline derivatives are well known nitrogen-containing heterocyclic compounds, and their syntheses have been extensively studied (Garas & Vagg 2000, Schmittel et al., 2001). 1,10-Phenanthroline ligands have been widely used in transition metal coordination chemistry because their steric and electronic environment can be conveniently tailored by varying the substituents (Sauvage, 1990). We have therefore synthesized a series of 2-substituted-1,10-phenanthrolines including the title compound to study their applications in metal coordination chemistry.

The molecular structure of the title compound is shown in Fig. 1. The benzene ring of the mesityl group forms a dihedral angle of 82.69 (4)° with the mean-plane of phenanthroline ring system. The crystal structure is stabilized by intermolecular π-π stacking interactions between the phenanthroline moiety and the benzene ring of a symmetry related molecule (Fig. 2) where Cg1···Cg2 and Cg2···Cg3 are 3.7776 (14)Å and 3.7155 (13)Å, respectively (with the perpendicaular distances for each being ca. 3.5Å). Cg1, Cg2 and Cg3 are the centroids defined by ring atoms N1/C1-C4/C12, C13-C18 and C4-C12, respectively.

Related literature top

For background information on phenanthroline derivatives, see: Schmittel et al. (2001); Garas & Vagg (2000). For information on phenanthroline ligands as used in coordination chemistry, see: Sauvage (1990). For the synthetic procedure, see: Schmittel & Ganz (1997).

Experimental top

The title compound was synthesized according to a reported literature procedures (Schmittel & Ganz 1997). Crystals suitable for X-ray diffraction were obtained evaporation of a solution of the title compound in ethyl acetate.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing the /p-/p stacking interactions (dashed lines) between the phenanthroline ring system and symmetry related benzene rings. H atoms have been omitted for clarity.
2-(2,4,6-Trimethylphenyl)-1,10-phenanthroline top
Crystal data top
C21H18N2F(000) = 632
Mr = 298.37Dx = 1.203 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2140 reflections
a = 14.5778 (19) Åθ = 2.7–25.4°
b = 8.9877 (11) ŵ = 0.07 mm1
c = 13.5790 (11) ÅT = 293 K
β = 112.166 (4)°Block, colourless
V = 1647.6 (3) Å30.35 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3511 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.976, Tmax = 0.987k = 1110
9474 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.084P)2 + 0.1669P]
where P = (Fo2 + 2Fc2)/3
3511 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H18N2V = 1647.6 (3) Å3
Mr = 298.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5778 (19) ŵ = 0.07 mm1
b = 8.9877 (11) ÅT = 293 K
c = 13.5790 (11) Å0.35 × 0.23 × 0.19 mm
β = 112.166 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
3511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2150 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.987Rint = 0.031
9474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3511 reflectionsΔρmin = 0.19 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09525 (12)0.20234 (19)0.35983 (13)0.0639 (5)
N20.23560 (10)0.39234 (16)0.49200 (11)0.0503 (4)
C10.02762 (16)0.1138 (3)0.29282 (19)0.0802 (7)
H1A0.01020.05590.32000.096*
C20.00892 (17)0.1011 (3)0.18436 (19)0.0830 (7)
H2A0.04010.03730.14140.100*
C30.06359 (15)0.1835 (3)0.14320 (17)0.0709 (6)
H3A0.05270.17710.07130.085*
C40.13668 (13)0.2784 (2)0.21015 (14)0.0527 (5)
C50.19644 (15)0.3666 (2)0.17047 (15)0.0605 (5)
H5A0.18740.36070.09900.073*
C60.26533 (15)0.4579 (2)0.23519 (16)0.0617 (5)
H6A0.30300.51570.20770.074*
C70.28227 (13)0.4683 (2)0.34577 (14)0.0513 (5)
C80.35443 (15)0.5618 (2)0.41600 (16)0.0668 (6)
H8A0.39410.62000.39150.080*
C90.36619 (15)0.5671 (2)0.52044 (16)0.0672 (6)
H9A0.41530.62660.56790.081*
C100.30418 (13)0.4828 (2)0.55576 (14)0.0518 (5)
C110.22481 (12)0.38370 (19)0.38836 (13)0.0449 (4)
C120.14971 (12)0.2850 (2)0.31808 (14)0.0486 (5)
C130.31208 (14)0.4929 (2)0.66863 (14)0.0544 (5)
C140.38347 (14)0.4096 (2)0.74841 (16)0.0627 (6)
C150.38632 (16)0.4189 (3)0.85174 (16)0.0690 (6)
H15A0.43370.36380.90480.083*
C160.32177 (18)0.5063 (3)0.87862 (16)0.0703 (6)
C170.25303 (17)0.5879 (2)0.79860 (17)0.0704 (6)
H17A0.20940.64850.81560.085*
C180.24611 (15)0.5836 (2)0.69393 (16)0.0622 (5)
C190.45479 (16)0.3098 (3)0.72337 (19)0.0877 (8)
H19B0.49800.26230.78740.132*
H19C0.49330.36790.69370.132*
H19D0.41850.23540.67300.132*
C200.16739 (18)0.6713 (3)0.6093 (2)0.0847 (7)
H20B0.12930.72680.64090.127*
H20C0.12460.60450.55680.127*
H20D0.19800.73870.57610.127*
C210.3232 (2)0.5084 (3)0.99054 (18)0.0934 (8)
H21B0.37560.44531.03520.140*
H21C0.26090.47290.99000.140*
H21D0.33410.60831.01750.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0589 (9)0.0730 (11)0.0617 (10)0.0201 (8)0.0249 (9)0.0090 (9)
N20.0487 (8)0.0586 (9)0.0419 (8)0.0056 (7)0.0153 (7)0.0014 (7)
C10.0678 (13)0.0949 (17)0.0796 (16)0.0298 (13)0.0299 (13)0.0175 (14)
C20.0660 (14)0.1019 (19)0.0699 (15)0.0276 (13)0.0131 (12)0.0222 (14)
C30.0640 (13)0.0850 (15)0.0522 (12)0.0036 (12)0.0088 (11)0.0116 (11)
C40.0469 (10)0.0614 (11)0.0446 (10)0.0044 (8)0.0112 (8)0.0032 (9)
C50.0663 (12)0.0735 (13)0.0413 (10)0.0042 (10)0.0197 (10)0.0016 (10)
C60.0669 (12)0.0732 (13)0.0515 (12)0.0060 (11)0.0299 (10)0.0040 (10)
C70.0512 (10)0.0565 (11)0.0459 (10)0.0018 (8)0.0181 (9)0.0017 (9)
C80.0672 (13)0.0771 (14)0.0613 (13)0.0227 (11)0.0303 (11)0.0009 (11)
C90.0650 (12)0.0785 (14)0.0557 (12)0.0278 (11)0.0201 (10)0.0117 (11)
C100.0498 (10)0.0587 (11)0.0440 (10)0.0050 (9)0.0146 (9)0.0012 (9)
C110.0427 (9)0.0509 (10)0.0409 (10)0.0023 (7)0.0156 (8)0.0014 (8)
C120.0421 (9)0.0537 (10)0.0478 (11)0.0038 (8)0.0145 (8)0.0013 (8)
C130.0530 (10)0.0630 (12)0.0425 (10)0.0142 (9)0.0127 (9)0.0060 (9)
C140.0535 (11)0.0804 (14)0.0493 (12)0.0108 (10)0.0138 (10)0.0015 (10)
C150.0664 (13)0.0866 (15)0.0448 (12)0.0146 (11)0.0105 (10)0.0030 (11)
C160.0823 (15)0.0817 (15)0.0463 (12)0.0292 (13)0.0234 (12)0.0135 (11)
C170.0813 (15)0.0749 (14)0.0602 (13)0.0117 (12)0.0325 (12)0.0173 (11)
C180.0672 (13)0.0644 (12)0.0523 (12)0.0087 (10)0.0194 (10)0.0075 (10)
C190.0653 (14)0.128 (2)0.0650 (15)0.0148 (14)0.0187 (12)0.0125 (14)
C200.0911 (16)0.0851 (16)0.0751 (16)0.0156 (14)0.0281 (14)0.0010 (13)
C210.124 (2)0.1078 (19)0.0529 (13)0.0323 (17)0.0386 (14)0.0142 (13)
Geometric parameters (Å, º) top
N1—C11.325 (3)C10—C131.496 (3)
N1—C121.357 (2)C11—C121.452 (2)
N2—C101.325 (2)C13—C181.399 (3)
N2—C111.358 (2)C13—C141.402 (3)
C1—C21.398 (3)C14—C151.391 (3)
C1—H1A0.9300C14—C191.506 (3)
C2—C31.353 (3)C15—C161.377 (3)
C2—H2A0.9300C15—H15A0.9300
C3—C41.400 (3)C16—C171.379 (3)
C3—H3A0.9300C16—C211.512 (3)
C4—C121.406 (2)C17—C181.387 (3)
C4—C51.426 (3)C17—H17A0.9300
C5—C61.337 (3)C18—C201.505 (3)
C5—H5A0.9300C19—H19B0.9600
C6—C71.430 (3)C19—H19C0.9600
C6—H6A0.9300C19—H19D0.9600
C7—C81.402 (3)C20—H20B0.9600
C7—C111.407 (2)C20—H20C0.9600
C8—C91.364 (3)C20—H20D0.9600
C8—H8A0.9300C21—H21B0.9600
C9—C101.396 (3)C21—H21C0.9600
C9—H9A0.9300C21—H21D0.9600
C1—N1—C12116.26 (18)C4—C12—C11118.84 (16)
C10—N2—C11118.42 (15)C18—C13—C14120.00 (18)
N1—C1—C2124.9 (2)C18—C13—C10119.51 (17)
N1—C1—H1A117.6C14—C13—C10120.47 (18)
C2—C1—H1A117.6C15—C14—C13118.6 (2)
C3—C2—C1118.6 (2)C15—C14—C19120.2 (2)
C3—C2—H2A120.7C13—C14—C19121.19 (18)
C1—C2—H2A120.7C16—C15—C14122.6 (2)
C2—C3—C4119.2 (2)C16—C15—H15A118.7
C2—C3—H3A120.4C14—C15—H15A118.7
C4—C3—H3A120.4C15—C16—C17117.45 (19)
C3—C4—C12118.22 (18)C15—C16—C21121.5 (2)
C3—C4—C5121.17 (18)C17—C16—C21121.0 (2)
C12—C4—C5120.61 (16)C16—C17—C18122.9 (2)
C6—C5—C4120.49 (17)C16—C17—H17A118.6
C6—C5—H5A119.8C18—C17—H17A118.6
C4—C5—H5A119.8C17—C18—C13118.5 (2)
C5—C6—C7121.31 (18)C17—C18—C20120.5 (2)
C5—C6—H6A119.3C13—C18—C20120.96 (18)
C7—C6—H6A119.3C14—C19—H19B109.5
C8—C7—C11117.04 (17)C14—C19—H19C109.5
C8—C7—C6122.79 (17)H19B—C19—H19C109.5
C11—C7—C6120.17 (16)C14—C19—H19D109.5
C9—C8—C7119.75 (18)H19B—C19—H19D109.5
C9—C8—H8A120.1H19C—C19—H19D109.5
C7—C8—H8A120.1C18—C20—H20B109.5
C8—C9—C10119.64 (18)C18—C20—H20C109.5
C8—C9—H9A120.2H20B—C20—H20C109.5
C10—C9—H9A120.2C18—C20—H20D109.5
N2—C10—C9122.36 (17)H20B—C20—H20D109.5
N2—C10—C13117.01 (16)H20C—C20—H20D109.5
C9—C10—C13120.63 (16)C16—C21—H21B109.5
N2—C11—C7122.74 (16)C16—C21—H21C109.5
N2—C11—C12118.68 (15)H21B—C21—H21C109.5
C7—C11—C12118.57 (15)C16—C21—H21D109.5
N1—C12—C4122.83 (16)H21B—C21—H21D109.5
N1—C12—C11118.33 (16)H21C—C21—H21D109.5
C12—N1—C1—C20.3 (3)C3—C4—C12—C11179.59 (16)
N1—C1—C2—C30.5 (4)C5—C4—C12—C110.3 (3)
C1—C2—C3—C40.0 (3)N2—C11—C12—N11.8 (2)
C2—C3—C4—C120.5 (3)C7—C11—C12—N1179.26 (15)
C2—C3—C4—C5179.6 (2)N2—C11—C12—C4178.47 (15)
C3—C4—C5—C6179.35 (18)C7—C11—C12—C40.5 (2)
C12—C4—C5—C60.5 (3)N2—C10—C13—C1880.7 (2)
C4—C5—C6—C71.0 (3)C9—C10—C13—C1898.5 (2)
C5—C6—C7—C8179.43 (19)N2—C10—C13—C1497.8 (2)
C5—C6—C7—C111.2 (3)C9—C10—C13—C1482.9 (2)
C11—C7—C8—C90.1 (3)C18—C13—C14—C150.5 (3)
C6—C7—C8—C9179.5 (2)C10—C13—C14—C15178.08 (17)
C7—C8—C9—C101.9 (3)C18—C13—C14—C19179.37 (18)
C11—N2—C10—C91.0 (3)C10—C13—C14—C190.8 (3)
C11—N2—C10—C13178.28 (15)C13—C14—C15—C160.1 (3)
C8—C9—C10—N22.5 (3)C19—C14—C15—C16178.8 (2)
C8—C9—C10—C13176.75 (19)C14—C15—C16—C170.7 (3)
C10—N2—C11—C71.0 (3)C14—C15—C16—C21176.9 (2)
C10—N2—C11—C12179.93 (15)C15—C16—C17—C180.8 (3)
C8—C7—C11—N21.4 (3)C21—C16—C17—C18176.9 (2)
C6—C7—C11—N2178.00 (16)C16—C17—C18—C130.2 (3)
C8—C7—C11—C12179.66 (16)C16—C17—C18—C20177.98 (19)
C6—C7—C11—C120.9 (3)C14—C13—C18—C170.4 (3)
C1—N1—C12—C40.3 (3)C10—C13—C18—C17178.17 (17)
C1—N1—C12—C11180.00 (17)C14—C13—C18—C20178.62 (18)
C3—C4—C12—N10.7 (3)C10—C13—C18—C200.0 (3)
C5—C4—C12—N1179.46 (16)

Experimental details

Crystal data
Chemical formulaC21H18N2
Mr298.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.5778 (19), 8.9877 (11), 13.5790 (11)
β (°) 112.166 (4)
V3)1647.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9474, 3511, 2150
Rint0.031
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.181, 1.06
No. of reflections3511
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).

 

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaras, A. M. S. & Vagg, R. S. (2000). J. Heterocycl. Chem. 37, 151–158.  CrossRef CAS Google Scholar
First citationSauvage, J. P. (1990). Acc. Chem. Res. 23, 319–327.  CrossRef CAS Web of Science Google Scholar
First citationSchmittel, M. & Ganz, A. (1997). Chem. Commun. pp. 999–1000.  CrossRef Web of Science Google Scholar
First citationSchmittel, M., Michel, C., Liu, S.-X., Schildbach, D. & Fenske, D. (2001). Eur. J. Inorg. Chem. pp. 1155–1166.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds